1
|
Hill GE. Genetic hitchhiking, mitonuclear coadaptation, and the origins of mt DNA barcode gaps. Ecol Evol 2020; 10:9048-9059. [PMID: 32953045 PMCID: PMC7487244 DOI: 10.1002/ece3.6640] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/02/2020] [Accepted: 07/06/2020] [Indexed: 01/02/2023] Open
Abstract
DNA barcoding based on mitochondrial (mt) nucleotide sequences is an enigma. Neutral models of mt evolution predict DNA barcoding cannot work for recently diverged taxa, and yet, mt DNA barcoding accurately delimits species for many bilaterian animals. Meanwhile, mt DNA barcoding often fails for plants and fungi. I propose that because mt gene products must cofunction with nuclear gene products, the evolution of mt genomes is best understood with full consideration of the two environments that impose selective pressure on mt genes: the external environment and the internal genomic environment. Moreover, it is critical to fully consider the potential for adaptive evolution of not just protein products of mt genes but also of mt transfer RNAs and mt ribosomal RNAs. The tight linkage of genes on mt genomes that do not engage in recombination could facilitate selective sweeps whenever there is positive selection on any element in the mt genome, leading to the purging of mt genetic diversity within a population and to the rapid fixation of novel mt DNA sequences. Accordingly, the most important factor determining whether or not mt DNA sequences diagnose species boundaries may be the extent to which the mt chromosomes engage in recombination.
Collapse
|
2
|
Bertgen L, Mühlhaus T, Herrmann JM. Clingy genes: Why were genes for ribosomal proteins retained in many mitochondrial genomes? BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148275. [PMID: 32712152 DOI: 10.1016/j.bbabio.2020.148275] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/14/2020] [Accepted: 07/19/2020] [Indexed: 11/18/2022]
Abstract
Why mitochondria still retain their own genome is a puzzle given the enormous effort to maintain a mitochondrial translation machinery. Most mitochondrially encoded proteins are membrane-embedded subunits of the respiratory chain. Their hydrophobicity presumably impedes their import into mitochondria. However, many mitochondrial genomes also encode protein subunits of the mitochondrial ribosome. These proteins lack transmembrane domains and hydrophobicity cannot explain why their genes remained in mitochondria. In this review, we provide an overview about mitochondrially encoded subunits of mitochondrial ribosomes of fungi, plants and protists. Moreover, we discuss and evaluate different hypotheses which were put forward to explain why (ribosomal) proteins remained mitochondrially encoded. It seems likely that the synthesis of ribosomal proteins in the mitochondrial matrix is used to regulate the assembly of the mitochondrial ribosome within mitochondria and to avoid problems that mitochondrial proteins might pose for cytosolic proteostasis and for the assembly of cytosolic ribosomes.
Collapse
Affiliation(s)
- Lea Bertgen
- Cell Biology, University of Kaiserslautern, Erwin-Schrödinger-Straße 13, 67663 Kaiserslautern, Germany
| | - Timo Mühlhaus
- Computational Systems Biology, University of Kaiserslautern, Erwin-Schrödinger-Straße 23, 67663 Kaiserslautern, Germany
| | - Johannes M Herrmann
- Cell Biology, University of Kaiserslautern, Erwin-Schrödinger-Straße 13, 67663 Kaiserslautern, Germany.
| |
Collapse
|
3
|
van Esveld SL, Huynen MA. Does mitochondrial DNA evolution in metazoa drive the origin of new mitochondrial proteins? IUBMB Life 2018; 70:1240-1250. [PMID: 30281911 DOI: 10.1002/iub.1940] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/14/2018] [Accepted: 08/21/2018] [Indexed: 01/10/2023]
Abstract
Most eukaryotic cells contain mitochondria with a genome that evolved from their α-proteobacterial ancestor. In the course of eukaryotic evolution, the mitochondrial genome underwent a dramatic reduction in size, caused by the loss and translocation of genes. This required adjustments in mitochondrial gene expression mechanisms and resulted in a complex collaborative system of mitochondrially encoded transfer RNAs and ribosomal RNAs with nuclear encoded proteins to express the mitochondrial encoded oxidative phosphorylation (OXPHOS) proteins. In this review, we examine mitochondrial gene expression from an evolutionary point of view: to what extent can we correlate changes in the mitochondrial genome in the evolutionary lineage leading to human with the origin of new nuclear encoded proteins. We dated the evolutionary origin of mitochondrial proteins that interact with mitochondrial DNA or its RNA and/or protein products in a systematic manner and compared them with documented changes in the mitochondrial DNA. We find anecdotal but accumulating evidence that metazoan RNA-interacting proteins arose in conjunction with changes of the mitochondrial DNA. We find no substantial evidence for such compensatory evolution in new OXPHOS proteins, which appear to be constrained by the ability to form supercomplexes. © 2018 IUBMB Life, 70(12):1240-1250, 2018.
Collapse
Affiliation(s)
- S L van Esveld
- Radboud Center for Mitochondrial Medicine, Radboudumc, Nijmegen, The Netherlands.,Centre for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands
| | - M A Huynen
- Radboud Center for Mitochondrial Medicine, Radboudumc, Nijmegen, The Netherlands
| |
Collapse
|
4
|
Kayal E, Bentlage B, Collins AG. Insights into the transcriptional and translational mechanisms of linear organellar chromosomes in the box jellyfish Alatina alata (Cnidaria: Medusozoa: Cubozoa). RNA Biol 2016; 13:799-809. [PMID: 27267414 DOI: 10.1080/15476286.2016.1194161] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND In most animals, the mitochondrial genome is characterized by its small size, organization into a single circular molecule, and a relative conservation of the number of encoded genes. In box jellyfish (Cubozoa, Cnidaria), the mitochondrial genome is organized into 8 linear mito-chromosomes harboring between one and 4 genes each, including 2 extra protein-coding genes: mt-polB and orf314. Such an organization challenges the traditional view of mitochondrial DNA (mtDNA) expression in animals. In this study, we investigate the pattern of mitochondrial gene expression in the box jellyfish Alatina alata, as well as several key nuclear-encoded molecular pathways involved in the processing of mitochondrial gene transcription. RESULTS Read coverage of DNA-seq data is relatively uniform for all 8 mito-chromosomes, suggesting that each mito-chromosome is present in equimolar proportion in the mitochondrion. Comparison of DNA and RNA-seq based assemblies indicates that mito-chromosomes are transcribed into individual transcripts in which the beginning and ending are highly conserved. Expression levels for mt-polB and orf314 are similar to those of other mitochondrial-encoded genes, which provides further evidence for them having functional roles in the mitochondrion. Survey of the transcriptome suggests recognition of the mitochondrial tRNA-Met by the cytoplasmic aminoacyl-tRNA synthetase counterpart and C-to-U editing of the cytoplasmic tRNA-Trp after import into the mitochondrion. Moreover, several mitochondrial ribosomal proteins appear to be lost. CONCLUSIONS This study represents the first survey of mitochondrial gene expression of the linear multi-chromosomal mtDNA in box jellyfish (Cubozoa). Future exploration of small RNAs and the proteome of the mitochondrion will test the hypotheses presented herein.
Collapse
Affiliation(s)
- Ehsan Kayal
- a Department of Invertebrate Zoology , National Museum of Natural History, Smithsonian Institution , Washington DC , USA
| | - Bastian Bentlage
- a Department of Invertebrate Zoology , National Museum of Natural History, Smithsonian Institution , Washington DC , USA
| | - Allen G Collins
- a Department of Invertebrate Zoology , National Museum of Natural History, Smithsonian Institution , Washington DC , USA.,b National Systematics Laboratory of NOAA's Fisheries Service, National Museum of Natural History , Washington , DC , USA
| |
Collapse
|
5
|
Johnston IG, Williams BP. Evolutionary Inference across Eukaryotes Identifies Specific Pressures Favoring Mitochondrial Gene Retention. Cell Syst 2016; 2:101-11. [PMID: 27135164 DOI: 10.1016/j.cels.2016.01.013] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 12/14/2015] [Accepted: 01/27/2016] [Indexed: 11/18/2022]
Abstract
Since their endosymbiotic origin, mitochondria have lost most of their genes. Although many selective mechanisms underlying the evolution of mitochondrial genomes have been proposed, a data-driven exploration of these hypotheses is lacking, and a quantitatively supported consensus remains absent. We developed HyperTraPS, a methodology coupling stochastic modeling with Bayesian inference, to identify the ordering of evolutionary events and suggest their causes. Using 2015 complete mitochondrial genomes, we inferred evolutionary trajectories of mtDNA gene loss across the eukaryotic tree of life. We find that proteins comprising the structural cores of the electron transport chain are preferentially encoded within mitochondrial genomes across eukaryotes. A combination of high GC content and high protein hydrophobicity is required to explain patterns of mtDNA gene retention; a model that accounts for these selective pressures can also predict the success of artificial gene transfer experiments in vivo. This work provides a general method for data-driven inference of the ordering of evolutionary and progressive events, here identifying the distinct features shaping mitochondrial genomes of present-day species.
Collapse
Affiliation(s)
- Iain G Johnston
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK.
| | - Ben P Williams
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| |
Collapse
|
6
|
Pisani D, Pett W, Dohrmann M, Feuda R, Rota-Stabelli O, Philippe H, Lartillot N, Wörheide G. Genomic data do not support comb jellies as the sister group to all other animals. Proc Natl Acad Sci U S A 2015; 112:15402-7. [PMID: 26621703 PMCID: PMC4687580 DOI: 10.1073/pnas.1518127112] [Citation(s) in RCA: 200] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Understanding how complex traits, such as epithelia, nervous systems, muscles, or guts, originated depends on a well-supported hypothesis about the phylogenetic relationships among major animal lineages. Traditionally, sponges (Porifera) have been interpreted as the sister group to the remaining animals, a hypothesis consistent with the conventional view that the last common animal ancestor was relatively simple and more complex body plans arose later in evolution. However, this premise has recently been challenged by analyses of the genomes of comb jellies (Ctenophora), which, instead, found ctenophores as the sister group to the remaining animals (the "Ctenophora-sister" hypothesis). Because ctenophores are morphologically complex predators with true epithelia, nervous systems, muscles, and guts, this scenario implies these traits were either present in the last common ancestor of all animals and were lost secondarily in sponges and placozoans (Trichoplax) or, alternatively, evolved convergently in comb jellies. Here, we analyze representative datasets from recent studies supporting Ctenophora-sister, including genome-scale alignments of concatenated protein sequences, as well as a genomic gene content dataset. We found no support for Ctenophora-sister and conclude it is an artifact resulting from inadequate methodology, especially the use of simplistic evolutionary models and inappropriate choice of species to root the metazoan tree. Our results reinforce a traditional scenario for the evolution of complexity in animals, and indicate that inferences about the evolution of Metazoa based on the Ctenophora-sister hypothesis are not supported by the currently available data.
Collapse
Affiliation(s)
- Davide Pisani
- School of Earth Sciences, University of Bristol, Bristol BS8 1TG, United Kingdom; School of Biological Sciences, University of Bristol, Bristol BS8 1TG, United Kingdom;
| | - Walker Pett
- Laboratoire de Biométrie et Biologie Évolutive, Université Lyon 1, CNRS, UMR 5558, 69622 Villeurbanne cedex, France
| | - Martin Dohrmann
- Department of Earth & Environmental Sciences & GeoBio-Center, Ludwig-Maximilians-Universität München, Munich 80333, Germany
| | - Roberto Feuda
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Omar Rota-Stabelli
- Department of Sustainable Agro-Ecosystems and Bioresources, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all' Adige 38010, Italy
| | - Hervé Philippe
- Centre for Biodiversity Theory and Modelling, USR CNRS 2936, Station d'Ecologie Expérimentale du CNRS, Moulis 09200, France; Département de Biochimie, Centre Robert-Cedergren, Université de Montréal, Montreal, QC, Canada H3C 3J7
| | - Nicolas Lartillot
- Laboratoire de Biométrie et Biologie Évolutive, Université Lyon 1, CNRS, UMR 5558, 69622 Villeurbanne cedex, France
| | - Gert Wörheide
- Department of Earth & Environmental Sciences & GeoBio-Center, Ludwig-Maximilians-Universität München, Munich 80333, Germany; Bayerische Staatssammlung für Paläontologie und Geologie, Munich 80333, Germany
| |
Collapse
|
7
|
Pett W, Lavrov DV. Cytonuclear Interactions in the Evolution of Animal Mitochondrial tRNA Metabolism. Genome Biol Evol 2015; 7:2089-101. [PMID: 26116918 PMCID: PMC4558845 DOI: 10.1093/gbe/evv124] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The evolution of mitochondrial information processing pathways, including replication, transcription and translation, is characterized by the gradual replacement of mitochondrial-encoded proteins with nuclear-encoded counterparts of diverse evolutionary origins. Although the ancestral enzymes involved in mitochondrial transcription and replication have been replaced early in eukaryotic evolution, mitochondrial translation is still carried out by an apparatus largely inherited from the α-proteobacterial ancestor. However, variation in the complement of mitochondrial-encoded molecules involved in translation, including transfer RNAs (tRNAs), provides evidence for the ongoing evolution of mitochondrial protein synthesis. Here, we investigate the evolution of the mitochondrial translational machinery using recent genomic and transcriptomic data from animals that have experienced the loss of mt-tRNAs, including phyla Cnidaria and Ctenophora, as well as some representatives of all four classes of Porifera. We focus on four sets of mitochondrial enzymes that directly interact with tRNAs: Aminoacyl-tRNA synthetases, glutamyl-tRNA amidotransferase, tRNAIle lysidine synthetase, and RNase P. Our results support the observation that the fate of nuclear-encoded mitochondrial proteins is influenced by the evolution of molecules encoded in mitochondrial DNA, but in a more complex manner than appreciated previously. The data also suggest that relaxed selection on mitochondrial translation rather than coevolution between mitochondrial and nuclear subunits is responsible for elevated rates of evolution in mitochondrial translational proteins.
Collapse
Affiliation(s)
- Walker Pett
- Department of Ecology, Evolution and Organismal Biology, Iowa State University Present address: Laboratoire de Biométrie et Biologie Évolutive CNRS UMR 5558, Université Lyon 1, Villeurbanne, France
| | - Dennis V Lavrov
- Department of Ecology, Evolution and Organismal Biology, Iowa State University
| |
Collapse
|
8
|
Kück P, Longo GC. FASconCAT-G: extensive functions for multiple sequence alignment preparations concerning phylogenetic studies. Front Zool 2014; 11:81. [PMID: 25426157 PMCID: PMC4243772 DOI: 10.1186/s12983-014-0081-x] [Citation(s) in RCA: 280] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 10/21/2014] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Phylogenetic and population genetic studies often deal with multiple sequence alignments that require manipulation or processing steps such as sequence concatenation, sequence renaming, sequence translation or consensus sequence generation. In recent years phylogenetic data sets have expanded from single genes to genome wide markers comprising hundreds to thousands of loci. Processing of these large phylogenomic data sets is impracticable without using automated process pipelines. Currently no stand-alone or pipeline compatible program exists that offers a broad range of manipulation and processing steps for multiple sequence alignments in a single process run. RESULTS Here we present FASconCAT-G, a system independent editor, which offers various processing options for multiple sequence alignments. The software provides a wide range of possibilities to edit and concatenate multiple nucleotide, amino acid, and structure sequence alignment files for phylogenetic and population genetic purposes. The main options include sequence renaming, file format conversion, sequence translation between nucleotide and amino acid states, consensus generation of specific sequence blocks, sequence concatenation, model selection of amino acid replacement with ProtTest, two types of RY coding as well as site exclusions and extraction of parsimony informative sites. Convieniently, most options can be invoked in combination and performed during a single process run. Additionally, FASconCAT-G prints useful information regarding alignment characteristics and editing processes such as base compositions of single in- and outfiles, sequence areas in a concatenated supermatrix, as well as paired stem and loop regions in secondary structure sequence strings. CONCLUSIONS FASconCAT-G is a command-line driven Perl program that delivers computationally fast and user-friendly processing of multiple sequence alignments for phylogenetic and population genetic applications and is well suited for incorporation into analysis pipelines.
Collapse
Affiliation(s)
- Patrick Kück
- />Zoologisches Forschungsmuseum A. Koenig, Adenauerallee 160-163, Bonn, 53113 Germany
| | - Gary C Longo
- />Center for Ocean Health, 100 Shaffer Road, Santa Cruz, 95060 CA USA
| |
Collapse
|