1
|
Egan JP, Simons AM, Alavi-Yeganeh MS, Hammer MP, Tongnunui P, Arcila D, Betancur-R R, Bloom DD. Phylogenomics, Lineage Diversification Rates, and the Evolution of Diadromy in Clupeiformes (Anchovies, Herrings, Sardines, and Relatives). Syst Biol 2024; 73:683-703. [PMID: 38756097 DOI: 10.1093/sysbio/syae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 05/01/2024] [Accepted: 05/15/2024] [Indexed: 05/18/2024] Open
Abstract
Migration independently evolved numerous times in animals, with a myriad of ecological and evolutionary implications. In fishes, perhaps the most extreme form of migration is diadromy, the migration between marine and freshwater environments. Key and long-standing questions are: how many times has diadromy evolved in fishes, how frequently do diadromous clades give rise to non-diadromous species, and does diadromy influence lineage diversification rates? Many diadromous fishes have large geographic ranges with constituent populations that use isolated freshwater habitats. This may limit gene flow between some populations, increasing the likelihood of speciation in diadromous lineages relative to nondiadromous lineages. Alternatively, diadromy may reduce lineage diversification rates if migration is associated with enhanced dispersal capacity that facilitates gene flow within and between populations. Clupeiformes (herrings, sardines, shads, and anchovies) is a model clade for testing hypotheses about the evolution of diadromy because it includes an exceptionally high proportion of diadromous species and several independent evolutionary origins of diadromy. However, relationships among major clupeiform lineages remain unresolved, and existing phylogenies sparsely sampled diadromous species, limiting the resolution of phylogenetically informed statistical analyses. We assembled a phylogenomic dataset and used multi-species coalescent and concatenation-based approaches to generate the most comprehensive, highly resolved clupeiform phylogeny to date, clarifying associations among several major clades and identifying recalcitrant relationships needing further examination. We determined that variation in rates of sequence evolution (heterotachy) and base-composition (nonstationarity) had little impact on our results. Using this phylogeny, we characterized evolutionary patterns of diadromy and tested for differences in lineage diversification rates between diadromous, marine, and freshwater lineages. We identified 13 transitions to diadromy, all during the Cenozoic Era (10 origins of anadromy, 2 origins of catadromy, and 1 origin of amphidromy), and 7 losses of diadromy. Two diadromous lineages rapidly generated nondiadromous species, demonstrating that diadromy is not an evolutionary dead end. We discovered considerably faster transition rates out of diadromy than to diadromy. The largest lineage diversification rate increase in Clupeiformes was associated with a transition to diadromy, but we uncovered little statistical support for categorically faster lineage diversification rates in diadromous versus nondiadromous fishes. We propose that diadromy may increase the potential for accelerated lineage diversification, particularly in species that migrate long distances. However, this potential may only be realized in certain biogeographic contexts, such as when diadromy allows access to ecosystems in which there is limited competition from incumbent species.
Collapse
Affiliation(s)
- Joshua P Egan
- Department of Biological Sciences, Western Michigan University, 1903 W Michigan Ave., Kalamazoo, MI 49008, USA
- Bell Museum of Natural History, University of Minnesota, 100 Ecology, 1987 Upper Buford Circle, Saint Paul, MN 55108, USA
| | - Andrew M Simons
- Bell Museum of Natural History, University of Minnesota, 100 Ecology, 1987 Upper Buford Circle, Saint Paul, MN 55108, USA
- Department of Fisheries, Wildlife and Conservation Biology, University of Minnesota, 2003 Upper Buford Circle, Saint Paul, MN 55108, USA
| | | | - Michael P Hammer
- Museum and Art Gallery of the Northern Territory, GPO Box 4646, Darwin, NT 0801, Australia
| | - Prasert Tongnunui
- Department of Marine Science and Environment, Faculty of Science and Fisheries Technology, Rajamangala University of Technology Srivijaya, Sikao, Trang 92150, Thailand
| | - Dahiana Arcila
- Scripps Institution of Oceanography, University of California - San Diego, La Jolla, CA 92093, USA
| | - Ricardo Betancur-R
- Scripps Institution of Oceanography, University of California - San Diego, La Jolla, CA 92093, USA
| | - Devin D Bloom
- Department of Biological Sciences, Western Michigan University, 1903 W Michigan Ave., Kalamazoo, MI 49008, USA
- School of the Environment, Geography, and Sustainability, Western Michigan University, 1903 W Michigan Ave, Kalamazoo, MI 49008, USA
| |
Collapse
|
2
|
Yuan J, Zhang X, Zhang X, Sun Y, Liu C, Li S, Yu Y, Zhang C, Jin S, Wang M, Xiang J, Li F. An ancient whole-genome duplication in barnacles contributes to their diversification and intertidal sessile life adaptation. J Adv Res 2024; 62:91-103. [PMID: 37734567 PMCID: PMC11331182 DOI: 10.1016/j.jare.2023.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 09/01/2023] [Accepted: 09/18/2023] [Indexed: 09/23/2023] Open
Abstract
INTRODUCTION Whole-genome duplication (WGD) is one of the most sudden and dramatic events rarely reported in invertebrates, but its occurrence can lead to physiological, morphological, and behavioral diversification. WGD has also never been reported in barnacles, which is one of the most unique groups of crustaceans with extremely speciallized morphology (calcareous shells) and habits (intertidal sessile lifestyle). OBJECTIVES To investigate whether WGD has occurred in barnacles and examine its potential role in driving the adaptive evolution and diversification of barnacles. METHODS Based on a newly sequenced and assembled chromosome-level barnacle genome, a novel WGD event has been identified in barnacles through a comprehensive analysis of interchromosomal synteny, the Hox gene cluster, and synonymous substitution distribution. RESULTS We provide ample evidences for WGD in the barnacle genomes. Comparative genomic analysis indicates that this WGD event predates the divergence of Thoracicalcarea, occurring more than 247 million years ago. The retained ohnologs from the WGD are primarily enriched in various pathways related to environmental information processing, shedding light on the adaptive evolution and diversification of intertidal sessile lifestyle. In addition, transcriptomic analyses show that most of these ohnologs were differentially expressed following the ebb of tide. And the cytochrome P450 ohnologs with differential expression patterns are subject to subfunctionalization and/or neofunctionalization for intertidal adaptation. Besides WGD, parallel evolution underlying intertidal adaptation has also occurred in barnacles. CONCLUSION This study revealed an ancient WGD event in the barnacle genomes, which is potentially associated with the origin and diversification of thoracican barnacles, and may have contributed to the adaptive evolution of their intertidal sessile lifestyle.
Collapse
Affiliation(s)
- Jianbo Yuan
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Xiaojun Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Xiaoxi Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Yamin Sun
- Research Center for Functional Genomics and Biochip, Tianjin 300457, China
| | - Chengzhang Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Shihao Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Yang Yu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Chengsong Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Songjun Jin
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Min Wang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China; Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300071, China.
| | - Jianhai Xiang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| | - Fuhua Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
3
|
Pushchina EV, Varaksin AA. Constitutive Neurogenesis and Neuronal Plasticity in the Adult Cerebellum and Brainstem of Rainbow Trout, Oncorhynchus mykiss. Int J Mol Sci 2024; 25:5595. [PMID: 38891784 PMCID: PMC11171520 DOI: 10.3390/ijms25115595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/13/2024] [Accepted: 05/16/2024] [Indexed: 06/21/2024] Open
Abstract
The central nervous system of Pacific salmon retains signs of embryonic structure throughout life and a large number of neuroepithelial neural stem cells (NSCs) in the proliferative areas of the brain, in particular. However, the adult nervous system and neurogenesis studies on rainbow trout, Oncorhynchus mykiss, are limited. Here, we studied the localization of glutamine synthetase (GS), vimentin (Vim), and nestin (Nes), as well as the neurons formed in the postembryonic period, labeled with doublecortin (DC), under conditions of homeostatic growth in adult cerebellum and brainstem of Oncorhynchus mykiss using immunohistochemical methods and Western Immunoblotting. We observed that the distribution of vimentin (Vim), nestin (Nes), and glutamine synthetase (GS), which are found in the aNSPCs of both embryonic types (neuroepithelial cells) and in the adult type (radial glia) in the cerebellum and the brainstem of trout, has certain features. Populations of the adult neural stem/progenitor cells (aNSPCs) expressing GS, Vim, and Nes have different morphologies, localizations, and patterns of cluster formation in the trout cerebellum and brainstem, which indicates the morphological and, obviously, functional heterogeneity of these cells. Immunolabeling of PCNA revealed areas in the cerebellum and brainstem of rainbow trout containing proliferating cells which coincide with areas expressing Vim, Nes, and GS. Double immunolabeling revealed the PCNA/GS PCNA/Vim coexpression patterns in the neuroepithelial-type cells in the PVZ of the brainstem. PCNA/GS coexpression in the RG was detected in the submarginal zone of the brainstem. The results of immunohistochemical study of the DC distribution in the cerebellum and brainstem of trout have showed a high level of expression of this marker in various cell populations. This may indicate: (i) high production of the adult-born neurons in the cerebellum and brainstem of adult trout, (ii) high plasticity of neurons in the cerebellum and brainstem of trout. We assume that the source of new cells in the trout brain, along with PVZ and SMZ, containing proliferating cells, may be local neurogenic niches containing the PCNA-positive and silent (PCNA-negative), but expressing NSC markers, cells. The identification of cells expressing DC, Vim, and Nes in the IX-X cranial nerve nuclei of trout was carried out.
Collapse
Affiliation(s)
- Evgeniya Vladislavovna Pushchina
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia;
| | | |
Collapse
|
4
|
Pushchina EV, Kapustyanov IA, Kluka GG. Adult Neurogenesis of Teleost Fish Determines High Neuronal Plasticity and Regeneration. Int J Mol Sci 2024; 25:3658. [PMID: 38612470 PMCID: PMC11012045 DOI: 10.3390/ijms25073658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/28/2024] [Accepted: 03/07/2024] [Indexed: 04/14/2024] Open
Abstract
Studying the properties of neural stem progenitor cells (NSPCs) in a fish model will provide new information about the organization of neurogenic niches containing embryonic and adult neural stem cells, reflecting their development, origin cell lines and proliferative dynamics. Currently, the molecular signatures of these populations in homeostasis and repair in the vertebrate forebrain are being intensively studied. Outside the telencephalon, the regenerative plasticity of NSPCs and their biological significance have not yet been practically studied. The impressive capacity of juvenile salmon to regenerate brain suggests that most NSPCs are likely multipotent, as they are capable of replacing virtually all cell lineages lost during injury, including neuroepithelial cells, radial glia, oligodendrocytes, and neurons. However, the unique regenerative profile of individual cell phenotypes in the diverse niches of brain stem cells remains unclear. Various types of neuronal precursors, as previously shown, are contained in sufficient numbers in different parts of the brain in juvenile Pacific salmon. This review article aims to provide an update on NSPCs in the brain of common models of zebrafish and other fish species, including Pacific salmon, and the involvement of these cells in homeostatic brain growth as well as reparative processes during the postraumatic period. Additionally, new data are presented on the participation of astrocytic glia in the functioning of neural circuits and animal behavior. Thus, from a molecular aspect, zebrafish radial glia cells are seen to be similar to mammalian astrocytes, and can therefore also be referred to as astroglia. However, a question exists as to if zebrafish astroglia cells interact functionally with neurons, in a similar way to their mammalian counterparts. Future studies of this fish will complement those on rodents and provide important information about the cellular and physiological processes underlying astroglial function that modulate neural activity and behavior in animals.
Collapse
Affiliation(s)
- Evgeniya Vladislavovna Pushchina
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far East Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia; (I.A.K.); (G.G.K.)
| | | | | |
Collapse
|
5
|
Ellis EA, Goodheart JA, Hensley NM, González VL, Reda NJ, Rivers TJ, Morin JG, Torres E, Gerrish GA, Oakley TH. Sexual Signals Persist over Deep Time: Ancient Co-option of Bioluminescence for Courtship Displays in Cypridinid Ostracods. Syst Biol 2023; 72:264-274. [PMID: 35984328 PMCID: PMC10448971 DOI: 10.1093/sysbio/syac057] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 07/22/2022] [Accepted: 08/08/2022] [Indexed: 11/14/2022] Open
Abstract
Although the diversity, beauty, and intricacy of sexually selected courtship displays command the attention of evolutionists, the longevity of these traits in deep time is poorly understood. Population-based theory suggests sexual selection could either lower or raise extinction risk, resulting in high or low persistence of lineages with sexually selected traits. Furthermore, empirical studies that directly estimate the longevity of sexually selected traits are uncommon. Sexually selected signals-including bioluminescent courtship-originated multiple times during evolution, allowing the empirical study of their longevity after careful phylogenetic and divergence time analyses. Here, we estimate the first transcriptome-based molecular phylogeny and divergence times of Cypridinidae. We report extreme longevity of bioluminescent courtship, a trait important in mate choice and probably under sexual selection. Our relaxed-clock estimates of divergence times coupled with stochastic character mapping show luminous courtship evolved only once in Cypridinidae-in a Sub-Tribe, we name Luxorina-at least 151 millions of years ago from cypridinid ancestors that used bioluminescence only in antipredator displays, defining a Tribe we name Luminini. This time-calibrated molecular phylogeny of cypridinids will serve as a foundation for integrative and comparative studies on the biochemistry, molecular evolution, courtship, diversification, and ecology of cypridinid bioluminescence. The persistence of luminous courtship for hundreds of millions of years suggests that sexual selection did not cause a rapid loss of associated traits, and that rates of speciation within the group exceeded extinction risk, which may contribute to the persistence of a diverse clade of signaling species. [Ancestral state reconstruction; Biodiversity; co-option; divergence time estimates; macroevolution; Ostracoda; phylogenomics; sexual selection.].
Collapse
Affiliation(s)
- Emily A Ellis
- Department of Ecology, Evolution, and Marine Biology, University of
California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Jessica A Goodheart
- Department of Ecology, Evolution, and Marine Biology, University of
California, Santa Barbara, Santa Barbara, CA 93106, USA
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of
Oceanography, University of California, San Diego, La Jolla, CA 92037,
USA
| | - Nicholai M Hensley
- Department of Ecology, Evolution, and Marine Biology, University of
California, Santa Barbara, Santa Barbara, CA 93106, USA
- Department of Neurobiology and Behavior, Cornell University,
Ithaca, NY 14850, USA
| | - Vanessa L González
- Department of Invertebrate Zoology, Smithsonian Institution, National
Museum of Natural History, 10th and Constitution NW, Washington, DC
20560-0105, USA
| | - Nicholas J Reda
- Biology Department, University of Wisconsin–La Crosse, La
Crosse, WI 54601, USA
| | - Trevor J Rivers
- Department of Ecology and Evolutionary Biology, University of Kansas
Lawrence, KS 66045, USA
| | - James G Morin
- Department of Ecology and Evolutionary Biology, Cornell
University, Ithaca, NY 14850, USA
| | - Elizabeth Torres
- Department of Biological Sciences, California State University Los
Angeles, Los Angeles, CA 90032, USA
| | - Gretchen A Gerrish
- Biology Department, University of Wisconsin–La Crosse, La
Crosse, WI 54601, USA
- Trout Lake Station, Center for Limnology, University of Wisconsin –
Madison, Boulder Junction, WI 54512, USA
| | - Todd H Oakley
- Department of Ecology, Evolution, and Marine Biology, University of
California, Santa Barbara, Santa Barbara, CA 93106, USA
| |
Collapse
|
6
|
Freyman WA, Johnson MG, Rothfels CJ. homologizer: Phylogenetic phasing of gene copies into polyploid subgenomes. Methods Ecol Evol 2023. [DOI: 10.1111/2041-210x.14072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Affiliation(s)
| | - Matthew G. Johnson
- Department of Biological Sciences Texas Tech University Lubbock Texas USA
| | - Carl J. Rothfels
- University Herbarium and Department of Integrative Biology University of California Berkeley California USA
| |
Collapse
|
7
|
Dysin AP, Shcherbakov YS, Nikolaeva OA, Terletskii VP, Tyshchenko VI, Dementieva NV. Salmonidae Genome: Features, Evolutionary and Phylogenetic Characteristics. Genes (Basel) 2022; 13:genes13122221. [PMID: 36553488 PMCID: PMC9778375 DOI: 10.3390/genes13122221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/19/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
The salmon family is one of the most iconic and economically important fish families, primarily possessing meat of excellent taste as well as irreplaceable nutritional and biological value. One of the most common and, therefore, highly significant members of this family, the Atlantic salmon (Salmo salar L.), was not without reason one of the first fish species for which a high-quality reference genome assembly was produced and published. Genomic advancements are becoming increasingly essential in both the genetic enhancement of farmed salmon and the conservation of wild salmon stocks. The salmon genome has also played a significant role in influencing our comprehension of the evolutionary and functional ramifications of the ancestral whole-genome duplication event shared by all Salmonidae species. Here we provide an overview of the current state of research on the genomics and phylogeny of the various most studied subfamilies, genera, and individual salmonid species, focusing on those studies that aim to advance our understanding of salmonid ecology, physiology, and evolution, particularly for the purpose of improving aquaculture production. This review should make potential researchers pay attention to the current state of research on the salmonid genome, which should potentially attract interest in this important problem, and hence the application of new technologies (such as genome editing) in uncovering the genetic and evolutionary features of salmoniforms that underlie functional variation in traits of commercial and scientific importance.
Collapse
Affiliation(s)
- Artem P. Dysin
- Russian Research Institute of Farm Animal Genetics and Breeding-Branch of the L.K. Ernst Federal Research Center for Animal Husbandry, Pushkin, 196601 St. Petersburg, Russia
- Correspondence:
| | - Yuri S. Shcherbakov
- Russian Research Institute of Farm Animal Genetics and Breeding-Branch of the L.K. Ernst Federal Research Center for Animal Husbandry, Pushkin, 196601 St. Petersburg, Russia
| | - Olga A. Nikolaeva
- Russian Research Institute of Farm Animal Genetics and Breeding-Branch of the L.K. Ernst Federal Research Center for Animal Husbandry, Pushkin, 196601 St. Petersburg, Russia
| | - Valerii P. Terletskii
- All-Russian Research Veterinary Institute of Poultry Science-Branch of the Federal Scientific Center, All-Russian Research and Technological Poultry Institute (ARRVIPS), Lomonosov, 198412 St. Petersburg, Russia
| | - Valentina I. Tyshchenko
- Russian Research Institute of Farm Animal Genetics and Breeding-Branch of the L.K. Ernst Federal Research Center for Animal Husbandry, Pushkin, 196601 St. Petersburg, Russia
| | - Natalia V. Dementieva
- Russian Research Institute of Farm Animal Genetics and Breeding-Branch of the L.K. Ernst Federal Research Center for Animal Husbandry, Pushkin, 196601 St. Petersburg, Russia
| |
Collapse
|
8
|
Heckenhauer J, Frandsen PB, Sproul JS, Li Z, Paule J, Larracuente AM, Maughan PJ, Barker MS, Schneider JV, Stewart RJ, Pauls SU. Genome size evolution in the diverse insect order Trichoptera. Gigascience 2022; 11:6537159. [PMID: 35217860 PMCID: PMC8881205 DOI: 10.1093/gigascience/giac011] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 11/25/2021] [Accepted: 01/21/2022] [Indexed: 12/30/2022] Open
Abstract
Background Genome size is implicated in the form, function, and ecological success of a species. Two principally different mechanisms are proposed as major drivers of eukaryotic genome evolution and diversity: polyploidy (i.e., whole-genome duplication) or smaller duplication events and bursts in the activity of repetitive elements. Here, we generated de novo genome assemblies of 17 caddisflies covering all major lineages of Trichoptera. Using these and previously sequenced genomes, we use caddisflies as a model for understanding genome size evolution in diverse insect lineages. Results We detect a ∼14-fold variation in genome size across the order Trichoptera. We find strong evidence that repetitive element expansions, particularly those of transposable elements (TEs), are important drivers of large caddisfly genome sizes. Using an innovative method to examine TEs associated with universal single-copy orthologs (i.e., BUSCO genes), we find that TE expansions have a major impact on protein-coding gene regions, with TE-gene associations showing a linear relationship with increasing genome size. Intriguingly, we find that expanded genomes preferentially evolved in caddisfly clades with a higher ecological diversity (i.e., various feeding modes, diversification in variable, less stable environments). Conclusion Our findings provide a platform to test hypotheses about the potential evolutionary roles of TE activity and TE-gene associations, particularly in groups with high species, ecological, and functional diversities.
Collapse
Affiliation(s)
- Jacqueline Heckenhauer
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt 60325, Germany.,Department of Terrestrial Zoology, Senckenberg Research Institute and Natural History Museum Frankfurt, Frankfurt 60325, Germany
| | - Paul B Frandsen
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt 60325, Germany.,Department of Plant & Wildlife Sciences, Brigham Young University, Provo, UT 84602, USA.,Data Science Lab, Smithsonian Institution, Washington, DC 20560, USA
| | - John S Sproul
- Department of Biology, University of Rochester, Rochester, NY 14620, USA.,Department of Biology, University of Nebraska Omaha, Omaha, NE 68182, USA
| | - Zheng Li
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
| | - Juraj Paule
- Department of Botany and Molecular Evolution, Senckenberg Research Institute and Natural History Museum Frankfurt, Frankfurt 60325, Germany
| | | | - Peter J Maughan
- Department of Plant & Wildlife Sciences, Brigham Young University, Provo, UT 84602, USA
| | - Michael S Barker
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
| | - Julio V Schneider
- Department of Terrestrial Zoology, Senckenberg Research Institute and Natural History Museum Frankfurt, Frankfurt 60325, Germany
| | - Russell J Stewart
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Steffen U Pauls
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt 60325, Germany.,Department of Terrestrial Zoology, Senckenberg Research Institute and Natural History Museum Frankfurt, Frankfurt 60325, Germany.,Institute for Insect Biotechnology, Justus-Liebig-University, Gießen 35390, Germany
| |
Collapse
|
9
|
Gundappa MK, To TH, Grønvold L, Martin SAM, Lien S, Geist J, Hazlerigg D, Sandve SR, Macqueen DJ. Genome-Wide Reconstruction of Rediploidization Following Autopolyploidization across One Hundred Million Years of Salmonid Evolution. Mol Biol Evol 2022; 39:msab310. [PMID: 34718723 PMCID: PMC8760942 DOI: 10.1093/molbev/msab310] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The long-term evolutionary impacts of whole-genome duplication (WGD) are strongly influenced by the ensuing rediploidization process. Following autopolyploidization, rediploidization involves a transition from tetraploid to diploid meiotic pairing, allowing duplicated genes (ohnologs) to diverge genetically and functionally. Our understanding of autopolyploid rediploidization has been informed by a WGD event ancestral to salmonid fishes, where large genomic regions are characterized by temporally delayed rediploidization, allowing lineage-specific ohnolog sequence divergence in the major salmonid clades. Here, we investigate the long-term outcomes of autopolyploid rediploidization at genome-wide resolution, exploiting a recent "explosion" of salmonid genome assemblies, including a new genome sequence for the huchen (Hucho hucho). We developed a genome alignment approach to capture duplicated regions across multiple species, allowing us to create 121,864 phylogenetic trees describing genome-wide ohnolog divergence across salmonid evolution. Using molecular clock analysis, we show that 61% of the ancestral salmonid genome experienced an initial "wave" of rediploidization in the late Cretaceous (85-106 Ma). This was followed by a period of relative genomic stasis lasting 17-39 My, where much of the genome remained tetraploid. A second rediploidization wave began in the early Eocene and proceeded alongside species diversification, generating predictable patterns of lineage-specific ohnolog divergence, scaling in complexity with the number of speciation events. Using gene set enrichment, gene expression, and codon-based selection analyses, we provide insights into potential functional outcomes of delayed rediploidization. This study enhances our understanding of delayed autopolyploid rediploidization and has broad implications for future studies of WGD events.
Collapse
Affiliation(s)
- Manu Kumar Gundappa
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, United Kingdom
- School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Thu-Hien To
- Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Centre for Integrative Genetics (CIGENE), Norwegian University of Life Sciences, Ås, Norway
| | - Lars Grønvold
- Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Centre for Integrative Genetics (CIGENE), Norwegian University of Life Sciences, Ås, Norway
| | - Samuel A M Martin
- School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Sigbjørn Lien
- Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Centre for Integrative Genetics (CIGENE), Norwegian University of Life Sciences, Ås, Norway
| | - Juergen Geist
- Aquatic Systems Biology Unit, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - David Hazlerigg
- Department of Arctic and Marine Biology, Faculty of BioSciences Fisheries & Economy, University of Tromsø, Norway
| | - Simen R Sandve
- Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Centre for Integrative Genetics (CIGENE), Norwegian University of Life Sciences, Ås, Norway
| | - Daniel J Macqueen
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, United Kingdom
| |
Collapse
|
10
|
Bolton CM, Bekaert M, Eilertsen M, Helvik JV, Migaud H. Rhythmic Clock Gene Expression in Atlantic Salmon Parr Brain. Front Physiol 2021; 12:761109. [PMID: 34925060 PMCID: PMC8674837 DOI: 10.3389/fphys.2021.761109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 11/09/2021] [Indexed: 12/28/2022] Open
Abstract
To better understand the complexity of clock genes in salmonids, a taxon with an additional whole genome duplication, an analysis was performed to identify and classify gene family members (clock, arntl, period, cryptochrome, nr1d, ror, and csnk1). The majority of clock genes, in zebrafish and Northern pike, appeared to be duplicated. In comparison to the 29 clock genes described in zebrafish, 48 clock genes were discovered in salmonid species. There was also evidence of species-specific reciprocal gene losses conserved to the Oncorhynchus sister clade. From the six period genes identified three were highly significantly rhythmic, and circadian in their expression patterns (per1a.1, per1a.2, per1b) and two was significantly rhythmically expressed (per2a, per2b). The transcriptomic study of juvenile Atlantic salmon (parr) brain tissues confirmed gene identification and revealed that there were 2,864 rhythmically expressed genes (p < 0.001), including 1,215 genes with a circadian expression pattern, of which 11 were clock genes. The majority of circadian expressed genes peaked 2 h before and after daylight. These findings provide a foundation for further research into the function of clock genes circadian rhythmicity and the role of an enriched number of clock genes relating to seasonal driven life history in salmonids.
Collapse
Affiliation(s)
- Charlotte M Bolton
- Institute of Aquaculture, University of Stirling, Stirling, United Kingdom
| | - Michaël Bekaert
- Institute of Aquaculture, University of Stirling, Stirling, United Kingdom
| | - Mariann Eilertsen
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Jon Vidar Helvik
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Herve Migaud
- Institute of Aquaculture, University of Stirling, Stirling, United Kingdom
| |
Collapse
|
11
|
Bayramov AV, Ermakova GV, Kuchryavyy AV, Zaraisky AG. Genome Duplications as the Basis of Vertebrates’ Evolutionary Success. Russ J Dev Biol 2021. [DOI: 10.1134/s1062360421030024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
12
|
Hashemzadeh Segherloo I, Freyhof J, Berrebi P, Ferchaud AL, Geiger M, Laroche J, Levin BA, Normandeau E, Bernatchez L. A genomic perspective on an old question: Salmo trouts or Salmo trutta (Teleostei: Salmonidae)? Mol Phylogenet Evol 2021; 162:107204. [PMID: 34015446 DOI: 10.1016/j.ympev.2021.107204] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/29/2021] [Accepted: 05/06/2021] [Indexed: 10/21/2022]
Abstract
There are particular challenges in defining the taxonomic status of recently radiated groups due to the low level of phylogenetic signal. Members of the Salmo trutta species-complex, which mostly evolved during and following the Pleistocene, show high morphological and ecological diversity that, along with their very wide geographic distribution, have led to morphological description of 47 extant nominal species. However, many of these species have not been supported by previous phylogenetic studies, which could be partly due to lack of significant genetic differences among them, the limited resolution offered by molecular methods previously used, as well as the often local scale of these studies. The development of next-generation sequencing (NGS) and related analytical tools have enhanced our ability to address such challenging questions. In this study, Genotyping-by-Sequencing (GBS) of 15,169 filtered SNPs and mitochondrial DNA (mtDNA) D-loop sequences were combined to assess the phylogenetic relationships among 166 brown trouts representing 21 described species and three undescribed groups collected from 84 localities throughout their natural distribution in Europe, west Asia, and North Africa. The data were analysed using different clustering algorithms (admixture analysis and discriminant analysis of principal components-DAPC), a Bayes Factor Delimitation (BFD) test, species tree reconstruction, gene flow tests (three- and four-population tests), and Rogue taxa identification tests. Genomic contributions of the Atlantic lineage brown trout were found in all major sea basins excluding the North African and Aral Sea basins, suggesting introgressive hybridization of native brown trouts driven by stocking using strains of the Atlantic lineage. After removing the phylogenetic noise caused by the Atlantic brown trout, admixture clusters and DAPC clustering based on GBS data, respectively, resolved 11 and 13 clusters among the previously described brown trout species, which were also supported by BFD test results. Our results suggest that natural hybridization between different brown trout lineages has probably played an important role in the origin of several of the putative species, including S. marmoratus, S. carpio, S. farioides, S. pellegrini, S. caspius (in the Kura River drainage) and Salmo sp. in the Danube River basin. Overall, our results support a multi-species taxonomy for brown trouts. They also resolve some species in the Adriatic-Mediterranean and Black Sea drainages as members of very closely related genomic clusters that may need taxonomic revision. However, any final conclusions pertaining to the taxonomy of the brown trout complex should be based on an integrative approach combining genomic, morphological, and ecological data. To avoid challenges in taxonomy and conservation of species complexes like brown trouts, it is suggested to describe species based on genomic clusters of populations instead of describing species based only on morphologically differentiated single type populations.
Collapse
Affiliation(s)
- Iraj Hashemzadeh Segherloo
- Department of Fisheries and Environmental Sciences, Faculty of Natural Resources and Earth Sciences, Shahr-e-Kord University, Shahr-e-Kord, Iran; Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec G1V 0A6, Canada.
| | - Jörg Freyhof
- Museum für Naturkunde Leibniz Institute for Research on Evolution and Biodiversity at the Humboldt University Berlin, 10115 Berlin, Germany
| | - Patrick Berrebi
- Genome - Research & Diagnostic, 697 avenue de Lunel, 34400 Saint-Just, France
| | - Anne-Laure Ferchaud
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec G1V 0A6, Canada
| | - Matthias Geiger
- Zoologisches Forschungsmuseum Museum Alexander Koenig, Leibniz Institute for Animal Biodiversity, 53133 Bonn, Germany
| | - Jérôme Laroche
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec G1V 0A6, Canada
| | - Boris A Levin
- Papanin Institute of Biology of Inland Waters, Russian Academy of Sciences, Borok, Yaroslavl Region, Russia & Cherepovets State University, Cherepovets, Vologda Region, Russia
| | - Eric Normandeau
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec G1V 0A6, Canada
| | - Louis Bernatchez
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec G1V 0A6, Canada
| |
Collapse
|
13
|
Brix KV, Baker J, Morris W, Ferry K, Pettem C, Elphick J, Tear LM, Napier R, Adzic M, DeForest DK. Effects of Maternally Transferred Egg Selenium on Embryo-Larval Survival, Growth, and Development in Arctic Grayling (Thymallus arcticus). ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:380-389. [PMID: 33136298 DOI: 10.1002/etc.4920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/22/2020] [Accepted: 10/27/2020] [Indexed: 06/11/2023]
Abstract
Selenium (Se) toxicity to fish is primarily manifested via maternal transfer to the eggs, which may result in adverse effects on larval survival and development. The present study assessed the effects of egg Se concentrations derived via maternal transfer on early life-stage development, survival, and growth of Arctic grayling (Thymallus arcticus), a salmonid species not previously assessed for Se sensitivity. Fish gametes were collected from 4 streams in Alaska known to exhibit a range of egg Se concentrations. Eggs were fertilized and reared in the laboratory from hatch through post-swim-up. Larvae were assessed for survival, length, and weight, as well as deformities (skeletal, craniofacial, fin-fold) and edema based on a graduated severity index. Eggs from a total of 47 females were collected, with egg Se concentrations ranging from 3.3 to 33.9 mg kg-1 dry weight. No relationships were observed between larval endpoints evaluated and parent females' egg, muscle, or whole-body Se concentrations. Therefore, Se 10% effective concentrations (EC10s) were defined as the maximum measured Se concentrations: >33.9, >17.6, and >19.7 mg kg-1 dry weight for eggs, muscle, and whole-body tissue, respectively. Collectively, these data indicate that Arctic grayling are relatively insensitive to maternally transferred Se compared to other fish species. Environ Toxicol Chem 2021;40:380-389. © 2020 SETAC.
Collapse
Affiliation(s)
| | - Josh Baker
- Nautilus Environmental, Burnaby, British Columbia, Canada
| | - William Morris
- Owl Ridge Natural Resource Consultants, Anchorage, Alaska, USA
| | - Kathleen Ferry
- Owl Ridge Natural Resource Consultants, Anchorage, Alaska, USA
| | - Connor Pettem
- Nautilus Environmental, Burnaby, British Columbia, Canada
| | - James Elphick
- Nautilus Environmental, Burnaby, British Columbia, Canada
| | | | | | - Marko Adzic
- Teck Resources, Vancouver, British Columbia, Canada
| | | |
Collapse
|
14
|
Transposable Elements and Teleost Migratory Behaviour. Int J Mol Sci 2021; 22:ijms22020602. [PMID: 33435333 PMCID: PMC7827017 DOI: 10.3390/ijms22020602] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/28/2020] [Accepted: 01/06/2021] [Indexed: 02/07/2023] Open
Abstract
Transposable elements (TEs) represent a considerable fraction of eukaryotic genomes, thereby contributing to genome size, chromosomal rearrangements, and to the generation of new coding genes or regulatory elements. An increasing number of works have reported a link between the genomic abundance of TEs and the adaptation to specific environmental conditions. Diadromy represents a fascinating feature of fish, protagonists of migratory routes between marine and freshwater for reproduction. In this work, we investigated the genomes of 24 fish species, including 15 teleosts with a migratory behaviour. The expected higher relative abundance of DNA transposons in ray-finned fish compared with the other fish groups was not confirmed by the analysis of the dataset considered. The relative contribution of different TE types in migratory ray-finned species did not show clear differences between oceanodromous and potamodromous fish. On the contrary, a remarkable relationship between migratory behaviour and the quantitative difference reported for short interspersed nuclear (retro)elements (SINEs) emerged from the comparison between anadromous and catadromous species, independently from their phylogenetic position. This aspect is likely due to the substantial environmental changes faced by diadromous species during their migratory routes.
Collapse
|
15
|
Wang X, Yan J. Directional divergence of Ep300 duplicates in teleosts and its implications. BMC Evol Biol 2020; 20:140. [PMID: 33129255 PMCID: PMC7603692 DOI: 10.1186/s12862-020-01712-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 10/26/2020] [Indexed: 01/06/2023] Open
Abstract
Background EP300 is a conserved protein in vertebrates, which serves as a key mediator of cellular homeostasis. Mutations and dysregulation of EP300 give rise to severe human developmental disorders and malignancy. Danio rerio is a promising model organism to study EP300 related diseases and drugs; however, the effect of EP300 duplicates derived from teleost-specific whole genome duplication should not just be neglected. Results In this study, we obtained EP300 protein sequences of representative teleosts, mammals and sauropsids, with which we inferred a highly supported maximum likelihood tree. We observed that Ep300 duplicates (Ep300a and Ep300b) were widely retained in teleosts and universally expressed in a variety of tissues. Consensus sequences of Ep300a and Ep300b had exactly the same distribution of conserved domains, suggesting that their functions should still be largely overlapped. We analyzed the molecular evolution of Ep300 duplicates in teleosts, using branch-site models, clade models and site models. The results showed that both duplicates were subject to strong positive selection; however, for an extant species, generally at most one copy was under positive selection. At the clade level, there were evident positive correlations between evolutionary rates, the number of positively selected sites and gene expression levels. In Ostariophysi, Ep300a were under stronger positive selection than Ep300b; in Neoteleostei, another species-rich teleost clade, the contrary was the case. We also modeled 3D structures of zf-TAZ domain and its flanking regions of Ep300a and Ep300b of D. rerio and Oryzias latipes and found that in either species the faster evolving copy had more short helixes. Conclusions Collectively, the two copies of Ep300 have undoubtedly experienced directional divergence in main teleost clades. The divergence of EP300 between teleosts and mammals should be greater than the divergence between different teleost clades. Further studies are needed to clarify to what extent the EP300 involved regulatory network has diverged between teleosts and mammals, which would also help explain the huge success of teleosts.
Collapse
Affiliation(s)
- Xianzong Wang
- College of Animal Science, Shanxi Agricultural University, Taigu, 030801, China.
| | - Junli Yan
- College of Urban and Rural Construction, Shanxi Agricultural University, Taigu, 030801, China
| |
Collapse
|
16
|
West AC, Iversen M, Jørgensen EH, Sandve SR, Hazlerigg DG, Wood SH. Diversified regulation of circadian clock gene expression following whole genome duplication. PLoS Genet 2020; 16:e1009097. [PMID: 33031398 PMCID: PMC7575087 DOI: 10.1371/journal.pgen.1009097] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 10/20/2020] [Accepted: 09/06/2020] [Indexed: 12/22/2022] Open
Abstract
Across taxa, circadian control of physiology and behavior arises from cell-autonomous oscillations in gene expression, governed by a networks of so-called ‘clock genes’, collectively forming transcription-translation feedback loops. In modern vertebrates, these networks contain multiple copies of clock gene family members, which arose through whole genome duplication (WGD) events during evolutionary history. It remains unclear to what extent multiple copies of clock gene family members are functionally redundant or have allowed for functional diversification. We addressed this problem through an analysis of clock gene expression in the Atlantic salmon, a representative of the salmonids, a group which has undergone at least 4 rounds of WGD since the base of the vertebrate lineage, giving an unusually large complement of clock genes. By comparing expression patterns across multiple tissues, and during development, we present evidence for gene- and tissue-specific divergence in expression patterns, consistent with functional diversification of clock gene duplicates. In contrast to mammals, we found no evidence for coupling between cortisol and circadian gene expression, but cortisol mediated non-circadian regulated expression of a subset of clock genes in the salmon gill was evident. This regulation is linked to changes in gill function necessary for the transition from fresh- to sea-water in anadromous fish. Overall, this analysis emphasises the potential for a richly diversified clock gene network to serve a mixture of circadian and non-circadian functions in vertebrate groups with complex genomes. The generation of daily (circadian) rhythms in behaviour and physiology depends on the activities of networks of so-called clock genes. In vertebrates, these have become highly complex due to a process known as whole genome duplication, which has occurred repeatedly during evolutionary history, giving rise to additional copies of key elements of the clock gene network. It remains unclear whether this results in functional redundancy, or whether it has permitted new roles for clock genes to emerge. Here, based on studies in the Atlantic salmon, a species with an unusually large complement of clock genes, we present evidence in favour of the latter scenario. We observe marked tissue-specific, and developmentally-dependent differences in the expression patterns of duplicated copies of key clock genes, and we identify a subset of clock genes whose expression is associated with the physiological preparation to migrate to sea, but is independent of circadian regulation. Associated with this, cortisol secretion is uncoupled from circadian organisation, contrasting with the situation in mammals. Our results indicate that whole genome duplication has permitted clock genes to diversify into non-circadian functions, and raise interesting questions about the ubiquity of mammal-like coupling between circadian and endocrine function.
Collapse
Affiliation(s)
- Alexander C. West
- Arctic chronobiology and physiology research group, Department of Arctic and Marine Biology, UiT – The Arctic University of Norway, Tromsø, Norway
| | - Marianne Iversen
- Arctic chronobiology and physiology research group, Department of Arctic and Marine Biology, UiT – The Arctic University of Norway, Tromsø, Norway
| | - Even H. Jørgensen
- Arctic chronobiology and physiology research group, Department of Arctic and Marine Biology, UiT – The Arctic University of Norway, Tromsø, Norway
| | - Simen R. Sandve
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences (IHA), Faculty of Life Sciences (BIOVIT), Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - David G. Hazlerigg
- Arctic chronobiology and physiology research group, Department of Arctic and Marine Biology, UiT – The Arctic University of Norway, Tromsø, Norway
| | - Shona H. Wood
- Arctic chronobiology and physiology research group, Department of Arctic and Marine Biology, UiT – The Arctic University of Norway, Tromsø, Norway
- * E-mail:
| |
Collapse
|
17
|
Carducci F, Barucca M, Canapa A, Carotti E, Biscotti MA. Mobile Elements in Ray-Finned Fish Genomes. Life (Basel) 2020; 10:E221. [PMID: 32992841 PMCID: PMC7599744 DOI: 10.3390/life10100221] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/18/2020] [Accepted: 09/22/2020] [Indexed: 12/12/2022] Open
Abstract
Ray-finned fishes (Actinopterygii) are a very diverse group of vertebrates, encompassing species adapted to live in freshwater and marine environments, from the deep sea to high mountain streams. Genome sequencing offers a genetic resource for investigating the molecular bases of this phenotypic diversity and these adaptations to various habitats. The wide range of genome sizes observed in fishes is due to the role of transposable elements (TEs), which are powerful drivers of species diversity. Analyses performed to date provide evidence that class II DNA transposons are the most abundant component in most fish genomes and that compared to other vertebrate genomes, many TE superfamilies are present in actinopterygians. Moreover, specific TEs have been reported in ray-finned fishes as a possible result of an intricate relationship between TE evolution and the environment. The data summarized here underline the biological interest in Actinopterygii as a model group to investigate the mechanisms responsible for the high biodiversity observed in this taxon.
Collapse
Affiliation(s)
| | | | | | | | - Maria Assunta Biscotti
- Dipartimento di Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche, 60131 Ancona, Italy; (F.C.); (M.B.); (A.C.); (E.C.)
| |
Collapse
|
18
|
Campbell MA, Buser TJ, Alfaro ME, López JA. Addressing incomplete lineage sorting and paralogy in the inference of uncertain salmonid phylogenetic relationships. PeerJ 2020; 8:e9389. [PMID: 32685284 PMCID: PMC7337038 DOI: 10.7717/peerj.9389] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 05/28/2020] [Indexed: 12/14/2022] Open
Abstract
Recent and continued progress in the scale and sophistication of phylogenetic research has yielded substantial advances in knowledge of the tree of life; however, segments of that tree remain unresolved and continue to produce contradicting or unstable results. These poorly resolved relationships may be the product of methodological shortcomings or of an evolutionary history that did not generate the signal traits needed for its eventual reconstruction. Relationships within the euteleost fish family Salmonidae have proven challenging to resolve in molecular phylogenetics studies in part due to ancestral autopolyploidy contributing to conflicting gene trees. We examine a sequence capture dataset from salmonids and use alternative strategies to accommodate the effects of gene tree conflict based on aspects of salmonid genome history and the multispecies coalescent. We investigate in detail three uncertain relationships: (1) subfamily branching, (2) monophyly of Coregonus and (3) placement of Parahucho. Coregoninae and Thymallinae are resolved as sister taxa, although conflicting topologies are found across analytical strategies. We find inconsistent and generally low support for the monophyly of Coregonus, including in results of analyses with the most extensive dataset and complex model. The most consistent placement of Parahucho is as sister lineage of Salmo.
Collapse
Affiliation(s)
- Matthew A. Campbell
- University of Alaska Museum, University of Alaska—Fairbanks, Fairbanks, AK, USA
| | - Thaddaeus J. Buser
- Department of Fisheries and Wildlife, Oregon State University, Corvallis, OR, USA
| | - Michael E. Alfaro
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - J. Andrés López
- University of Alaska Museum, University of Alaska—Fairbanks, Fairbanks, AK, USA
- College of Fisheries and Ocean Sciences, University of Alaska—Fairbanks, Fairbanks, AK, USA
| |
Collapse
|
19
|
Fokkema W, van der Jeugd HP, Lameris TK, Dokter AM, Ebbinge BS, de Roos AM, Nolet BA, Piersma T, Olff H. Ontogenetic niche shifts as a driver of seasonal migration. Oecologia 2020; 193:285-297. [PMID: 32529317 PMCID: PMC7320946 DOI: 10.1007/s00442-020-04682-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 06/06/2020] [Indexed: 10/31/2022]
Abstract
Ontogenetic niche shifts have helped to understand population dynamics. Here we show that ontogenetic niche shifts also offer an explanation, complementary to traditional concepts, as to why certain species show seasonal migration. We describe how demographic processes (survival, reproduction and migration) and associated ecological requirements of species may change with ontogenetic stage (juvenile, adult) and across the migratory range (breeding, non-breeding). We apply this concept to widely different species (dark-bellied brent geese (Branta b. bernicla), humpback whales (Megaptera novaeangliae) and migratory Pacific salmon (Oncorhynchus gorbuscha) to check the generality of this hypothesis. Consistent with the idea that ontogenetic niche shifts are an important driver of seasonal migration, we find that growth and survival of juvenile life stages profit most from ecological conditions that are specific to breeding areas. We suggest that matrix population modelling techniques are promising to detect the importance of the ontogenetic niche shifts in maintaining migratory strategies. As a proof of concept, we applied a first analysis to resident, partial migratory and fully migratory populations of barnacle geese (Branta leucopsis). We argue that recognition of the costs and benefits of migration, and how these vary with life stages, is important to understand and conserve migration under global environmental change.
Collapse
Affiliation(s)
- Wimke Fokkema
- Conservation Ecology Group, Groningen Institute for Evolutionary Life Sciences (GELIFES), Univ. of Groningen, Groningen, The Netherlands
| | - Henk P van der Jeugd
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
- Vogeltrekstation, Dutch Centre for Avian Migration and Demography (NIOO-KNAW), Wageningen, The Netherlands
| | - Thomas K Lameris
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
- NIOZ Royal Netherlands Institute for Sea Research, Department of Coastal Systems, and Utrecht University, Den Burg, Texel, The Netherlands
| | - Adriaan M Dokter
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
- Cornell Lab of Ornithology, Cornell University, 159 Sapsucker Woods Road, Ithaca, NY, 14850, USA
| | - Barwolt S Ebbinge
- Wageningen Environmental Research, Wageningen Univ. and Research, Wageningen, The Netherlands
| | - André M de Roos
- Department of Theoretical and Computational Ecology, Institute for Biodiversity and Ecosystem Dynamics (IBED), Univ. of Amsterdam, Amsterdam, The Netherlands
| | - Bart A Nolet
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands.
- Department of Theoretical and Computational Ecology, Institute for Biodiversity and Ecosystem Dynamics (IBED), Univ. of Amsterdam, Amsterdam, The Netherlands.
| | - Theunis Piersma
- Conservation Ecology Group, Groningen Institute for Evolutionary Life Sciences (GELIFES), Univ. of Groningen, Groningen, The Netherlands
- NIOZ Royal Netherlands Institute for Sea Research, Department of Coastal Systems, and Utrecht University, Den Burg, Texel, The Netherlands
| | - Han Olff
- Conservation Ecology Group, Groningen Institute for Evolutionary Life Sciences (GELIFES), Univ. of Groningen, Groningen, The Netherlands
| |
Collapse
|
20
|
Qi J, Xu S, Wang M, Chen H, Tang N, Wang B, Li Y, Zhang X, Chen D, Zhou B, Zhao L, Wang Y, Li Z. Changes in corticotropin releasing factor system transcript levels in relation to feeding condition in Acipenser dabryanus. Peptides 2020; 128:170309. [PMID: 32259550 DOI: 10.1016/j.peptides.2020.170309] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 03/27/2020] [Accepted: 03/27/2020] [Indexed: 12/21/2022]
Abstract
CRF system, structural conservation, has an association with feeding regulation in mammals. However, mammals and fish have different physiological mechanisms, the potential role of CRF system for feeding regulation in teleost fish are most unknown. To better explore possible feeding mechanisms of CRF system in Acipenser dabryanus, the gene expression patterns of CRF system have been investigated after different energy status. CRF and two receptors have been studied in Acipenser dabryanus in previous study, thus, four components of CRF system (UI, UCN2, UCN3 and CRF-BP) have been studied in this study. Results showed post-prandial increased UCNs mRNA expressions, and 10 days fasting decreased UCNs mRNA expressions, and the mRNA abundance of CRF-BP has no significant differences. Above, this study confirmed the CRF system has potential role for feeding regulation in Acipenser dabryanus.
Collapse
Affiliation(s)
- Jinwen Qi
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Shaoqi Xu
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Mei Wang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Hu Chen
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Ni Tang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Bin Wang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Ya Li
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Xin Zhang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China; The Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, 5# Yushan Road, Qingdao, Shandong, China
| | - Defang Chen
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Bo Zhou
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, 156# Gaozhuang Bridge Community, Yibin, Sichuan, China.
| | - Liulan Zhao
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Yan Wang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Zhiqiong Li
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China.
| |
Collapse
|
21
|
Folkerts EJ, Blewett TA, Delompré P, Mehler WT, Flynn SL, Sun C, Zhang Y, Martin JW, Alessi DS, Goss GG. Toxicity in aquatic model species exposed to a temporal series of three different flowback and produced water samples collected from a horizontal hydraulically fractured well. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 180:600-609. [PMID: 31132555 DOI: 10.1016/j.ecoenv.2019.05.054] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/08/2019] [Accepted: 05/16/2019] [Indexed: 05/14/2023]
Abstract
In the present study, we compared the toxicity and associated chemical characterizations of flowback and produced water (FPW) collected from a single horizontal hydraulically fractured well at different time points during FPW production. Since few studies on whole mixture toxicity related to FPW exist, our aims were to determine both overall toxicity of the FPW mixture in a suite of organisms (Daphnia magna, Lumbriculus variegatus, Danio rerio, and Oncorhynchus mykiss) and also determine if toxicity changes depending on variation in FPW chemical properties as a function of time sampled (1.33, 72, and 228 h FPW samples collected immediately post-well production onset were analyzed in current study). FPW chemical composition was determined via quadra-pole inductively coupled plasma - mass spectrometry/mass spectrometry (ICP-MS/MS), full-scan high performance liquid chromatography/Orbitrap mass spectrometry (HPLC/Orbitrap-MS), and gas chromatography-mass spectrometry (GC-MS). We observed that FPW sampled later in the production process contained higher ion and total dissolved solids concentrations, whereas the highest concentrations of dissolved organic compounds were observed in the earliest FPW sample analyzed. Toxicity associated with FPW exposure was deemed to be species-specific to a certain extent, but general trends revealed the earliest FPW sampled contained highest toxic potential. Accordingly, we theorize that although the saline conditions of FPW are the foremost toxicological drivers to freshwater organisms, dissolved organics associated with FPW significantly contribute to the overall toxicity of exposed organisms.
Collapse
Affiliation(s)
- Erik J Folkerts
- Department of Biological Sciences, University of Alberta, Edmonton, T6G 2E9, Alberta, Canada.
| | - Tamzin A Blewett
- Department of Biological Sciences, University of Alberta, Edmonton, T6G 2E9, Alberta, Canada
| | - Perrine Delompré
- Department of Biological Sciences, University of Alberta, Edmonton, T6G 2E9, Alberta, Canada
| | - W Tyler Mehler
- Department of Biological Sciences, University of Alberta, Edmonton, T6G 2E9, Alberta, Canada
| | - Shannon L Flynn
- School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK
| | - Chenxing Sun
- Division of Analytical and Environmental Toxicology, University of Alberta, Edmonton, T6G 2E9 Alberta, Canada
| | - Yifeng Zhang
- Division of Analytical and Environmental Toxicology, University of Alberta, Edmonton, T6G 2E9 Alberta, Canada
| | - Jonathan W Martin
- Division of Analytical and Environmental Toxicology, University of Alberta, Edmonton, T6G 2E9 Alberta, Canada
| | - Daniel S Alessi
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, T6G 2E3, Alberta, Canada
| | - Greg G Goss
- Department of Biological Sciences, University of Alberta, Edmonton, T6G 2E9, Alberta, Canada; National Institute for Nanotechnology, Edmonton, Alberta, T6G 2M9, Canada
| |
Collapse
|
22
|
Ferguson A, Reed TE, Cross TF, McGinnity P, Prodöhl PA. Anadromy, potamodromy and residency in brown trout Salmo trutta: the role of genes and the environment. JOURNAL OF FISH BIOLOGY 2019; 95:692-718. [PMID: 31197849 PMCID: PMC6771713 DOI: 10.1111/jfb.14005] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 05/09/2019] [Indexed: 05/10/2023]
Abstract
Brown trout Salmo trutta is endemic to Europe, western Asia and north-western Africa; it is a prominent member of freshwater and coastal marine fish faunas. The species shows two resident (river-resident, lake-resident) and three main facultative migratory life histories (downstream-upstream within a river system, fluvial-adfluvial potamodromous; to and from a lake, lacustrine-adfluvial (inlet) or allacustrine (outlet) potamodromous; to and from the sea, anadromous). River-residency v. migration is a balance between enhanced feeding and thus growth advantages of migration to a particular habitat v. the costs of potentially greater mortality and energy expenditure. Fluvial-adfluvial migration usually has less feeding improvement, but less mortality risk, than lacustrine-adfluvial or allacustrine and anadromous, but the latter vary among catchments as to which is favoured. Indirect evidence suggests that around 50% of the variability in S. trutta migration v. residency, among individuals within a population, is due to genetic variance. This dichotomous decision can best be explained by the threshold-trait model of quantitative genetics. Thus, an individual's physiological condition (e.g., energy status) as regulated by environmental factors, genes and non-genetic parental effects, acts as the cue. The magnitude of this cue relative to a genetically predetermined individual threshold, governs whether it will migrate or sexually mature as a river-resident. This decision threshold occurs early in life and, if the choice is to migrate, a second threshold probably follows determining the age and timing of migration. Migration destination (mainstem river, lake, or sea) also appears to be genetically programmed. Decisions to migrate and ultimate destination result in a number of subsequent consequential changes such as parr-smolt transformation, sexual maturity and return migration. Strong associations with one or a few genes have been found for most aspects of the migratory syndrome and indirect evidence supports genetic involvement in all parts. Thus, migratory and resident life histories potentially evolve as a result of natural and anthropogenic environmental changes, which alter relative survival and reproduction. Knowledge of genetic determinants of the various components of migration in S. trutta lags substantially behind that of Oncorhynchus mykiss and other salmonines. Identification of genetic markers linked to migration components and especially to the migration-residency decision, is a prerequisite for facilitating detailed empirical studies. In order to predict effectively, through modelling, the effects of environmental changes, quantification of the relative fitness of different migratory traits and of their heritabilities, across a range of environmental conditions, is also urgently required in the face of the increasing pace of such changes.
Collapse
Affiliation(s)
- Andrew Ferguson
- School of Biological SciencesQueen's University BelfastBelfastUK
| | - Thomas E. Reed
- School of Biological, Earth and Environmental SciencesUniversity College CorkCorkIreland
| | - Tom F. Cross
- School of Biological, Earth and Environmental SciencesUniversity College CorkCorkIreland
| | - Philip McGinnity
- School of Biological, Earth and Environmental SciencesUniversity College CorkCorkIreland
| | - Paulo A. Prodöhl
- School of Biological SciencesQueen's University BelfastBelfastUK
| |
Collapse
|
23
|
Qi J, Tang N, Wu Y, Chen H, Wang S, Wang B, Xu S, Wang M, Zhang X, Chen D, Zhou B, Li Z. The transcripts of CRF and CRF receptors under fasting stress in Dabry's sturgeon (Acipenser dabryanus Dumeril). Gen Comp Endocrinol 2019; 280:200-208. [PMID: 31075270 DOI: 10.1016/j.ygcen.2019.05.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 05/06/2019] [Accepted: 05/06/2019] [Indexed: 12/16/2022]
Abstract
Dabry's sturgeon (Acipenser dabryanus Dumeril, 1868) belongs to Sturgeon and is distributed throughout the mainstream of the upper Yangtze River. While there is little research onphysiological mechanism of Dabry's sturgeon, such as feeding regulation by the CRF system. At present, CRF is thought to regulate feeding via CRF receptors (CRF-Rs) in several mammals, but relatively few studies of CRF and feeding exist in teleosts. Herein, the transcripts of CRF and CRF-Rs under fasting stress in Dabry's sturgeon (Acipenser dabryanus Dumeril) have been explored. A full length Dabry's sturgeon CRF cDNA of 953 bp was identified, which contained a 447 bp open reading frame (ORF). A partial CRF-R1 cDNA of 1053 bp and CRF-R2 cDNA of 906 bp corresponding to the coding sequences (CDS) was obtained. In addition, analysis of the tissue distribution of CRF and CRF-Rs mRNAs revealed they were widely distributed in the central and peripheral nervous systems. Furthermore, periprandial (preprandial and postprandial), fasting, and re-feeding experiments revealed CRF mRNA was significantly increased 1 h and 3 h after feeding and CRF and CRF-Rs transcripts were significantly decreased after 10 days fasting, and significantly increased on re-feeding on day 10. These results suggest that CRF and CRF-Rs might regulate feeding by acting as satiety factors.
Collapse
Affiliation(s)
- Jinwen Qi
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Ni Tang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Yuanbin Wu
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Hu Chen
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Shuyao Wang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Bin Wang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Shaoqi Xu
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Mei Wang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Xin Zhang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China; The Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, 5# Yushan Road, Qingdao, Shandong, China
| | - Defang Chen
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Bo Zhou
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, 156# Gaozhuang Bridge Community, Yibin, Sichuan, China.
| | - Zhiqiong Li
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China.
| |
Collapse
|
24
|
Corush JB. Evolutionary patterns of diadromy in fishes: more than a transitional state between marine and freshwater. BMC Evol Biol 2019; 19:168. [PMID: 31412761 PMCID: PMC6694556 DOI: 10.1186/s12862-019-1492-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 07/31/2019] [Indexed: 12/20/2022] Open
Abstract
Background Across the tree of life there are numerous evolutionary transitions between different habitats (i.e., aquatic and terrestrial or marine and freshwater). Many of these dramatic evolutionary shifts parallel developmental shifts that require physiological, anatomical and behavioral changes for survival and reproduction. Diadromy (scheduled movement between marine and freshwater) has been characterized as a behavior that acts as an evolutionary intermediate state between marine and freshwater environments, implying that diadromous lineages are evolutionarily transient. This hypothesis comes with assumptions regarding the rates of evolutionary transitions in and out of diadromy as well as rates of speciation and extinction in diadromous fishes. Results Based on a published phylogeny of 7822 species of ray-finned fishes, state speciation and extinction models of evolutionary transition between marine, freshwater, and diadromous species suggest transition rates out of diadromy are 5–100 times higher that transition between marine and freshwater or into diadromy. Additionally, high speciation and low extinction rates separate diadromous fishes from marine and freshwater species. As a result, net diversification (net diversification = speciation – extinction) is about 7–40 times higher in diadromous fishes compared to freshwater and marine respectively. Together the transition, speciation, and extinction rates suggest diadromy is the least stable of the three states. Conclusion Evolutionary transitions to diadromy are rare in fishes. However, once established, diversification rates in diadromous lineages are high compared to both marine and freshwater species. Diadromous lineages tend to be more transient than marine or freshwater lineages and are found to give rise to marine and freshwater specialists in addition to diadromous descendants. Although diadromy is not a necessary evolutionary intermediate between marine and freshwater, these results support the interpretation of diadromy as an important, occasionally intermediate state, that contributes to biodiversity in fishes in all environments. This evolutionary instability of diadromous lineages is counteracted by their relatively high diversification rates. These findings highlight the importance of integrating the dynamics of diversification and major evolutionary transitions for understanding macroevolutionary patterns. Electronic supplementary material The online version of this article (10.1186/s12862-019-1492-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Joel B Corush
- Department of Ecology and Evolutionary Biology, University of Tennessee, 569 Dabney Hall, Knoxville, TN, 37996, USA.
| |
Collapse
|
25
|
Non-neutral evolution of H3.3-encoding genes occurs without alterations in protein sequence. Sci Rep 2019; 9:8472. [PMID: 31186448 PMCID: PMC6560044 DOI: 10.1038/s41598-019-44800-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 05/14/2019] [Indexed: 11/08/2022] Open
Abstract
Histone H3.3 is a developmentally essential variant encoded by two independent genes in human (H3F3A and H3F3B). While this two-gene arrangement is evolutionarily conserved, its origins and function remain unknown. Phylogenetics, synteny and gene structure analyses of H3.3 genes from 32 metazoan genomes indicate independent evolutionary paths for H3F3A and H3F3B. While H3F3B bears similarities with H3.3 genes in distant organisms and with canonical H3 genes, H3F3A is sarcopterygian-specific and evolves under strong purifying selection. Additionally, H3F3B codon-usage preferences resemble those of broadly expressed genes and 'cell differentiation-induced' genes, while codon-usage of H3F3A resembles that of 'cell proliferation-induced' genes. We infer that H3F3B is more similar to the ancestral H3.3 gene and likely evolutionarily adapted for a broad expression pattern in diverse cellular programs, while H3F3A adapted for a subset of gene expression programs. Thus, the arrangement of two independent H3.3 genes facilitates fine-tuning of H3.3 expression across cellular programs.
Collapse
|
26
|
Campbell MA, Hale MC, McKinney GJ, Nichols KM, Pearse DE. Long-Term Conservation of Ohnologs Through Partial Tetrasomy Following Whole-Genome Duplication in Salmonidae. G3 (BETHESDA, MD.) 2019; 9:2017-2028. [PMID: 31010824 PMCID: PMC6553544 DOI: 10.1534/g3.119.400070] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 04/18/2019] [Indexed: 01/01/2023]
Abstract
Whole-genome duplications (WGDs) have occurred repeatedly and broadly throughout the evolutionary history of eukaryotes. However, the effects of WGD on genome function and evolution remain unclear. The salmonid WGD that occurred approximately 88 million years ago presents an excellent opportunity for studying the effects of WGD as ∼10-15% of each salmonid genome still exhibits tetrasomic inheritance. Herein, we utilized the rainbow trout (Oncorhynchus mykiss) genome assembly and brain transcriptome data to examine the fate of gene pairs (ohnologs) following the salmonid whole-genome duplication. We find higher sequence identity between ohnologs located within known tetrasomic regions than between ohnologs found in disomic regions, and that tetrasomically inherited ohnologs showed greater similarity in patterns of gene expression and per ohnolog were lower expressed, than disomically inherited ohnologs. Enrichment testing for Gene Ontology terms identified 49 over-represented terms in tetrasomically inherited ohnologs compared to disomic ohnologs. However, why these ohnologs are retained as tetrasomic is difficult to answer. It could be that we have identified salmonid specific "dangerous duplicates", that is, genes that cannot take on new roles following WGD. Alternatively, there may be adaptive advantages for retaining genes as functional duplicates in tetrasomic regions, as presumably, movement of these genes into disomic regions would affect both their sequence identity and their gene expression patterns.
Collapse
Affiliation(s)
- Matthew A Campbell
- Fisheries Ecology Division, Southwest Fisheries Science Center, Santa Cruz, CA 95060
| | - Matthew C Hale
- Department of Biology, Texas Christian University, Fort Worth, TX 76129
| | - Garrett J McKinney
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA 98195, and
| | - Krista M Nichols
- Conservation Biology Division, Northwest Fisheries Science Center, Seattle, WA 98112
| | - Devon E Pearse
- Fisheries Ecology Division, Southwest Fisheries Science Center, Santa Cruz, CA 95060
| |
Collapse
|
27
|
Divergence, evolution and adaptation in ray-finned fish genomes. SCIENCE CHINA-LIFE SCIENCES 2019; 62:1003-1018. [PMID: 31098893 DOI: 10.1007/s11427-018-9499-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 02/12/2019] [Indexed: 02/06/2023]
Abstract
With the rapid development of next-generation sequencing technologies and bioinformatics, over 50 ray-finned fish genomes by far have been sequenced with high quality. The genomic work provides abundant genetic resources for deep understanding of divergence, evolution and adaptation in the fish genomes. They are also instructive for identification of candidate genes for functional verification, molecular breeding, and development of novel marine drugs. As an example of other omics data, the Fish-T1K project generated a big database of fish transcriptomes to integrate with these published fish genomes for potential applications. In this review, we highlight the above-mentioned recent investigations and core topics on the ray-finned fish genome research, with a main goal to obtain a deeper understanding of fish biology for theoretical and practical applications.
Collapse
|
28
|
Musilova Z, Cortesi F, Matschiner M, Davies WIL, Patel JS, Stieb SM, de Busserolles F, Malmstrøm M, Tørresen OK, Brown CJ, Mountford JK, Hanel R, Stenkamp DL, Jakobsen KS, Carleton KL, Jentoft S, Marshall J, Salzburger W. Vision using multiple distinct rod opsins in deep-sea fishes. Science 2019; 364:588-592. [PMID: 31073066 PMCID: PMC6628886 DOI: 10.1126/science.aav4632] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 04/16/2019] [Indexed: 02/01/2023]
Abstract
Vertebrate vision is accomplished through light-sensitive photopigments consisting of an opsin protein bound to a chromophore. In dim light, vertebrates generally rely on a single rod opsin [rhodopsin 1 (RH1)] for obtaining visual information. By inspecting 101 fish genomes, we found that three deep-sea teleost lineages have independently expanded their RH1 gene repertoires. Among these, the silver spinyfin (Diretmus argenteus) stands out as having the highest number of visual opsins in vertebrates (two cone opsins and 38 rod opsins). Spinyfins express up to 14 RH1s (including the most blueshifted rod photopigments known), which cover the range of the residual daylight as well as the bioluminescence spectrum present in the deep sea. Our findings present molecular and functional evidence for the recurrent evolution of multiple rod opsin-based vision in vertebrates.
Collapse
Affiliation(s)
- Zuzana Musilova
- Zoological Institute, Department of Environmental Sciences, University of Basel, Basel, Switzerland.
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Fabio Cortesi
- Zoological Institute, Department of Environmental Sciences, University of Basel, Basel, Switzerland.
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Michael Matschiner
- Zoological Institute, Department of Environmental Sciences, University of Basel, Basel, Switzerland
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
- Department of Palaeontology and Museum, University of Zurich, Zurich, Switzerland
| | - Wayne I L Davies
- UWA Oceans Institute, The University of Western Australia, Perth, WA, Australia
- School of Biological Sciences, The University of Western Australia, Perth, WA, Australia
- Lions Eye Institute, The University of Western Australia, Perth, WA, Australia
- Oceans Graduate School, The University of Western Australia, Perth, WA, Australia
| | - Jagdish Suresh Patel
- Center for Modeling Complex Interactions, University of Idaho, Moscow, ID, USA
- Department of Biological Sciences, University of Idaho, Moscow, ID, USA
| | - Sara M Stieb
- Zoological Institute, Department of Environmental Sciences, University of Basel, Basel, Switzerland
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
- Center for Ecology, Evolution and Biogeochemistry, Department of Fish Ecology and Evolution, Swiss Federal Institute of Aquatic Science and Technology (EAWAG), Kastanienbaum, Switzerland
| | - Fanny de Busserolles
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
- Red Sea Research Center (RSRC), Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Martin Malmstrøm
- Zoological Institute, Department of Environmental Sciences, University of Basel, Basel, Switzerland
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Ole K Tørresen
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Celeste J Brown
- Department of Biological Sciences, University of Idaho, Moscow, ID, USA
| | - Jessica K Mountford
- UWA Oceans Institute, The University of Western Australia, Perth, WA, Australia
- School of Biological Sciences, The University of Western Australia, Perth, WA, Australia
- Lions Eye Institute, The University of Western Australia, Perth, WA, Australia
| | - Reinhold Hanel
- Thünen Institute of Fisheries Ecology, Bremerhaven, Germany
| | | | - Kjetill S Jakobsen
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Karen L Carleton
- Department of Biology, University of Maryland, College Park, MD, USA
| | - Sissel Jentoft
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Justin Marshall
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Walter Salzburger
- Zoological Institute, Department of Environmental Sciences, University of Basel, Basel, Switzerland.
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| |
Collapse
|
29
|
Davesne D, Meunier FJ, Schmitt AD, Friedman M, Otero O, Benson RBJ. The phylogenetic origin and evolution of acellular bone in teleost fishes: insights into osteocyte function in bone metabolism. Biol Rev Camb Philos Soc 2019; 94:1338-1363. [DOI: 10.1111/brv.12505] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 02/11/2019] [Accepted: 02/13/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Donald Davesne
- Department of Earth SciencesUniversity of Oxford OX1 3AN Oxford U.K
| | - François J. Meunier
- BOREA (UMR 7208 CNRS, IRD, MNHN, Sorbonne Université)Muséum national d'Histoire naturelle 75005 Paris France
| | - Armin D. Schmitt
- Department of Earth SciencesUniversity of Oxford OX1 3AN Oxford U.K
| | - Matt Friedman
- Museum of Paleontology and Department of Earth and Environmental SciencesUniversity of Michigan Ann Arbor MI 48109‐1079 U.S.A
| | - Olga Otero
- PalEvoPrim (UMR 7262 CNRS)Université de Poitiers 86000 Poitiers France
| | | |
Collapse
|
30
|
Houston RD, Macqueen DJ. Atlantic salmon (Salmo salar L.) genetics in the 21st century: taking leaps forward in aquaculture and biological understanding. Anim Genet 2019; 50:3-14. [PMID: 30426521 PMCID: PMC6492011 DOI: 10.1111/age.12748] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2018] [Indexed: 12/17/2022]
Abstract
Atlantic salmon (Salmo salar L.) is among the most iconic and economically important fish species and was the first member of Salmonidae to have a high-quality reference genome assembly published. Advances in genomics have become increasingly central to the genetic improvement of farmed Atlantic salmon as well as conservation of wild salmon stocks. The salmon genome has also been pivotal in shaping our understanding of the evolutionary and functional consequences arising from an ancestral whole-genome duplication event characterising all Salmonidae members. Here, we provide a review of the current status of Atlantic salmon genetics and genomics, focussed on progress made from genome-wide research aimed at improving aquaculture production and enhancing understanding of salmonid ecology, physiology and evolution. We present our views on the future direction of salmon genomics, including the role of emerging technologies (e.g. genome editing) in elucidating genetic features that underpin functional variation in traits of commercial and evolutionary importance.
Collapse
Affiliation(s)
- R. D. Houston
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesThe University of EdinburghMidlothianEH25 9RGUK
| | - D. J. Macqueen
- School of Biological SciencesUniversity of AberdeenAberdeenAB24 2TZUK
| |
Collapse
|
31
|
Varadharajan S, Sandve SR, Gillard GB, Tørresen OK, Mulugeta TD, Hvidsten TR, Lien S, Asbjørn Vøllestad L, Jentoft S, Nederbragt AJ, Jakobsen KS. The Grayling Genome Reveals Selection on Gene Expression Regulation after Whole-Genome Duplication. Genome Biol Evol 2018; 10:2785-2800. [PMID: 30239729 PMCID: PMC6200313 DOI: 10.1093/gbe/evy201] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2018] [Indexed: 02/06/2023] Open
Abstract
Whole-genome duplication (WGD) has been a major evolutionary driver of increased genomic complexity in vertebrates. One such event occurred in the salmonid family ∼80 Ma (Ss4R) giving rise to a plethora of structural and regulatory duplicate-driven divergence, making salmonids an exemplary system to investigate the evolutionary consequences of WGD. Here, we present a draft genome assembly of European grayling (Thymallus thymallus) and use this in a comparative framework to study evolution of gene regulation following WGD. Among the Ss4R duplicates identified in European grayling and Atlantic salmon (Salmo salar), one-third reflect nonneutral tissue expression evolution, with strong purifying selection, maintained over ∼50 Myr. Of these, the majority reflect conserved tissue regulation under strong selective constraints related to brain and neural-related functions, as well as higher-order protein–protein interactions. A small subset of the duplicates have evolved tissue regulatory expression divergence in a common ancestor, which have been subsequently conserved in both lineages, suggestive of adaptive divergence following WGD. These candidates for adaptive tissue expression divergence have elevated rates of protein coding- and promoter-sequence evolution and are enriched for immune- and lipid metabolism ontology terms. Lastly, lineage-specific duplicate divergence points toward underlying differences in adaptive pressures on expression regulation in the nonanadromous grayling versus the anadromous Atlantic salmon. Our findings enhance our understanding of the role of WGD in genome evolution and highlight cases of regulatory divergence of Ss4R duplicates, possibly related to a niche shift in early salmonid evolution.
Collapse
Affiliation(s)
- Srinidhi Varadharajan
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Norway
| | - Simen R Sandve
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, Ås, Norway
| | - Gareth B Gillard
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Ole K Tørresen
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Norway
| | - Teshome D Mulugeta
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, Ås, Norway
| | - Torgeir R Hvidsten
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway.,Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Sweden
| | - Sigbjørn Lien
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, Ås, Norway
| | - Leif Asbjørn Vøllestad
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Norway
| | - Sissel Jentoft
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Norway
| | - Alexander J Nederbragt
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Norway.,Biomedical Informatics Research Group, Department of Informatics, University of Oslo, Norway
| | - Kjetill S Jakobsen
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Norway
| |
Collapse
|
32
|
Zhang HY, Zhao ZX, Xu J, Xu P, Bai QL, Yang SY, Jiang LK, Chen BH. Population genetic analysis of aquaculture salmonid populations in China using a 57K rainbow trout SNP array. PLoS One 2018; 13:e0202582. [PMID: 30118517 PMCID: PMC6097679 DOI: 10.1371/journal.pone.0202582] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 08/05/2018] [Indexed: 12/21/2022] Open
Abstract
Various salmonid species are cultivated in cold water aquaculture. However, due to limited genomic data resources, specific high-throughput genotyping tools are not available to many of the salmonid species. In this study, a 57K single nucleotide polymorphism (SNP) array for rainbow trout (Oncorhynchus mykiss) was utilized to detect polymorphisms in seven salmonid species, including Hucho taimen, Oncorhynchus masou, Salvelinus fontinalis, Brachymystax lenok, Salvelinus leucomaenis, O. kisutch, and O. mykiss. The number of polymorphic markers per population ranged from 3,844 (O. kisutch) to 53,734 (O. mykiss), indicating that the rainbow trout SNP array was applicable as a universal genotyping tool for other salmonid species. Among the six other salmonid populations from four genera, 28,882 SNPs were shared, whereas 525 SNPs were polymorphic in all four genera. The genetic diversity and population relationships of the seven salmonid species were studied by principal component analysis (PCA). The phylogenetic relationships among populations were analyzed using the maximum likelihood method, which indicated that the shared SNP markers provide reliable genomic information for population genetic analyses in common aquaculture salmonid fishes. Furthermore, this obtained genomic information may be applicable for population genetic evaluation, marker-assisted breeding, and propagative parent selection in fry production.
Collapse
Affiliation(s)
- Han-Yuan Zhang
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture, Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing, China
| | - Zi-Xia Zhao
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture, Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing, China
- * E-mail: (ZXZ); (PX)
| | - Jian Xu
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture, Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing, China
| | - Peng Xu
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture, Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing, China
- Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- * E-mail: (ZXZ); (PX)
| | - Qing-Li Bai
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| | - Shi-Yong Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Yaan, China
| | - Li-Kun Jiang
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture, Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing, China
| | - Bao-Hua Chen
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture, Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing, China
- Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| |
Collapse
|
33
|
Zhang X, Wang S, Chen H, Tang N, Qi J, Wu Y, Hao J, Tian Z, Wang B, Chen D, Li Z. The inhibitory effect of NUCB2/nesfatin-1 on appetite regulation of Siberian sturgeon (Acipenser baerii Brandt). Horm Behav 2018; 103:111-120. [PMID: 29940158 DOI: 10.1016/j.yhbeh.2018.06.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 06/18/2018] [Accepted: 06/20/2018] [Indexed: 12/19/2022]
Abstract
Since NUCB2 was discovered, the information about NUCB2/nesfatin-1 in appetite regulation in both mammals and teleost has been still limited. The present study aims to determine the effects of nesfatin-1 on food intake and to explore the appetite mechanism in Siberian sturgeon. In this study, nucb2 cDNA sequence of 1571 bp was obtained, and the mRNA expression of nucb2 was abundant in brain and liver. Levels of nucb2 were appreciably increased in brain after feeding 1 and 3 h, while significantly decreased within fasting 15 days. Except for fasting 1 day, the expression pattern of nucb2 in the liver was similar to the brain. Acute intraperitoneal (i.p.) injection of nesfatin-1 inhibited the food intake during 0-1 h in a dose-dependent manner and 50 or 100 ng/g BW nesfatin-1 significantly decreased the cumulative food intake during 3 h. The daily food intake and cumulative food intake were remarkably reduced post chronic (7 days) i.p. injection. Moreover, chronic i.p. injection of nesfatin-1 affected the expression of appetite factors including cart, apelin and pyy in the brain, stomach and liver with the consistent pattern of change, while the levels of cck, ucn3 and nucb2 in these have different patterns. This study demonstrates that nesfatin-1 acts as a satiety factor in reducing the short-term and long-term food intake of Siberian sturgeon. Therefore, the data suggesting nesfatin-1 inhibits the appetite through different signal pathways in the central and peripheral endocrine systems of Siberian sturgeon.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China; The Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, 5# Yushan Road, Qingdao, Shandong, China
| | - Shuyao Wang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Hu Chen
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Ni Tang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Jinwen Qi
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Yuanbing Wu
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Jin Hao
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Zhengzhi Tian
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Bin Wang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Defang Chen
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Zhiqiong Li
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China.
| |
Collapse
|
34
|
Inferring phylogenetic structure, hybridization and divergence times within Salmoninae (Teleostei: Salmonidae) using RAD-sequencing. Mol Phylogenet Evol 2018; 124:82-99. [DOI: 10.1016/j.ympev.2018.02.022] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 01/11/2018] [Accepted: 02/20/2018] [Indexed: 11/24/2022]
|
35
|
Artamonova VS, Kolmakova OV, Kirillova EA, Makhrov AA. Phylogeny of Salmonoid Fishes (Salmonoidei) Based on mtDNA COI Gene Sequences (Barcoding). CONTEMP PROBL ECOL+ 2018. [DOI: 10.1134/s1995425518030022] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
36
|
Matzke NJ, Irmis RB. Including autapomorphies is important for paleontological tip-dating with clocklike data, but not with non-clock data. PeerJ 2018; 6:e4553. [PMID: 29637019 PMCID: PMC5890724 DOI: 10.7717/peerj.4553] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 03/08/2018] [Indexed: 12/01/2022] Open
Abstract
Tip-dating, where fossils are included as dated terminal taxa in Bayesian dating inference, is an increasingly popular method. Data for these studies often come from morphological character matrices originally developed for non-dated, and usually parsimony, analyses. In parsimony, only shared derived characters (synapomorphies) provide grouping information, so many character matrices have an ascertainment bias: they omit autapomorphies (unique derived character states), which are considered uninformative. There has been no study of the effect of this ascertainment bias in tip-dating, but autapomorphies can be informative in model-based inference. We expected that excluding autapomorphies would shorten the morphological branchlengths of terminal branches, and thus bias downwards the time branchlengths inferred in tip-dating. We tested for this effect using a matrix for Carboniferous-Permian eureptiles where all autapomorphies had been deliberately coded. Surprisingly, date estimates are virtually unchanged when autapomorphies are excluded, although we find large changes in morphological rate estimates and small effects on topological and dating confidence. We hypothesized that the puzzling lack of effect on dating was caused by the non-clock nature of the eureptile data. We confirm this explanation by simulating strict clock and non-clock datasets, showing that autapomorphy exclusion biases dating only for the clocklike case. A theoretical solution to ascertainment bias is computing the ascertainment bias correction (Mkparsinf), but we explore this correction in detail, and show that it is computationally impractical for typical datasets with many character states and taxa. Therefore we recommend that palaeontologists collect autapomorphies whenever possible when assembling character matrices.
Collapse
Affiliation(s)
- Nicholas J Matzke
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia.,School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Randall B Irmis
- Department of Geology & Geophysics, University of Utah, Salt Lake City, UT, United States of America.,Natural History Museum of Utah, Salt Lake City, UT, United States of America
| |
Collapse
|
37
|
Ninua L, Tarkhnishvili D, Gvazava E. Phylogeography and taxonomic status of trout and salmon from the Ponto-Caspian drainages, with inferences on European Brown Trout evolution and taxonomy. Ecol Evol 2018; 8:2645-2658. [PMID: 29531683 PMCID: PMC5838059 DOI: 10.1002/ece3.3884] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 12/07/2017] [Accepted: 01/02/2018] [Indexed: 01/19/2023] Open
Abstract
Current taxonomy of western Eurasian trout leaves a number of questions open; it is not clear to what extent some species are distinct genetically and morphologically. The purpose of this paper was to explore phylogeography and species boundaries in freshwater and anadromous trout from the drainages of the Black and the Caspian Seas (Ponto-Caspian). We studied morphology and mitochondrial phylogeny, combining samples from the western Caucasus within the potential range of five nominal species of trout that are thought to inhabit this region, and using the sequences available from GenBank. Our results suggest that the genetic diversity of trout in the Ponto-Caspian region is best explained with the fragmentation of catchments. (1) All trout species from Ponto-Caspian belong to the same mitochondrial clade, separated from the other trout since the Pleistocene; (2) the southeastern Black Sea area is the most likely place of diversification of this clade, which is closely related to the clades from Anatolia; (3) The species from the Black Sea and the Caspian Sea drainages are monophyletic; (4) except for the basal lineage of the Ponto-Caspian clade, Salmo rizeensis, all the lineages produce anadromous forms; (5) genetic diversification within the Ponto-Caspian clade is related to Pleistocene glacial waves; (6) the described morphological differences between the species are not fully diagnostic, and some earlier described differences depend on body size; the differences between freshwater and marine forms exceed those between the different lineages. We suggest a conservative taxonomic approach, using the names S. rizeensis and Salmo labrax for trout from the Black Sea basin and Salmo caspius and Salmo ciscaucasicus for the fish from the Caspian basin.
Collapse
Affiliation(s)
- Levan Ninua
- Institute of EcologyIlia State UniversityTbilisiGeorgia
| | | | | |
Collapse
|
38
|
Guðbrandsson J, Franzdóttir SR, Kristjánsson BK, Ahi EP, Maier VH, Kapralova KH, Snorrason SS, Jónsson ZO, Pálsson A. Differential gene expression during early development in recently evolved and sympatric Arctic charr morphs. PeerJ 2018; 6:e4345. [PMID: 29441236 PMCID: PMC5807978 DOI: 10.7717/peerj.4345] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 01/19/2018] [Indexed: 02/06/2023] Open
Abstract
Phenotypic differences between closely related taxa or populations can arise through genetic variation or be environmentally induced, leading to altered transcription of genes during development. Comparative developmental studies of closely related species or variable populations within species can help to elucidate the molecular mechanisms related to evolutionary divergence and speciation. Studies of Arctic charr (Salvelinus alpinus) and related salmonids have revealed considerable phenotypic variation among populations and in Arctic charr many cases of extensive variation within lakes (resource polymorphism) have been recorded. One example is the four Arctic charr morphs in the ∼10,000 year old Lake Thingvallavatn, which differ in numerous morphological and life history traits. We set out to investigate the molecular and developmental roots of this polymorphism by studying gene expression in embryos of three of the morphs reared in a common garden set-up. We performed RNA-sequencing, de-novo transcriptome assembly and compared gene expression among morphs during an important timeframe in early development, i.e., preceding the formation of key trophic structures. Expectedly, developmental time was the predominant explanatory variable. As the data were affected by some form of RNA-degradation even though all samples passed quality control testing, an estimate of 3'-bias was the second most common explanatory variable. Importantly, morph, both as an independent variable and as interaction with developmental time, affected the expression of numerous transcripts. Transcripts with morph effect, separated the three morphs at the expression level, with the two benthic morphs being more similar. However, Gene Ontology analyses did not reveal clear functional enrichment of transcripts between groups. Verification via qPCR confirmed differential expression of several genes between the morphs, including regulatory genes such as AT-Rich Interaction Domain 4A (arid4a) and translin (tsn). The data are consistent with a scenario where genetic divergence has contributed to differential expression of multiple genes and systems during early development of these sympatric Arctic charr morphs.
Collapse
Affiliation(s)
- Jóhannes Guðbrandsson
- Institute of Life and Environmental Sciences, University of Iceland, Reykjavík, Iceland
- Freshwater Division, Marine and Freshwater Research Institute, Reykjavík, Iceland
| | - Sigríður Rut Franzdóttir
- Institute of Life and Environmental Sciences, University of Iceland, Reykjavík, Iceland
- Biomedical Center, University of Iceland, Reykjavík, Iceland
| | | | - Ehsan Pashay Ahi
- Institute of Life and Environmental Sciences, University of Iceland, Reykjavík, Iceland
- Karl-Franzens-Universität, Graz, Austria
| | - Valerie Helene Maier
- Institute of Life and Environmental Sciences, University of Iceland, Reykjavík, Iceland
- Biomedical Center, University of Iceland, Reykjavík, Iceland
| | | | | | - Zophonías Oddur Jónsson
- Institute of Life and Environmental Sciences, University of Iceland, Reykjavík, Iceland
- Biomedical Center, University of Iceland, Reykjavík, Iceland
| | - Arnar Pálsson
- Institute of Life and Environmental Sciences, University of Iceland, Reykjavík, Iceland
- Biomedical Center, University of Iceland, Reykjavík, Iceland
| |
Collapse
|
39
|
CCK reduces the food intake mainly through CCK1R in Siberian sturgeon (Acipenser baerii Brandt). Sci Rep 2017; 7:12413. [PMID: 28963554 PMCID: PMC5622057 DOI: 10.1038/s41598-017-12646-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 09/13/2017] [Indexed: 11/14/2022] Open
Abstract
To explore the effect of CCK on food intake in Siberian sturgeon, cck cDNA sequence of 1005 bp was obtained, and cck mRNA possessed the highest expression in brain. The expressions of cck were significantly increased after feeding 1 and 3 h, while displaying significant decrease after fasting within 15 days in brain and duodenum. Re-feeding for 3 days induced cck level returned to basic level. Acute i.p. injection experiment showed 100 and 200 ng/g BW CCK8 inhibited the food intake in 0–1 h together with the cumulative food intake within 3 h. 7 days chronic i.p. injection of 100 and 200 ng/g BW CCK8, both daily food intake and cumulative food intake were significantly decreased. In addition, chronic i.p injection of CCK8 induced the expression of feeding related factors changes including cck, ucn3, cart, apelin, pyy and npy in respective organization. Moreover, as revealed by the results, Lorglumide, the CCK1R selective antagonist, effectively reversed the inhibitory effects of CCK8 on food intake and the levels of feeding related factors. On the other hand, LY 225910, the CCK2R selective antagonist, partially reversed these effects. These results indicate CCK is a satiety factor inhibits the feeding of Siberian sturgeon primarily through CCK1R.
Collapse
|
40
|
Horreo JL. Revisiting the mitogenomic phylogeny of Salmoninae: new insights thanks to recent sequencing advances. PeerJ 2017; 5:e3828. [PMID: 28948107 PMCID: PMC5609519 DOI: 10.7717/peerj.3828] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 08/29/2017] [Indexed: 12/24/2022] Open
Abstract
The phylogeny of the Salmonidae family, the only living one of the Order Salmoniformes, remains still unclear because of several reasons. Such reasons include insufficient taxon sampling and/or DNA information. The use of complete mitochondrial genomes (mitogenomics) could provide some light on it, but despite the high number of mitogenomes of species belonging to this family published during last years, an integrative work containing all this information has not been done. In this work, the phylogeny of 46 Salmonidae species was inferred from their mitogenomic sequences. Results include a Bayesian molecular-dated phylogenetic tree with very high statistical support showing Coregoninae and Salmoninae as sister subfamilies, as well as several new phylogenetic relationships among species and genus of the family. All these findings contribute to improve our understanding of the Salmonidae systematics and could have consequences on related evolutionary studies, as well as highlight the importance of revisiting phylogenies with integrative studies.
Collapse
Affiliation(s)
- Jose L. Horreo
- Department of Biodiversity and Evolutionary Biology, National Museum of Natural Sciences (CSIC), Madrid, Spain
| |
Collapse
|
41
|
Macqueen DJ, Primmer CR, Houston RD, Nowak BF, Bernatchez L, Bergseth S, Davidson WS, Gallardo-Escárate C, Goldammer T, Guiguen Y, Iturra P, Kijas JW, Koop BF, Lien S, Maass A, Martin SAM, McGinnity P, Montecino M, Naish KA, Nichols KM, Ólafsson K, Omholt SW, Palti Y, Plastow GS, Rexroad CE, Rise ML, Ritchie RJ, Sandve SR, Schulte PM, Tello A, Vidal R, Vik JO, Wargelius A, Yáñez JM. Functional Annotation of All Salmonid Genomes (FAASG): an international initiative supporting future salmonid research, conservation and aquaculture. BMC Genomics 2017; 18:484. [PMID: 28655320 PMCID: PMC5488370 DOI: 10.1186/s12864-017-3862-8] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 06/14/2017] [Indexed: 11/21/2022] Open
Abstract
We describe an emerging initiative - the 'Functional Annotation of All Salmonid Genomes' (FAASG), which will leverage the extensive trait diversity that has evolved since a whole genome duplication event in the salmonid ancestor, to develop an integrative understanding of the functional genomic basis of phenotypic variation. The outcomes of FAASG will have diverse applications, ranging from improved understanding of genome evolution, to improving the efficiency and sustainability of aquaculture production, supporting the future of fundamental and applied research in an iconic fish lineage of major societal importance.
Collapse
Affiliation(s)
- Daniel J. Macqueen
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, AB24 2TZ UK
| | - Craig R. Primmer
- Department of Biology, University of Turku, 20014 Turku, Finland
| | - Ross D. Houston
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, EH25 9RG UK
| | - Barbara F. Nowak
- Institute for Marine and Antarctic Studies, University of Tasmania, Launceston, TAS Australia
| | - Louis Bernatchez
- Département de biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, G1V 0A6 Canada
| | - Steinar Bergseth
- The Research Council of Norway, Drammensveien 288, P.O. Box 564, NO-1327 Lysaker, Norway
| | - William S. Davidson
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6 Canada
| | - Cristian Gallardo-Escárate
- Laboratory of Biotechnology and Aquatic Genomics, Interdisciplinary Center for Aquaculture Research, Department of Oceanography, Universidad de Concepción, 4030000 Concepción, Chile
| | - Tom Goldammer
- Leibniz Institute for Farm Animal Biology, Institute for Genome Biology, Fish Genetics Unit, Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Yann Guiguen
- INRA, UR1037 Fish Physiology and Genomics, Rennes, France
| | - Patricia Iturra
- Human Genetics Program ICBM Faculty of Medicine, University of Chile, Santiago, Chile
| | | | - Ben F. Koop
- Department of Biology, University of Victoria, Victoria, BC V8W 3N5 Canada
| | - Sigbjørn Lien
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, NO-1432 Ås, Norway
| | - Alejandro Maass
- Center for Mathematical Modelling, Department of Mathematical Engineering, University of Chile, 8370456 Santiago, Chile
- Center for Genome Regulation, University of Chile, 8370456 Santiago, Chile
| | - Samuel A. M. Martin
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, AB24 2TZ UK
| | - Philip McGinnity
- School of Biological, Earth and Environmental Sciences, University College Cork, Cork, Ireland
| | - Martin Montecino
- Center for Biomedical Research, Universidad Andres Bello, 8370146 Santiago, Chile
- FONDAP Center for Genome Regulation, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, 8370146 Santiago, Chile
| | - Kerry A. Naish
- School of Aquatic and Fishery Sciences, University of Washington, Box 355020, Seattle, WA 98195 USA
| | - Krista M. Nichols
- Conservation Biology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd E, Seattle, WA 98112 USA
| | | | - Stig W. Omholt
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, NO-1432 Ås, Norway
- NTNU - Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Yniv Palti
- National Center for Cool and Cold Water Aquaculture, USDA ARS, 11861 Leetown Road, Kearneysville, WV 25430 USA
| | - Graham S. Plastow
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, AB Canada
| | - Caird E. Rexroad
- Office of National Programs, USDA ARS, 5601 Sunnyside Avenue, Beltsville, MD 20705-5148 USA
| | - Matthew L. Rise
- Department of Ocean Sciences, Memorial University of Newfoundland, 1 Marine Lab Road, St. John’s, NL A1C 5S7 Canada
| | - Rachael J. Ritchie
- Genome British Columbia, Suite 400 – 575, West 8th Avenue, Vancouver, BC V5Z 0C4 Canada
| | - Simen R. Sandve
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, NO-1432 Ås, Norway
| | - Patricia M. Schulte
- Department of Zoology, University of British Columbia, 6270 University Blvd, Vancouver, BC V6T 1Z4 Canada
| | - Alfredo Tello
- Instituto Tecnológico del Salmón S.A., INTESAL de SalmonChile, Puerto Montt, Chile
| | - Rodrigo Vidal
- Laboratory of Molecular Ecology, Genomics, and Evolutionary Studies, Department of Biology, University of Santiago, 9170022 Santiago, Chile
| | - Jon Olav Vik
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, NO-1432 Ås, Norway
| | - Anna Wargelius
- Institute of Marine Research, P.O. Box 1870, Nordnes, NO-5817 Bergen, Norway
| | - José Manuel Yáñez
- Faculty of Veterinary and Animal Sciences, University of Chile, Av. Santa Rosa 11735, Santiago, Chile & Aquainnovo, Cardonal s/n, Puerto Montt, Chile
| |
Collapse
|
42
|
Robertson FM, Gundappa MK, Grammes F, Hvidsten TR, Redmond AK, Lien S, Martin SAM, Holland PWH, Sandve SR, Macqueen DJ. Lineage-specific rediploidization is a mechanism to explain time-lags between genome duplication and evolutionary diversification. Genome Biol 2017; 18:111. [PMID: 28615063 PMCID: PMC5470254 DOI: 10.1186/s13059-017-1241-z] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 05/19/2017] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND The functional divergence of duplicate genes (ohnologues) retained from whole genome duplication (WGD) is thought to promote evolutionary diversification. However, species radiation and phenotypic diversification are often temporally separated from WGD. Salmonid fish, whose ancestor underwent WGD by autotetraploidization ~95 million years ago, fit such a 'time-lag' model of post-WGD radiation, which occurred alongside a major delay in the rediploidization process. Here we propose a model, 'lineage-specific ohnologue resolution' (LORe), to address the consequences of delayed rediploidization. Under LORe, speciation precedes rediploidization, allowing independent ohnologue divergence in sister lineages sharing an ancestral WGD event. RESULTS Using cross-species sequence capture, phylogenomics and genome-wide analyses of ohnologue expression divergence, we demonstrate the major impact of LORe on salmonid evolution. One-quarter of each salmonid genome, harbouring at least 4550 ohnologues, has evolved under LORe, with rediploidization and functional divergence occurring on multiple independent occasions >50 million years post-WGD. We demonstrate the existence and regulatory divergence of many LORe ohnologues with functions in lineage-specific physiological adaptations that potentially facilitated salmonid species radiation. We show that LORe ohnologues are enriched for different functions than 'older' ohnologues that began diverging in the salmonid ancestor. CONCLUSIONS LORe has unappreciated significance as a nested component of post-WGD divergence that impacts the functional properties of genes, whilst providing ohnologues available solely for lineage-specific adaptation. Under LORe, which is predicted following many WGD events, the functional outcomes of WGD need not appear 'explosively', but can arise gradually over tens of millions of years, promoting lineage-specific diversification regimes under prevailing ecological pressures.
Collapse
Affiliation(s)
- Fiona M Robertson
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK
| | - Manu Kumar Gundappa
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK
| | - Fabian Grammes
- Centre for Integrative Genetics (CIGENE), Faculty of Biosciences, Norwegian University of Life Sciences, Ås, NO-1432, Norway
| | - Torgeir R Hvidsten
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, 1432, Ås, Norway.,Umeå Plant Science Centre, Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, SE-90187, Umeå, Sweden
| | - Anthony K Redmond
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK.,Centre for Genome-Enabled Biology & Medicine, University of Aberdeen, Aberdeen, AB24 2TZ, UK
| | - Sigbjørn Lien
- Centre for Integrative Genetics (CIGENE), Faculty of Biosciences, Norwegian University of Life Sciences, Ås, NO-1432, Norway
| | - Samuel A M Martin
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK
| | - Peter W H Holland
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK
| | - Simen R Sandve
- Centre for Integrative Genetics (CIGENE), Faculty of Biosciences, Norwegian University of Life Sciences, Ås, NO-1432, Norway
| | - Daniel J Macqueen
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK.
| |
Collapse
|
43
|
Laurent S, Salamin N, Robinson-Rechavi M. No evidence for the radiation time lag model after whole genome duplications in Teleostei. PLoS One 2017; 12:e0176384. [PMID: 28426792 PMCID: PMC5398669 DOI: 10.1371/journal.pone.0176384] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 04/10/2017] [Indexed: 12/11/2022] Open
Abstract
The short and long term effects of polyploidization on the evolutionary fate of lineages is still unclear despite much interest. First recognized in land plants, it has become clear that polyploidization is widespread in eukaryotes, notably at the origin of vertebrates and teleost fishes. Many hypotheses have been proposed to link the species richness of lineages and whole genome duplications. For instance, the radiation time lag model suggests that paleopolyploidy would favour the apparition of new phenotypic traits, although the radiation of the lineage would not occur before a later dispersion event. Some results indicate that this model may be observed during land plant evolution. In this work, we test predictions of the radiation time lag model using both fossil data and molecular phylogenies in ancient and more recent teleost whole genome duplications. We fail to find any evidence of delayed increase of the species number after any of these events and conclude that paleopolyploidization still remains to be unambiguously linked to taxonomic diversity in teleosts.
Collapse
Affiliation(s)
- Sacha Laurent
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Nicolas Salamin
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Marc Robinson-Rechavi
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| |
Collapse
|
44
|
Ware JL, Barden P. Incorporating fossils into hypotheses of insect phylogeny. CURRENT OPINION IN INSECT SCIENCE 2016; 18:69-76. [PMID: 27939713 DOI: 10.1016/j.cois.2016.10.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 10/12/2016] [Indexed: 06/06/2023]
Abstract
Fossils represent stem and crown lineages, and their inclusion in phylogenetic reconstruction influences branch lengths, topology, and divergence time estimation. In addition, paleontological data may inform trends in morphological evolution as well as biogeographic history. Here we review the incorporation of fossils in studies of insect evolution, from morphological analyses to combined 'total evidence' node dating analyses. We discuss challenges associated with fossil based phylogenetics, and suggest best practices for use in tree reconstruction.
Collapse
Affiliation(s)
- Jessica L Ware
- Rutgers University, 195 University Ave, Newark, NJ 07102, United States.
| | - Phillip Barden
- Rutgers University, 195 University Ave, Newark, NJ 07102, United States
| |
Collapse
|
45
|
Zhang X, Wu Y, Hao J, Zhu J, Tang N, Qi J, Wang S, Wang H, Peng S, Liu J, Gao Y, Chen D, Li Z. Intraperitoneal injection urocortin-3 reduces the food intake of Siberian sturgeon (Acipenser baerii). Peptides 2016; 85:80-88. [PMID: 27667703 DOI: 10.1016/j.peptides.2016.09.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 09/02/2016] [Accepted: 09/16/2016] [Indexed: 02/06/2023]
Abstract
Urocortin-3 (UCN3), one of the corticotropin releasing factor (CRF) family peptides, which was discovered in 2001, has a variety of biological functions. However, the researches of UCN3 in fish were scarce. In order to understand whether UCN3 play a role in regulating food intake in fish, we first cloned the ucn3 cDNAs sequence of Siberian sturgeon (Acipenser baerii Brandt), and investigated the ucn3 mRNA levels in 11 tissues. The Siberian sturgeon ucn3 cDNA sequence was 1044bp, including an open reading frame (ORF) of 447bp that encoded 148 amino acids with a mature peptide of 40 amino acids, a 5'-terminal untranslated region (5'-UTR) of 162bp and a 3'-terminal untranslated region (3'-UTR) of 435bp. The result of tissue distribution showed that ucn3 widely distributed in 11 tissues with highest expression in brain. We also assessed the effects of periprandial (pre- and post-feeding), fasting and re-feeding on ucn3 mRNAs abundance in brain. The results showed the expression of ucn3 mRNA in brain was significantly elevated after feeding, decreased after fasting 17 days and increased after re-feeding. To further investigate the food intake role of UCN3 in Siberian sturgeon, we performed intraperitoneal (i.p.) injection of Siberian sturgeon UCN3 (SsUCN3) with three doses (60, 120 or 240ng/g) and recorded the food intake. Acute and chronic i.p. injection SsUCN3 reduced the food intake in a dose-dependent pattern. In conclusion, this study indicates that SsUCN3 acts as a satiety factor to inhibit the food intake of Siberian sturgeon.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, China
| | - Yuanbing Wu
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, China
| | - Jin Hao
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, China
| | - Jieyao Zhu
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, China
| | - Ni Tang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, China
| | - Jinwen Qi
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, China
| | - Shuyao Wang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, China
| | - Hong Wang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, China
| | - Shuang Peng
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, China
| | - Ju Liu
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, China
| | - Yundi Gao
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, China
| | - Defang Chen
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, China
| | - Zhiqiong Li
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, China.
| |
Collapse
|
46
|
Little evidence for enhanced phenotypic evolution in early teleosts relative to their living fossil sister group. Proc Natl Acad Sci U S A 2016; 113:11531-11536. [PMID: 27671652 DOI: 10.1073/pnas.1607237113] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Since Darwin, biologists have been struck by the extraordinary diversity of teleost fishes, particularly in contrast to their closest "living fossil" holostean relatives. Hypothesized drivers of teleost success include innovations in jaw mechanics, reproductive biology and, particularly at present, genomic architecture, yet all scenarios presuppose enhanced phenotypic diversification in teleosts. We test this key assumption by quantifying evolutionary rate and capacity for innovation in size and shape for the first 160 million y (Permian-Early Cretaceous) of evolution in neopterygian fishes (the more extensive clade containing teleosts and holosteans). We find that early teleosts do not show enhanced phenotypic evolution relative to holosteans. Instead, holostean rates and innovation often match or can even exceed those of stem-, crown-, and total-group teleosts, belying the living fossil reputation of their extant representatives. In addition, we find some evidence for heterogeneity within the teleost lineage. Although stem teleosts excel at discovering new body shapes, early crown-group taxa commonly display higher rates of shape evolution. However, the latter reflects low rates of shape evolution in stem teleosts relative to all other neopterygian taxa, rather than an exceptional feature of early crown teleosts. These results complement those emerging from studies of both extant teleosts as a whole and their sublineages, which generally fail to detect an association between genome duplication and significant shifts in rates of lineage diversification.
Collapse
|
47
|
Targeted sequencing for high-resolution evolutionary analyses following genome duplication in salmonid fish: Proof of concept for key components of the insulin-like growth factor axis. Mar Genomics 2016; 30:15-26. [PMID: 27346185 DOI: 10.1016/j.margen.2016.06.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 06/11/2016] [Accepted: 06/11/2016] [Indexed: 12/25/2022]
Abstract
High-throughput sequencing has revolutionised comparative and evolutionary genome biology. It has now become relatively commonplace to generate multiple genomes and/or transcriptomes to characterize the evolution of large taxonomic groups of interest. Nevertheless, such efforts may be unsuited to some research questions or remain beyond the scope of some research groups. Here we show that targeted high-throughput sequencing offers a viable alternative to study genome evolution across a vertebrate family of great scientific interest. Specifically, we exploited sequence capture and Illumina sequencing to characterize the evolution of key components from the insulin-like growth (IGF) signalling axis of salmonid fish at unprecedented phylogenetic resolution. The IGF axis represents a central governor of vertebrate growth and its core components were expanded by whole genome duplication in the salmonid ancestor ~95Ma. Using RNA baits synthesised to genes encoding the complete family of IGF binding proteins (IGFBP) and an IGF hormone (IGF2), we captured, sequenced and assembled orthologous and paralogous exons from species representing all ten salmonid genera. This approach generated 299 novel sequences, most as complete or near-complete protein-coding sequences. Phylogenetic analyses confirmed congruent evolutionary histories for all nineteen recognized salmonid IGFBP family members and identified novel salmonid-specific IGF2 paralogues. Moreover, we reconstructed the evolution of duplicated IGF axis paralogues across a replete salmonid phylogeny, revealing complex historic selection regimes - both ancestral to salmonids and lineage-restricted - that frequently involved asymmetric paralogue divergence under positive and/or relaxed purifying selection. Our findings add to an emerging literature highlighting diverse applications for targeted sequencing in comparative-evolutionary genomics. We also set out a viable approach to obtain large sets of nuclear genes for any member of the salmonid family, which should enable insights into the evolutionary role of whole genome duplication before additional nuclear genome sequences become available.
Collapse
|
48
|
dos Reis M, Donoghue PCJ, Yang Z. Bayesian molecular clock dating of species divergences in the genomics era. Nat Rev Genet 2015; 17:71-80. [PMID: 26688196 DOI: 10.1038/nrg.2015.8] [Citation(s) in RCA: 160] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Five decades have passed since the proposal of the molecular clock hypothesis, which states that the rate of evolution at the molecular level is constant through time and among species. This hypothesis has become a powerful tool in evolutionary biology, making it possible to use molecular sequences to estimate the geological ages of species divergence events. With recent advances in Bayesian clock dating methodology and the explosive accumulation of genetic sequence data, molecular clock dating has found widespread applications, from tracking virus pandemics and studying the macroevolutionary process of speciation and extinction to estimating a timescale for life on Earth.
Collapse
Affiliation(s)
- Mario dos Reis
- Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK.,School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Philip C J Donoghue
- School of Earth Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Ziheng Yang
- Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
| |
Collapse
|
49
|
Oakley TH, Speiser DI. How Complexity Originates: The Evolution of Animal Eyes. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2015. [DOI: 10.1146/annurev-ecolsys-110512-135907] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Todd H. Oakley
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, California 93106;
| | - Daniel I. Speiser
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina 29208
| |
Collapse
|
50
|
O'Reilly JE, Dos Reis M, Donoghue PCJ. Dating Tips for Divergence-Time Estimation. Trends Genet 2015; 31:637-650. [PMID: 26439502 DOI: 10.1016/j.tig.2015.08.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 07/29/2015] [Accepted: 08/11/2015] [Indexed: 10/23/2022]
Abstract
The molecular clock is the only viable means of establishing an accurate timescale for Life on Earth, but it remains reliant on a capricious fossil record for calibration. 'Tip-dating' promises a conceptual advance, integrating fossil species among their living relatives using molecular/morphological datasets and evolutionary models. Fossil species of known age establish calibration directly, and their phylogenetic uncertainty is accommodated through the co-estimation of time and topology. However, challenges remain, including a dearth of effective models of morphological evolution, rate correlation, the non-random nature of missing characters in fossil data, and, most importantly, accommodating uncertainty in fossil age. We show uncertainty in fossil-dating propagates to divergence-time estimates, yielding estimates that are older and less precise than those based on traditional node calibration. Ultimately, node and tip calibrations are not mutually incompatible and may be integrated to achieve more accurate and precise evolutionary timescales.
Collapse
Affiliation(s)
- Joseph E O'Reilly
- School of Earth Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Mario Dos Reis
- Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, UK; Present address: School of Biological and Chemical Sciences, Queen Mary, University of London, London, E1 4NS, UK
| | - Philip C J Donoghue
- School of Earth Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK.
| |
Collapse
|