1
|
Pezzi PH, Wheeler LC, Freitas LB, Smith SD. Incomplete lineage sorting and hybridization underlie tree discordance in Petunia and related genera (Petunieae, Solanaceae). Mol Phylogenet Evol 2024; 198:108136. [PMID: 38909873 DOI: 10.1016/j.ympev.2024.108136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/06/2024] [Accepted: 06/17/2024] [Indexed: 06/25/2024]
Abstract
Despite the overarching history of species divergence, phylogenetic studies often reveal distinct topologies across regions of the genome. The sources of these gene tree discordances are variable, but incomplete lineage sorting (ILS) and hybridization are among those with the most biological importance. Petunia serves as a classic system for studying hybridization in the wild. While field studies suggest that hybridization is frequent, the extent of reticulation within Petunia and its closely related genera has never been examined from a phylogenetic perspective. In this study, we used transcriptomic data from 11 Petunia, 16 Calibrachoa, and 10 Fabiana species to illuminate the relationships between these species and investigate whether hybridization played a significant role in the diversification of the clade. We inferred that gene tree discordance within genera is linked to hybridization events along with high levels of ILS due to their rapid diversification. Moreover, network analyses estimated deeper hybridization events between Petunia and Calibrachoa, genera that have different chromosome numbers. Although these genera cannot hybridize at the present time, ancestral hybridization could have played a role in their parallel radiations, as they share the same habitat and life history.
Collapse
Affiliation(s)
- Pedro H Pezzi
- Department of Genetics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| | - Lucas C Wheeler
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, USA
| | - Loreta B Freitas
- Department of Genetics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Stacey D Smith
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, USA
| |
Collapse
|
2
|
Soares LS, Freitas LB. The phylogeographic journey of a plant species from lowland to highlands during the Pleistocene. Sci Rep 2024; 14:3825. [PMID: 38360894 PMCID: PMC10869790 DOI: 10.1038/s41598-024-53414-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/31/2024] [Indexed: 02/17/2024] Open
Abstract
Phylogeographic history refers to how species evolve and diversify in response to historical, ecological, and demographic factors. The climate fluctuation during the Pleistocene period marked a crucial time in shaping many species' distribution and genetic structure, particularly those from southern South American grasslands. This work investigated the phylogeographic history of a highland grassland, Petunia altiplana T. Ando & Hashim. (Solanaceae), its diversity, and geographic distribution using a population genomic approach based on RAD-seq data. Our results indicated that, during the Pleistocene, when the grasslands expanded to highlands, the lowland populations of P. altiplana reached the higher open fields, enlarging their geographic distribution. We found that the P. altiplana genetic diversity followed the geographic division into eastern (E) and western (WE) population groups, with a subtle division in the E group regarding the Pelotas River headwater. The results also showed that isolation by distance was the main divergence pattern, with elevation playing a pivotal role in shaping WE and E groups. Our findings indicated that lowland-adapted populations quickly colonized highlands during the late Pleistocene.
Collapse
Affiliation(s)
- Luana Sousa Soares
- Department of Genetics, Universidade Federal do Rio Grande do Sul, PoBox 15053, Porto Alegre, 91501-970, Brazil
| | - Loreta B Freitas
- Department of Genetics, Universidade Federal do Rio Grande do Sul, PoBox 15053, Porto Alegre, 91501-970, Brazil.
| |
Collapse
|
3
|
Backes A, Turchetto C, Mäder G, Segatto ALA, Bonatto SL, Freitas LB. Shades of white: The Petunia long corolla tube clade evolutionary history. Genet Mol Biol 2024; 47:e20230279. [PMID: 38385448 PMCID: PMC10882218 DOI: 10.1590/1415-4757-gmb-2023-0279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/21/2023] [Indexed: 02/23/2024] Open
Abstract
Delimiting species is challenging in recently diverged species, and adaptive radiation is fundamental to understanding the evolutionary processes because it requires multiple ecological opportunities associated with adaptation to biotic and abiotic environments. The young Petunia genus (Solanaceae) is an excellent opportunity to study speciation because of its association with pollinators and unique microenvironments. This study evaluated the phylogenetic relationships among a Petunia clade species with different floral syndromes that inhabit several environments. We based our work on multiple individuals per lineage and employed nuclear and plastid phylogenetic markers and nuclear microsatellites. The phylogenetic tree revealed two main groups regarding the elevation of the distribution range, whereas microsatellites showed high polymorphism-sharing splitting lineages into three clusters. Isolation by distance, migration followed by new environment colonization, and shifts in floral syndrome were the motors for lineage differentiation, including infraspecific structuring, which suggests the need for taxonomic revision in the genus.
Collapse
Affiliation(s)
- Alice Backes
- Universidade Federal do Rio Grande do Sul, Departamento de Genética, Porto Alegre, RS, Brazil
| | - Caroline Turchetto
- Universidade Federal do Rio Grande do Sul, Departamento de Botânica, Porto Alegre, RS, Brazil
| | - Geraldo Mäder
- Universidade Federal do Rio Grande do Sul, Departamento de Genética, Porto Alegre, RS, Brazil
| | - Ana Lúcia A Segatto
- Universidade Federal de Santa Maria, Departamento de Bioquímica e Biologia Molecular, Santa Maria, RS, Brazil
| | - Sandro L Bonatto
- Pontifícia Universidade Católica do Rio Grande do Sul, A Escola de Ciências da Saúde e da Vida, Porto Alegre, RS, Brazil
| | - Loreta B Freitas
- Universidade Federal do Rio Grande do Sul, Departamento de Genética, Porto Alegre, RS, Brazil
| |
Collapse
|
4
|
Chopy M, Cavallini-Speisser Q, Chambrier P, Morel P, Just J, Hugouvieux V, Rodrigues Bento S, Zubieta C, Vandenbussche M, Monniaux M. Cell layer-specific expression of the homeotic MADS-box transcription factor PhDEF contributes to modular petal morphogenesis in petunia. THE PLANT CELL 2024; 36:324-345. [PMID: 37804091 PMCID: PMC10827313 DOI: 10.1093/plcell/koad258] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 08/31/2023] [Accepted: 09/18/2023] [Indexed: 10/08/2023]
Abstract
Floral homeotic MADS-box transcription factors ensure the correct morphogenesis of floral organs, which are organized in different cell layers deriving from distinct meristematic layers. How cells from these distinct layers acquire their respective identities and coordinate their growth to ensure normal floral organ morphogenesis is unresolved. Here, we studied petunia (Petunia × hybrida) petals that form a limb and tube through congenital fusion. We identified petunia mutants (periclinal chimeras) expressing the B-class MADS-box gene DEFICIENS in the petal epidermis or in the petal mesophyll, called wico and star, respectively. Strikingly, wico flowers form a strongly reduced tube while their limbs are almost normal, while star flowers form a normal tube but greatly reduced and unpigmented limbs, showing that petunia petal morphogenesis is highly modular. These mutants highlight the layer-specific roles of PhDEF during petal development. We explored the link between PhDEF and petal pigmentation, a well-characterized limb epidermal trait. The anthocyanin biosynthesis pathway was strongly downregulated in star petals, including its major regulator ANTHOCYANIN2 (AN2). We established that PhDEF directly binds to the AN2 terminator in vitro and in vivo, suggesting that PhDEF might regulate AN2 expression and therefore petal epidermis pigmentation. Altogether, we show that cell layer-specific homeotic activity in petunia petals differently impacts tube and limb development, revealing the relative importance of the different cell layers in the modular architecture of petunia petals.
Collapse
Affiliation(s)
- Mathilde Chopy
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Lyon 69007, France
| | - Quentin Cavallini-Speisser
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Lyon 69007, France
| | - Pierre Chambrier
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Lyon 69007, France
| | - Patrice Morel
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Lyon 69007, France
| | - Jérémy Just
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Lyon 69007, France
| | - Véronique Hugouvieux
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble-Alpes, CNRS, CEA, INRAE, IRIG-DBSCI, Grenoble 38000, France
| | - Suzanne Rodrigues Bento
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Lyon 69007, France
| | - Chloe Zubieta
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble-Alpes, CNRS, CEA, INRAE, IRIG-DBSCI, Grenoble 38000, France
| | - Michiel Vandenbussche
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Lyon 69007, France
| | - Marie Monniaux
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Lyon 69007, France
| |
Collapse
|
5
|
Turchetto C, Silvério ADC, Waschburger EL, Lacerda MEG, Quintana IV, Turchetto-Zolet AC. Genome-wide identification and evolutionary view of ALOG gene family in Solanaceae. Genet Mol Biol 2023; 46:e20230142. [PMID: 38048778 PMCID: PMC10695626 DOI: 10.1590/1415-4757-gmb-2023-0142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 10/10/2023] [Indexed: 12/06/2023] Open
Abstract
The ALOG gene family, which was named after its earliest identified members ( Arabidopsis LSH1 and Oryza G1), encodes a class of transcription factors (TF) characterized by the presence of a highly conserved ALOG domain. These proteins are found in various plant species playing regulatory roles in plant growth, development, and morphological diversification of inflorescence. The functional characterization of these genes in some plant species has demonstrated their involvement in floral architecture. In this study, we used a genome-wide and phylogenetic approach to gain insights into plants' origin, diversification, and functional aspects of the ALOG gene family. In total, 648 ALOG homologous genes were identified in 77 Viridiplantae species, and their evolutionary relationships were inferred using maximum likelihood phylogenetic analyses. Our results suggested that the ALOG gene family underwent several rounds of gene duplication and diversification during angiosperm evolution. Furthermore, we found three functional orthologous groups in Solanaceae species. The study provides insights into the evolutionary history and functional diversification of the ALOG gene family, which could aid in understanding the mechanisms underlying floral architecture in angiosperms.
Collapse
Affiliation(s)
- Caroline Turchetto
- Universidade Federal do Rio Grande do Sul, Instituto de Biociências, Programa de Pós-Graduação em Botânica (PPGBOT), Departamento de Botânica, Porto Alegre, RS, Brazil
- Universidade Federal do Rio Grande do Sul, Instituto de Biociências, Programa de Pós-Graduação em Genética e Biologia Molecular (PPGBM), Departamento de Genética, Porto Alegre, RS, Brazil
| | - Ariadne de Castro Silvério
- Universidade Federal do Rio Grande do Sul, Instituto de Biociências, Programa de Pós-Graduação em Botânica (PPGBOT), Departamento de Botânica, Porto Alegre, RS, Brazil
| | - Edgar Luis Waschburger
- Universidade Federal do Rio Grande do Sul, Instituto de Biociências, Programa de Pós-Graduação em Genética e Biologia Molecular (PPGBM), Departamento de Genética, Porto Alegre, RS, Brazil
| | - Maria Eduarda Gonçalves Lacerda
- Universidade Federal do Rio Grande do Sul, Instituto de Biociências, Programa de Pós-Graduação em Genética e Biologia Molecular (PPGBM), Departamento de Genética, Porto Alegre, RS, Brazil
| | - Isadora Vieira Quintana
- Universidade Federal do Rio Grande do Sul, Instituto de Biociências, Programa de Pós-Graduação em Genética e Biologia Molecular (PPGBM), Departamento de Genética, Porto Alegre, RS, Brazil
| | - Andreia Carina Turchetto-Zolet
- Universidade Federal do Rio Grande do Sul, Instituto de Biociências, Programa de Pós-Graduação em Genética e Biologia Molecular (PPGBM), Departamento de Genética, Porto Alegre, RS, Brazil
| |
Collapse
|
6
|
Simon L, Soares LS, Freitas LB. Disentangling the causes of high polymorphism sharing in sympatric Petunia species from subtropical highland grasslands: insights from nuclear diversity. Genet Mol Biol 2023; 46:e20230159. [PMID: 37931074 PMCID: PMC10619130 DOI: 10.1590/1678-4685-gmb-2023-0159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/26/2023] [Indexed: 11/08/2023] Open
Abstract
Genetic polymorphism sharing between closely related and sympatric plant species could result from common ancestry, ancient or recent hybridization. Here we analyzed four Petunia species from the subtropical highland grasslands in southern South America based on nuclear diversity to disentangle the causes of high polymorphism sharing between them. We genotyped microsatellite loci, employed population genetic methods to estimate variability, species limits, and ancient and recent gene flow, and assigned individuals to genetic and taxonomic groups. Finally, we modeled evolutionary processes to determine the impact of Quaternary climate changes on species phylogenetic relationships. Our results indicated that genetic diversity was strongly influenced by expansion and habitat fragmentation during the Quaternary cycles. The extensive polymorphism sharing is mainly due to species' common ancestry, and we did not discard ancient hybridization. Nowadays, niche differentiation is the primary driver for maintaining genetic and morphological limits between the four analysed Petunia species and there is no recent gene flow between them.
Collapse
Affiliation(s)
- Luize Simon
- Universidade Federal do Rio Grande do Sul, Departamento de Genética, Porto Alegre, RS, Brazil
| | - Luana S Soares
- Universidade Federal do Rio Grande do Sul, Departamento de Genética, Porto Alegre, RS, Brazil
| | - Loreta B Freitas
- Universidade Federal do Rio Grande do Sul, Departamento de Genética, Porto Alegre, RS, Brazil
| |
Collapse
|
7
|
Strazzer P, Verbree B, Bliek M, Koes R, Quattrocchio FM. The Amsterdam petunia germplasm collection: A tool in plant science. FRONTIERS IN PLANT SCIENCE 2023; 14:1129724. [PMID: 37025133 PMCID: PMC10070740 DOI: 10.3389/fpls.2023.1129724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/24/2023] [Indexed: 06/19/2023]
Abstract
Petunia hybrida is a plant model system used by many researchers to investigate a broad range of biological questions. One of the reasons for the success of this organism as a lab model is the existence of numerous mutants, involved in a wide range of processes, and the ever-increasing size of this collection owing to a highly active and efficient transposon system. We report here on the origin of petunia-based research and describe the collection of petunia lines housed in the University of Amsterdam, where many of the existing genotypes are maintained.
Collapse
|
8
|
Li C, Binaghi M, Pichon V, Cannarozzi G, Brandão de Freitas L, Hanemian M, Kuhlemeier C. Tight genetic linkage of genes causing hybrid necrosis and pollinator isolation between young species. NATURE PLANTS 2023; 9:420-432. [PMID: 36805038 PMCID: PMC10027609 DOI: 10.1038/s41477-023-01354-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 01/19/2023] [Indexed: 05/18/2023]
Abstract
The mechanisms of reproductive isolation that cause phenotypic diversification and eventually speciation are a major topic of evolutionary research. Hybrid necrosis is a post-zygotic isolation mechanism in which cell death develops in the absence of pathogens. It is often due to the incompatibility between proteins from two parents. Here we describe a unique case of hybrid necrosis due to an incompatibility between loci on chromosomes 2 and 7 between two pollinator-isolated Petunia species. Typical immune responses as well as endoplasmic reticulum stress responses are induced in the necrotic line. The locus on chromosome 2 encodes ChiA1, a bifunctional GH18 chitinase/lysozyme. The enzymatic activity of ChiA1 is dispensable for the development of necrosis. We propose that the extremely high expression of ChiA1 involves a positive feedback loop between the loci on chromosomes 2 and 7. ChiA1 is tightly linked to major genes involved in the adaptation to different pollinators, a form of pre-zygotic isolation. This linkage of pre- and post-zygotic barriers strengthens reproductive isolation and probably contributes to rapid diversification and speciation.
Collapse
Affiliation(s)
- Chaobin Li
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Marta Binaghi
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Vivien Pichon
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Gina Cannarozzi
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
- Chemistry/Biology/Pharmacy Information Center, ETH Zürich, Zürich, Switzerland
| | - Loreta Brandão de Freitas
- Department of Genetics, Laboratory of Molecular Evolution, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Mathieu Hanemian
- Institute of Plant Sciences, University of Bern, Bern, Switzerland.
- Laboratoire des Interactions Plantes-Microbes-Environnement (LIPME), INRAE, CNRS, Université de Toulouse, Castanet-Tolosan, France.
| | - Cris Kuhlemeier
- Institute of Plant Sciences, University of Bern, Bern, Switzerland.
| |
Collapse
|
9
|
Sun L, Cao S, Zheng N, Kao TH. Analyses of Cullin1 homologs reveal functional redundancy in S-RNase-based self-incompatibility and evolutionary relationships in eudicots. THE PLANT CELL 2023; 35:673-699. [PMID: 36478090 PMCID: PMC9940881 DOI: 10.1093/plcell/koac357] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
In Petunia (Solanaceae family), self-incompatibility (SI) is regulated by the polymorphic S-locus, which contains the pistil-specific S-RNase and multiple pollen-specific S-Locus F-box (SLF) genes. SLFs assemble into E3 ubiquitin ligase complexes known as Skp1-Cullin1-F-box complexes (SCFSLF). In pollen tubes, these complexes collectively mediate ubiquitination and degradation of all nonself S-RNases, but not self S-RNase, resulting in cross-compatible, but self-incompatible, pollination. Using Petunia inflata, we show that two pollen-expressed Cullin1 (CUL1) proteins, PiCUL1-P and PiCUL1-B, function redundantly in SI. This redundancy is lost in Petunia hybrida, not because of the inability of PhCUL1-B to interact with SSK1, but due to a reduction in the PhCUL1-B transcript level. This is possibly caused by the presence of a DNA transposon in the PhCUL1-B promoter region, which was inherited from Petunia axillaris, one of the parental species of Pe. hybrida. Phylogenetic and syntenic analyses of Cullin genes in various eudicots show that three Solanaceae-specific CUL1 genes share a common origin, with CUL1-P dedicated to S-RNase-related reproductive processes. However, CUL1-B is a dispersed duplicate of CUL1-P present only in Petunia, and not in the other species of the Solanaceae family examined. We suggest that the CUL1s involved (or potentially involved) in the SI response in eudicots share a common origin.
Collapse
Affiliation(s)
- Linhan Sun
- Intercollege Graduate Degree Program in Plant Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Shiyun Cao
- Howard Hughes Medical Institute, Department of Pharmacology, University of Washington, Seattle, Washington 98195, USA
| | - Ning Zheng
- Howard Hughes Medical Institute, Department of Pharmacology, University of Washington, Seattle, Washington 98195, USA
| | - Teh-hui Kao
- Intercollege Graduate Degree Program in Plant Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
10
|
Pereira AG, Guzmán-Rodriguez S, Freitas LB. Phylogenetic Analyses of Some Key Genes Provide Information on Pollinator Attraction in Solanaceae. Genes (Basel) 2022; 13:2278. [PMID: 36553545 PMCID: PMC9778481 DOI: 10.3390/genes13122278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/22/2022] [Accepted: 12/01/2022] [Indexed: 12/07/2022] Open
Abstract
Floral syndromes are known by the conserved morphological traits in flowers associated with pollinator attraction, such as corolla shape and color, aroma emission and composition, and rewards, especially the nectar volume and sugar concentration. Here, we employed a phylogenetic approach to investigate sequences of genes enrolled in the biosynthetic pathways responsible for some phenotypes that are attractive to pollinators in Solanaceae genomes. We included genes involved in visible color, UV-light response, scent emission, and nectar production to test the hypothesis that these essential genes have evolved by convergence under pollinator selection. Our results refuted this hypothesis as all four studied genes recovered the species' phylogenetic relationships, even though some sites were positively selected. We found differences in protein motifs among genera in Solanaceae that were not necessarily associated with the same floral syndrome. Although it has had a crucial role in plant diversification, the plant-pollinator interaction is complex and still needs further investigation, with genes evolving not only under the influence of pollinators, but by the sum of several evolutionary forces along the speciation process in Solanaceae.
Collapse
Affiliation(s)
| | | | - Loreta B. Freitas
- Laboratory of Molecular Evolution, Department of Genetics, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, RS, Brazil
| |
Collapse
|
11
|
Guzmán S, Giudicelli GC, Turchetto C, Bombarely A, Freitas LB. Neutral and outlier single nucleotide polymorphisms disentangle the evolutionary history of a coastal Solanaceae species. Mol Ecol 2022; 31:2847-2864. [PMID: 35332594 DOI: 10.1111/mec.16441] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 03/11/2022] [Accepted: 03/16/2022] [Indexed: 11/30/2022]
Abstract
Speciation begins with the isolation of some individuals or subpopulations due to drivers promoting a diverging genetic distribution. Such isolation may occur, followed by different processes and pressures. Isolation-by-distance (IBD), isolation-by-adaptation (IBA), and isolation-by-colonization (IBC) have been recognized as the main divergence patterns. Still, it is not easy to distinguish which one is the main pattern as each one may act at different points in time or even simultaneously. Using an extensive genome coverage from a Petunia species complex with coastal and inland distribution and multiple analytical approaches on population genomics and phylogeography, we showed a complex interplay between neutral and selective forces acting on the divergence process. We found 18,887 SNPs potentially neutral and 924 potentially under selection (outlier) loci. All analyses pointed that each subspecies displays its own genetic component and evolutionary history. We suggested plausible ecologic drivers for such divergence in a southernmost South Atlantic coastal plain in Brazil and Uruguay and identified a connection between adaptation and environment heterogeneity.
Collapse
Affiliation(s)
- Sebastián Guzmán
- Department of Genetics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Giovanna C Giudicelli
- Department of Genetics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Caroline Turchetto
- Department of Genetics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Department of Botany, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Loreta B Freitas
- Department of Genetics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
12
|
Alaria A, Chau JH, Olmstead RG, Peralta IE. Relationships among Calibrachoa, Fabiana and Petunia (Petunieae tribe, Solanaceae) and a new generic placement of Argentinean endemic Petuniapatagonica. PHYTOKEYS 2022; 194:75-93. [PMID: 35586321 PMCID: PMC9033757 DOI: 10.3897/phytokeys.194.68404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 01/03/2022] [Indexed: 05/13/2023]
Abstract
Calibrachoa Cerv., Fabiana Ruiz & Pav., and Petunia Juss. form a clade within tribe Petunieae (Solanaceae). Phylogenetic studies of Petunieae, either as part of a family-wide analysis or focusing on the genera Calibrachoa and Petunia, have either left Fabiana unsampled or included only a single species. These studies have found conflicting relationships among the three genera with all three possible topologies obtained. Petuniapatagonica (Speg.) Millán, originally described in the genus Nierembergia Ruiz & Pav., is morphologically distinct within Petunia and geographically disjunct from other members of the genus. For the first time, in this study we include multiple species of Fabiana, Calibrachoa, and Petunia, including P.patagonica. Using three chloroplast DNA regions and the nuclear gene GBSSI, or "waxy," our results provide strong support for a sister group relationship between Calibrachoa and Fabiana and for the placement of P.patagonica within Fabiana. Since there is already a species Fabianapatagonica Speg., we provide the new name Fabianaaustralis Alaria nom. nov. to replace Petuniapatagonica.
Collapse
Affiliation(s)
- Alejandrina Alaria
- Agronomy Faculty, National University of Cuyo, Alte. Brown 500, Luján de Cuyo, Mendoza, ArgentinaNational University of CuyoMendozaArgentina
| | - John H. Chau
- Department of Biology, University of Washington, Seattle, Washington, 98195, USAUniversity of WashingtonSeattleUnited States of America
- Centre for Ecological Genomics and Wildlife Conservation, Department of Zoology, University of Johannesburg, Auckland Park 2006, South AfricaUniversity of JohannesburgJohannesburgSouth Africa
| | - Richard G. Olmstead
- Department of Biology, University of Washington, Seattle, Washington, 98195, USAUniversity of WashingtonSeattleUnited States of America
| | - Iris E. Peralta
- Agronomy Faculty, National University of Cuyo, Alte. Brown 500, Luján de Cuyo, Mendoza, ArgentinaNational University of CuyoMendozaArgentina
- IADIZA CCT CONICET, Adrián Ruiz Leal s/n Parque general San Martín, Mendoza, ArgentinaIADIZA CCT CONICETMendozaArgentina
| |
Collapse
|
13
|
Berardi AE, Esfeld K, Jäggi L, Mandel T, Cannarozzi GM, Kuhlemeier C. Complex evolution of novel red floral color in Petunia. THE PLANT CELL 2021; 33:2273-2295. [PMID: 33871652 PMCID: PMC8364234 DOI: 10.1093/plcell/koab114] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 04/12/2021] [Indexed: 05/20/2023]
Abstract
Red flower color has arisen multiple times and is generally associated with hummingbird pollination. The majority of evolutionary transitions to red color proceeded from purple lineages and tend to be genetically simple, almost always involving a few loss-of-function mutations of major phenotypic effect. Here we report on the complex evolution of a novel red floral color in the hummingbird-pollinated Petunia exserta (Solanaceae) from a colorless ancestor. The presence of a red color is remarkable because the genus cannot synthesize red anthocyanins and P. exserta retains a nonfunctional copy of the key MYB transcription factor AN2. We show that moderate upregulation and a shift in tissue specificity of an AN2 paralog, DEEP PURPLE, restores anthocyanin biosynthesis in P. exserta. An essential shift in anthocyanin hydroxylation occurred through rebalancing the expression of three hydroxylating genes. Furthermore, the downregulation of an acyltransferase promotes reddish hues in typically purple pigments by preventing acyl group decoration of anthocyanins. This study presents a rare case of a genetically complex evolutionary transition toward the gain of a novel red color.
Collapse
Affiliation(s)
- Andrea E. Berardi
- Institute of Plant Sciences, University of Bern, Bern 3013, Switzerland
| | - Korinna Esfeld
- Institute of Plant Sciences, University of Bern, Bern 3013, Switzerland
| | - Lea Jäggi
- Institute of Plant Sciences, University of Bern, Bern 3013, Switzerland
| | - Therese Mandel
- Institute of Plant Sciences, University of Bern, Bern 3013, Switzerland
| | | | - Cris Kuhlemeier
- Institute of Plant Sciences, University of Bern, Bern 3013, Switzerland
- Author for correspondence:
| |
Collapse
|
14
|
Gao J, Liao PC, Huang BH, Yu T, Zhang YY, Li JQ. Historical biogeography of Acer L. (Sapindaceae): genetic evidence for Out-of-Asia hypothesis with multiple dispersals to North America and Europe. Sci Rep 2020; 10:21178. [PMID: 33273626 PMCID: PMC7712834 DOI: 10.1038/s41598-020-78145-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 11/19/2020] [Indexed: 02/07/2023] Open
Abstract
Biogeography is the study of where, when, and how modern species evolved and diversified. Acer L. (maple) is one of the most diverse and widespread genera in the Northern Hemisphere. It comprises 124–156 species in the world, approximately 80% species of Acer are native in Asia. The current diversity center of Acer is not congruent with the distribution of the oldest fossils of the genus. Therefore, we herein used 84 species and subspecies to reconstruct the phylogeny and investigate the biogeographic history of Acer using nuclear ITS and three cpDNA fragments (psbA-trnH spacer, rpl16 intron, and trnL-trnF spacer) with maximum likelihood, maximum parsimony, and Bayesian inference methods. The analyses showed that the current diversity center and the origin center of Acer is Asia. Additionally, the North American and Euro-Mediterranean species originated from multiple sources from Asia via the North Atlantic Land Bridge and the Bering Land Bridge, and intercontinental migration has mainly occurred since the Miocene. This study not only provides a novel insight of the origin and dispersal routes of Acer but also exemplifies how past climatic changes affect the diversification-rates of Northern Hemisphere forest trees.
Collapse
Affiliation(s)
- Jian Gao
- Faculty of Resources and Environment, Baotou Teachers' College, Inner Mongolia University of Science and Technology, Baotou, China
| | - Pei-Chun Liao
- School of Life Science, National Taiwan Normal University, Taipei, Taiwan.
| | - Bing-Hong Huang
- School of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Tao Yu
- Beijing Key Laboratory for Forest Resources and Ecosystem Processes, Beijing Forestry University, Beijing, China
| | - Yu-Yang Zhang
- Beijing Key Laboratory for Forest Resources and Ecosystem Processes, Beijing Forestry University, Beijing, China
| | - Jun-Qing Li
- Beijing Key Laboratory for Forest Resources and Ecosystem Processes, Beijing Forestry University, Beijing, China.
| |
Collapse
|
15
|
Landis JB, Kurti A, Lawhorn AJ, Litt A, McCarthy EW. Differential Gene Expression with an Emphasis on Floral Organ Size Differences in Natural and Synthetic Polyploids of Nicotiana tabacum (Solanaceae). Genes (Basel) 2020; 11:E1097. [PMID: 32961813 PMCID: PMC7563459 DOI: 10.3390/genes11091097] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 11/16/2022] Open
Abstract
Floral organ size, especially the size of the corolla, plays an important role in plant reproduction by facilitating pollination efficiency. Previous studies have outlined a hypothesized organ size pathway. However, the expression and function of many of the genes in the pathway have only been investigated in model diploid species; therefore, it is unknown how these genes interact in polyploid species. Although correlations between ploidy and cell size have been shown in many systems, it is unclear whether there is a difference in cell size between naturally occurring and synthetic polyploids. To address these questions comparing floral organ size and cell size across ploidy, we use natural and synthetic polyploids of Nicotiana tabacum (Solanaceae) as well as their known diploid progenitors. We employ a comparative transcriptomics approach to perform analyses of differential gene expression, focusing on candidate genes that may be involved in floral organ size, both across developmental stages and across accessions. We see differential expression of several known floral organ candidate genes including ARF2, BIG BROTHER, and GASA/GAST1. Results from linear models show that ploidy, cell width, and cell number positively influence corolla tube circumference; however, the effect of cell width varies by ploidy, and diploids have a significantly steeper slope than both natural and synthetic polyploids. These results demonstrate that polyploids have wider cells and that polyploidy significantly increases corolla tube circumference.
Collapse
Affiliation(s)
- Jacob B. Landis
- Department of Botany and Plant Sciences, University of California Riverside, Riverside, CA 92521, USA; (A.K.); (A.J.L.); (A.L.)
- School of Integrative Plant Science, Section of Plant Biology and the L.H. Bailey Hortorium, Cornell University, Ithaca, NY 14853, USA
| | - Amelda Kurti
- Department of Botany and Plant Sciences, University of California Riverside, Riverside, CA 92521, USA; (A.K.); (A.J.L.); (A.L.)
| | - Amber J. Lawhorn
- Department of Botany and Plant Sciences, University of California Riverside, Riverside, CA 92521, USA; (A.K.); (A.J.L.); (A.L.)
| | - Amy Litt
- Department of Botany and Plant Sciences, University of California Riverside, Riverside, CA 92521, USA; (A.K.); (A.J.L.); (A.L.)
| | - Elizabeth W. McCarthy
- Department of Botany and Plant Sciences, University of California Riverside, Riverside, CA 92521, USA; (A.K.); (A.J.L.); (A.L.)
- Department of Biology, SUNY Cortland, Cortland, NY 13045, USA
| |
Collapse
|
16
|
Schnitzler CK, Turchetto C, Teixeira MC, Freitas LB. What could be the fate of secondary contact zones between closely related plant species? Genet Mol Biol 2020; 43:e20190271. [PMID: 32556035 PMCID: PMC7299303 DOI: 10.1590/1678-4685-gmb-2019-0271] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 03/24/2020] [Indexed: 11/26/2022] Open
Abstract
Interspecific hybridization has been fundamental in plant evolution.
Nevertheless, the fate of hybrid zones throughout the generations remains poorly
addressed. We analyzed a pair of recently diverged, interfertile, and sympatric
Petunia species to ask what fate the interspecific hybrid
population has met over time. We analyzed the genetic diversity in two
generations from two contact sites and evaluated the effect of introgression. To
do this, we collected all adult plants from the contact zones, including
canonicals and intermediary colored individuals, and compared them with purebred
representatives of both species based on seven highly informative microsatellite
loci. We compared the genetic diversity observed in the contact zones with what
is seen in isolated populations of each species, considering two generations of
these annual species. Our results have confirmed the genetic differentiation
between the species and the hybrid origin of the majority of the intermediary
colored individuals. We also observed a differentiation related to genetic
variability and inbreeding levels among the populations. Over time, there were
no significant differences per site related to genetic diversity or phenotype
composition. We found two stable populations kept by high inbreeding and
backcross rates that influence the genetic diversity of their parental species
through introgression.
Collapse
Affiliation(s)
- Carolina K Schnitzler
- Universidade Federal do Rio Grande do Sul, Departamento de Genética, Laboratório de Evolução Molecular, Porto Alegre, RS, Brazil
| | - Caroline Turchetto
- Universidade Federal do Rio Grande do Sul, Departamento de Genética, Laboratório de Evolução Molecular, Porto Alegre, RS, Brazil
| | - Marcelo C Teixeira
- Universidade Federal do Rio Grande do Sul, Departamento de Genética, Laboratório de Evolução Molecular, Porto Alegre, RS, Brazil
| | - Loreta B Freitas
- Universidade Federal do Rio Grande do Sul, Departamento de Genética, Laboratório de Evolução Molecular, Porto Alegre, RS, Brazil
| |
Collapse
|
17
|
Barros MJF, Silva-Arias GA, Segatto ALA, Reck-Kortmann M, Fregonezi JN, Diniz-Filho JAF, Freitas LB. Phylogenetic niche conservatism and plant diversification in South American subtropical grasslands along multiple climatic dimensions. Genet Mol Biol 2020; 43:e20180291. [PMID: 32353100 PMCID: PMC7197982 DOI: 10.1590/1678-4685-gmb-2018-0291] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 07/31/2019] [Indexed: 11/22/2022] Open
Abstract
Phylogenetic niche conservatism can be investigated at multiple scales on an explicit geographical context. Haplotype-based comparative analyses of lineages occupying the same region, and thus subjected to similar environmental factors, allow decoupling shared evolutionary and ecological patterns, as well as multiple dimensions of adaptive diversification. Here we aimed to assess the role of environmental drivers on diversification of subtropical grassland, based on haplotypic diversity of two plant genera. We sampled two closely related and co-distributed grassland plant genera, Petunia and Calibrachoa, across their entire distribution area. Eigenvectors extracted from pairwise distances based on chloroplast DNA haplotypes were used to fit Phylogenetic Signal-Representation (PSR) curves to estimate evolutionary patterns in 19 bioclimatic variables and altitude. The PSR curves showed that altitude, precipitation, and temperature variables changed at different rates with haplotype differentiation. Altitude and temperature traits evolved under conditions closer to a neutral dynamics, whereas precipitation traits differentiated following more complex models. Our results indicated that the diversification in the two genera was more limited by precipitation conditions. Based on these novel findings, we suggest that future studies should test the possible impact of precipitation variables on the process of ecological differentiation in these genera.
Collapse
Affiliation(s)
- Michel J F Barros
- Universidade Federal do Rio Grande do Sul, Departamento de Genética, Laboratório de Evolução Molecular, Porto Alegre, RS, Brazil
| | - Gustavo A Silva-Arias
- Universidade Federal do Rio Grande do Sul, Departamento de Genética, Laboratório de Evolução Molecular, Porto Alegre, RS, Brazil
| | - Ana Lúcia Anversa Segatto
- Universidade Federal do Rio Grande do Sul, Departamento de Genética, Laboratório de Evolução Molecular, Porto Alegre, RS, Brazil
| | - Maikel Reck-Kortmann
- Universidade Federal do Rio Grande do Sul, Departamento de Genética, Laboratório de Evolução Molecular, Porto Alegre, RS, Brazil
| | - Jeferson N Fregonezi
- Universidade Federal do Rio Grande do Sul, Departamento de Genética, Laboratório de Evolução Molecular, Porto Alegre, RS, Brazil
| | | | - Loreta B Freitas
- Universidade Federal do Rio Grande do Sul, Departamento de Genética, Laboratório de Evolução Molecular, Porto Alegre, RS, Brazil
| |
Collapse
|
18
|
De Araujo FF, Oliveira R, Mota T, Stehmann JR, Schlindwein C. Solitary bee pollinators adjust pollen foraging to the unpredictable flower opening of a species of Petunia (Solanaceae). Biol J Linn Soc Lond 2019. [DOI: 10.1093/biolinnean/blz193] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
Details of the foraging patterns of solitary bees are much less well known than those of social species, and these patterns are often adjusted to exploit floral resources of one or only a few species. The specialized flower-visiting bees of Petunia are good models for investigating such foraging patterns. Here we analysed the floral biology and pollen presentation schedule of the endangered Petunia mantiqueirensis in mixed Araucaria forests of Serra da Mantiqueira, Brazil. Pollinators and their pollen foraging behaviour and food specialization were determined through analyses of scopa pollen loads. Flowers opened throughout the day and presented all their pollen resources within the first 30 min of anthesis, thus providing their pollen resources in an asynchronous fashion in one-flower packages throughout the day. Females of Pseudagapostemon fluminensis were the most frequent flower visitors, contacting stigmas in 96% of their visits, and were the unique effective pollinators of Petunia mantiqueirensis. These pollinators were responsible for the first three visits to 115 individually monitored flowers at any daylight hour, removing ~86% of a flower’s total pollen supply during the first visit. Although female bees harvest the majority of pollen resources of Petunia mantiqueirensis, analyses of scopa loads revealed that most of them also collect pollen from plants of other families while foraging for pollen in Petunia flowers.
Collapse
Affiliation(s)
- Fernanda Figueiredo De Araujo
- Programa de Pós-Graduação em Ecologia, Conservação e Manejo da Vida Silvestre, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Reisla Oliveira
- Departamento de Genética, Ecologia e Evolução, Universidade Federal de Minas Gerais, Pampulha, Belo Horizonte, MG, Brazil
| | - Theo Mota
- Departamento de Fisiologia e Biofísica, Universidade Federal de Minas Gerais, Pampulha, Belo Horizonte, Minas Gerais, Brazil
| | - João Renato Stehmann
- Departamento de Botânica, Universidade Federal de Minas Gerais, Pampulha, Belo Horizonte, Minas Gerais, Brazil
| | - Clemens Schlindwein
- Departamento de Botânica, Universidade Federal de Minas Gerais, Pampulha, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
19
|
Mäder G, Freitas LB. Biogeographical, ecological, and phylogenetic analyses clarifying the evolutionary history of Calibrachoa in South American grasslands. Mol Phylogenet Evol 2019; 141:106614. [PMID: 31518694 DOI: 10.1016/j.ympev.2019.106614] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/09/2019] [Accepted: 09/09/2019] [Indexed: 11/29/2022]
Abstract
Calibrachoa is a charismatic South American genus of Solanaceae, closely related to Petunia, which encompasses approximately 30 species. Studies that were based solely on plastid molecular markers indicated the monophyly of the genus and distributed its species in two subgenera; to date no phylogeny has included a broad morphological variants and nuclear markers. Here, we present a phylogenetic analysis based on eight plastid and eight nuclear markers that cover the most extensive geographic distribution for the genus. We use this phylogeny to infer the biogeographic history of the genus and to understand the primary drivers for species diversification. Our results yield a fully supported tree where monophyly is confirmed to genus and subgenera. The species of Stimomphis subgenus that were previously considered uncertain, here emerge in four highly supported clades. The hypothesis of niche conservatism is confirmed, and adaptive radiation explains the species diversification. The lowlands are the most likely ancestral area of the genus, subgenera, and two clades of Stimomphis subgenus. Our results constitute an excellent starting point for further evolutionary and taxonomic studies and explain several uncertain evolutionary relationships in the group and the evolution of their distribution.
Collapse
Affiliation(s)
- Geraldo Mäder
- Laboratory of Molecular Evolution, Department of Genetics, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 91501-970, Brazil
| | - Loreta B Freitas
- Laboratory of Molecular Evolution, Department of Genetics, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 91501-970, Brazil.
| |
Collapse
|
20
|
Backes A, Mäder G, Turchetto C, Segatto AL, Fregonezi JN, Bonatto SL, Freitas LB. How diverse can rare species be on the margins of genera distribution? AOB PLANTS 2019; 11:plz037. [PMID: 31391895 PMCID: PMC6677564 DOI: 10.1093/aobpla/plz037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 07/08/2019] [Indexed: 06/10/2023]
Abstract
Different genetic patterns have been demonstrated for narrowly distributed taxa, many of them linking rarity to evolutionary history. Quite a few species in young genera are endemics and have several populations that present low variability, sometimes attributed to geographical isolation or dispersion processes. Assessing the genetic diversity and structure of such species may be important for protecting them and understanding their diversification history. In this study, we used microsatellite markers and plastid sequences to characterize the levels of genetic variation and population structure of two endemic and restricted species that grow in isolated areas on the margin of the distribution of their respective genera. Plastid and nuclear diversities were very low and weakly structured in their populations. Evolutionary scenarios for both species are compatible with open-field expansions during the Pleistocene interglacial periods and genetic variability supports founder effects to explain diversification. At present, both species are suffering from habitat loss and changes in the environment can lead these species towards extinction.
Collapse
Affiliation(s)
- Alice Backes
- Laboratory of Molecular Evolution, Department of Genetics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Geraldo Mäder
- Laboratory of Molecular Evolution, Department of Genetics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Caroline Turchetto
- Laboratory of Molecular Evolution, Department of Genetics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Ana Lúcia Segatto
- Laboratory of Molecular Evolution, Department of Genetics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Jeferson N Fregonezi
- Laboratory of Molecular Evolution, Department of Genetics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Sandro L Bonatto
- Escola de Ciências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Loreta B Freitas
- Laboratory of Molecular Evolution, Department of Genetics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
21
|
Callaway TD, Singh-Cundy A. HD-AGPs as Speciation Genes: Positive Selection on a Proline-Rich Domain in Non-Hybridizing Species of Petunia, Solanum, and Nicotiana. PLANTS (BASEL, SWITZERLAND) 2019; 8:E211. [PMID: 31288469 PMCID: PMC6681252 DOI: 10.3390/plants8070211] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/18/2019] [Accepted: 07/04/2019] [Indexed: 11/16/2022]
Abstract
Transmitting tissue-specific proteins (TTS proteins) are abundant in the extracellular matrix of Nicotiana pistils, and vital for optimal pollen tube growth and seed set. We have identified orthologs from several species in the Solanaceae, including Petunia axillaris axillaris and Petunia integrifolia. We refer to TTS proteins and their orthologs as histidine domain-arabinogalactan proteins (HD-AGPs). HD-AGPs have distinctive domains, including a small histidine-rich region and a C-terminal PAC domain. Pairwise comparisons between HD-AGPs of 15 species belonging to Petunia, Nicotiana, and Solanum show that the his-domain and PAC domain are under purifying selection. In contrast, a proline-rich domain (HV2) is conserved among cross-hybridizing species, but variant in species-pairs that are reproductively isolated by post-pollination pre-fertilization reproductive barriers. In particular, variation in a tetrapeptide motif (XKPP) is systematically correlated with the presence of an interspecific reproductive barrier. Ka/Ks ratios are not informative at the infrageneric level, but the ratios reveal a clear signature of positive selection on two hypervariable domains (HV1 and HV2) when HD-AGPs from five solanaceous genera are compared. We propose that sequence divergence in the hypervariable domains of HD-AGPs reinforces sympatric speciation in incipient species that may have first diverged as a consequence of pollinator preferences or other ecological factors.
Collapse
Affiliation(s)
- Tara D Callaway
- Biology Department, Western Washington University, Bellingham, WA 98225, USA
| | - Anu Singh-Cundy
- Biology Department, Western Washington University, Bellingham, WA 98225, USA.
| |
Collapse
|
22
|
John ALDW, Mäder G, Fregonezi JN, Freitas LB. Genetic diversity and population structure of naturally rare Calibrachoa species with small distribution in southern Brazil. Genet Mol Biol 2019; 42:108-119. [PMID: 30856243 PMCID: PMC6428134 DOI: 10.1590/1678-4685-gmb-2017-0314] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 06/12/2018] [Indexed: 08/30/2023] Open
Abstract
Calibrachoa is a South-American genus comprising 27 species,
several considered endemic or rare; few were subjects in genetic studies. We
attempted to generate new data about the phylogenetically related and rare
species C. eglandulata, C.
sendtneriana, C.
serrulata, and C.
spathulata concerning their genetic diversity and
population structure, which, coupled with their known restricted distribution,
could help access their conservation status and contribute to the study of the
Brazilian biodiversity. We sequenced 88 individuals for plastid intergenic
spacers and genotyped 186 individuals for five microsatellite loci. Compared
among each other, C. sendtneriana and C.
serrulata presented the highest values of genetic diversity
[π% (sd) = 0.23 (0.14) and 0.43 (0.25), respectively], followed by
C. spathulata [π% (sd) = 0.19 (0.12)] and
C. eglandulata [π% (sd) = 0.02 (0.03)].
Population differentiation was evident for these latter species, whereas it was
not significant for C. sendtneriana and
C. serrulata. Factors such as habitat
specificity and fragmentation, pollination syndrome, and life history could
explain the observed patterns. Based on the new genetic data and the species’
biology, a conservation status was assigned for C.
sendtneriana and the status of the other three species was
reviewed.
Collapse
Affiliation(s)
- Ana Laura de Wallau John
- Laboratory of Molecular Evolution, Department of Genetics, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Geraldo Mäder
- Laboratory of Molecular Evolution, Department of Genetics, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Jeferson N Fregonezi
- Laboratory of Molecular Evolution, Department of Genetics, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Loreta B Freitas
- Laboratory of Molecular Evolution, Department of Genetics, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
23
|
Esfeld K, Berardi AE, Moser M, Bossolini E, Freitas L, Kuhlemeier C. Pseudogenization and Resurrection of a Speciation Gene. Curr Biol 2018; 28:3776-3786.e7. [PMID: 30472000 DOI: 10.1016/j.cub.2018.10.019] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/05/2018] [Accepted: 10/05/2018] [Indexed: 12/13/2022]
Abstract
A persistent question in evolutionary biology is how complex phenotypes evolve and whether phenotypic transitions are reversible. Multiple losses of floral pigmentation have been documented in the angiosperms, but color re-gain has not yet been described, supporting that re-gain is unlikely. Pollinator-mediated selection in Petunia has resulted in several color shifts comprised of both losses and gains of color. The R2R3-MYB transcription factor AN2 has been identified as a major locus responsible for shifts in pollinator preference. Whereas the loss of visible color has previously been attributed to repeated pseudogenization of AN2, here, we describe the mechanism of an independent re-gain of floral color via AN2 evolution. In P. secreta, purple color is restored through the improbable resurrection of AN2 gene function from a non-functional AN2-ancestor by a single reading-frame-restoring mutation. Thus, floral color evolution in Petunia is mechanistically dependent on AN2 functionality, highlighting its role as a hotspot in color transitions and a speciation gene for the genus.
Collapse
Affiliation(s)
- Korinna Esfeld
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013 Bern, Switzerland
| | - Andrea E Berardi
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013 Bern, Switzerland
| | - Michel Moser
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013 Bern, Switzerland
| | - Eligio Bossolini
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013 Bern, Switzerland
| | - Loreta Freitas
- Department of Genetics, University Fed Rio Grande do Sul, POB 15053, Porto Alegre, 91501970 Rio Grande do Sul, Brazil
| | - Cris Kuhlemeier
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013 Bern, Switzerland.
| |
Collapse
|
24
|
Segatto ALA, Reck-Kortmann M, Turchetto C, Freitas LB. Multiple markers, niche modelling, and bioregions analyses to evaluate the genetic diversity of a plant species complex. BMC Evol Biol 2017; 17:234. [PMID: 29187208 PMCID: PMC5707870 DOI: 10.1186/s12862-017-1084-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 11/17/2017] [Indexed: 02/01/2023] Open
Abstract
Background The classification of closely related plants is not straightforward. These morphologically similar taxa frequently maintain their inter-hybridization potential and share ancestral polymorphisms as a consequence of their recent divergence. Under the biological species concept, they may thus not be considered separate species. The Petunia integrifolia complex is especially interesting because, in addition to the features mentioned above, its taxa share a pollinator, and their geographical ranges show multiple overlaps. Here, we combined plastid genome sequences, nuclear microsatellites, AFLP markers, ecological niche modelling, and bioregions analysis to investigate the genetic variability between the different taxa of the P. integrifolia complex in a comprehensive sample covering the entire geographical range of the complex. Results Results from molecular markers did not fully align with the current taxonomic classification. Niche modelling and bioregions analyses revealed that taxa were associated with different ecological constraints, indicating that the habitat plays an important role in preserving species boundaries. For three taxa, our analyses showed a mostly conserved, non-overlapping geographical distribution over time. However, for two taxa, niche modelling found an overlapping distribution over time; these taxa were also associated with the same bioregions. Conclusions cpDNA markers were better able to discriminate between Petunia taxa than SSRs and AFLPs. Overall, our results suggest that the P. integrifolia complex represents a continuum of individuals from distant and historically isolated populations, which share some morphological traits, but are established in four different evolutionary lineages. Electronic supplementary material The online version of this article (10.1186/s12862-017-1084-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ana Lúcia A Segatto
- Laboratory of Molecular Evolution, Department of Genetics, Universidade Federal do Rio Grande do Sul, P.O. Box 15053, Porto Alegre, RS, 91501-970, Brazil
| | - Maikel Reck-Kortmann
- Laboratory of Molecular Evolution, Department of Genetics, Universidade Federal do Rio Grande do Sul, P.O. Box 15053, Porto Alegre, RS, 91501-970, Brazil
| | - Caroline Turchetto
- Laboratory of Molecular Evolution, Department of Genetics, Universidade Federal do Rio Grande do Sul, P.O. Box 15053, Porto Alegre, RS, 91501-970, Brazil
| | - Loreta B Freitas
- Laboratory of Molecular Evolution, Department of Genetics, Universidade Federal do Rio Grande do Sul, P.O. Box 15053, Porto Alegre, RS, 91501-970, Brazil.
| |
Collapse
|
25
|
Fernández-Mazuecos M, Glover BJ. The evo-devo of plant speciation. Nat Ecol Evol 2017; 1:110. [DOI: 10.1038/s41559-017-0110] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 02/07/2017] [Indexed: 11/09/2022]
|
26
|
Segatto ALA, Thompson CE, Freitas LB. Contribution of WUSCHEL-related homeobox (WOX) genes to identify the phylogenetic relationships among Petunia species. Genet Mol Biol 2016; 39:658-664. [PMID: 27768156 PMCID: PMC5127159 DOI: 10.1590/1678-4685-gmb-2016-0073] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 07/31/2016] [Indexed: 12/14/2022] Open
Abstract
Developmental genes are believed to contribute to major changes during plant
evolution, from infrageneric to higher levels. Due to their putative high sequence
conservation, developmental genes are rarely used as molecular markers, and few
studies including these sequences at low taxonomic levels exist.
WUSCHEL-related homeobox genes (WOX) are
transcription factors exclusively present in plants and are involved in developmental
processes. In this study, we characterized the infrageneric genetic variation of
Petunia WOX genes. We obtained phylogenetic relationships
consistent with other phylogenies based on nuclear markers, but with higher
statistical support, resolution in terminals, and compatibility with flower
morphological changes.
Collapse
Affiliation(s)
- Ana Lúcia Anversa Segatto
- Laboratory of Molecular Evolution, Department of Genetics, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Claudia Elizabeth Thompson
- Center for Biotechnology, Department of Molecular Biology and Biotechnology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Loreta Brandão Freitas
- Laboratory of Molecular Evolution, Department of Genetics, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| |
Collapse
|
27
|
Turchetto C, Segatto ALA, Mäder G, Rodrigues DM, Bonatto SL, Freitas LB. High levels of genetic diversity and population structure in an endemic and rare species: implications for conservation. AOB PLANTS 2016; 8:plw002. [PMID: 26768602 PMCID: PMC4768524 DOI: 10.1093/aobpla/plw002] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 01/05/2016] [Indexed: 05/23/2023]
Abstract
The analysis of genetic structure and variability of isolated species is of critical importance in evaluating whether stochastic or human-caused factors are affecting rare species. Low genetic diversity compromises the ability of populations to evolve and reduces their chances of survival under environmental changes. Petunia secreta, a rare and endemic species, is an annual and heliophilous herb that is bee-pollinated and easily recognizable by its purple and salverform corolla. It was described as a new species of the Petunia genus in 2005. Few individuals of P. secreta have been observed in nature and little is known about this species. All the natural populations of P. secreta that were found were studied using 15 microsatellite loci, two intergenic plastid sequences and morphological traits. Statistical analysis was performed to describe the genetic diversity of this rare species and the results compared with those of more widespread and frequent Petunia species from the same geographic area to understand whether factors associated with population size could affect rare species of this genus. The results showed that despite its rarity, P. secreta presented high genetic diversity that was equivalent to or even higher than that of widespread Petunia species. It was shown that this species is divided into two evolutionary lineages, and the genetic differentiation indices between them and other congeneric species presented different patterns. The major risk to P. secreta maintenance is its rarity, suggesting the necessity of a preservation programme and more biological and evolutionary studies that handle the two evolutionary lineages independently.
Collapse
Affiliation(s)
- Caroline Turchetto
- Laboratory of Molecular Evolution, Department of Genetics, Universidade Federal do Rio Grande do Sul, PO Box 15053, Porto Alegre, 91501-970 Rio Grande do Sul, Brazil
| | - Ana Lúcia A Segatto
- Laboratory of Molecular Evolution, Department of Genetics, Universidade Federal do Rio Grande do Sul, PO Box 15053, Porto Alegre, 91501-970 Rio Grande do Sul, Brazil
| | - Geraldo Mäder
- Laboratory of Molecular Evolution, Department of Genetics, Universidade Federal do Rio Grande do Sul, PO Box 15053, Porto Alegre, 91501-970 Rio Grande do Sul, Brazil
| | - Daniele M Rodrigues
- Laboratory of Molecular Evolution, Department of Genetics, Universidade Federal do Rio Grande do Sul, PO Box 15053, Porto Alegre, 91501-970 Rio Grande do Sul, Brazil
| | - Sandro L Bonatto
- Laboratory of Genomics and Molecular Biology, Pontifícia Universidade Católica do Rio Grande do Sul, Av. Ipiranga 6681, Porto Alegre, 90619-900 Rio Grande do Sul, Brazil
| | - Loreta B Freitas
- Laboratory of Molecular Evolution, Department of Genetics, Universidade Federal do Rio Grande do Sul, PO Box 15053, Porto Alegre, 91501-970 Rio Grande do Sul, Brazil
| |
Collapse
|
28
|
MYB-FL controls gain and loss of floral UV absorbance, a key trait affecting pollinator preference and reproductive isolation. Nat Genet 2015; 48:159-66. [PMID: 26656847 DOI: 10.1038/ng.3462] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 11/12/2015] [Indexed: 01/26/2023]
Abstract
Adaptations to new pollinators involve multiple floral traits, each requiring coordinated changes in multiple genes. Despite this genetic complexity, shifts in pollination syndromes have happened frequently during angiosperm evolution. Here we study the genetic basis of floral UV absorbance, a key trait for attracting nocturnal pollinators. In Petunia, mutations in a single gene, MYB-FL, explain two transitions in UV absorbance. A gain of UV absorbance in the transition from bee to moth pollination was determined by a cis-regulatory mutation, whereas a frameshift mutation caused subsequent loss of UV absorbance during the transition from moth to hummingbird pollination. The functional differences in MYB-FL provide insight into the process of speciation and clarify phylogenetic relationships between nascent species.
Collapse
|
29
|
Guo Y, Wiegert-Rininger KE, Vallejo VA, Barry CS, Warner RM. Transcriptome-enabled marker discovery and mapping of plastochron-related genes in Petunia spp. BMC Genomics 2015; 16:726. [PMID: 26400485 PMCID: PMC4581106 DOI: 10.1186/s12864-015-1931-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 09/16/2015] [Indexed: 12/20/2022] Open
Abstract
Background Petunia (Petunia × hybrida), derived from a hybrid between P. axillaris and P. integrifolia, is one of the most economically important bedding plant crops and Petunia spp. serve as model systems for investigating the mechanisms underlying diverse mating systems and pollination syndromes. In addition, we have previously described genetic variation and quantitative trait loci (QTL) related to petunia development rate and morphology, which represent important breeding targets for the floriculture industry to improve crop production and performance. Despite the importance of petunia as a crop, the floriculture industry has been slow to adopt marker assisted selection to facilitate breeding strategies and there remains a limited availability of sequences and molecular markers from the genus compared to other economically important members of the Solanaceae family such as tomato, potato and pepper. Results Here we report the de novo assembly, annotation and characterization of transcriptomes from P. axillaris, P. exserta and P. integrifolia. Each transcriptome assembly was derived from five tissue libraries (callus, 3-week old seedlings, shoot apices, flowers of mixed developmental stages, and trichomes). A total of 74,573, 54,913, and 104,739 assembled transcripts were recovered from P. axillaris, P. exserta and P. integrifolia, respectively and following removal of multiple isoforms, 32,994 P. axillaris, 30,225 P. exserta, and 33,540 P. integrifolia high quality representative transcripts were extracted for annotation and expression analysis. The transcriptome data was mined for single nucleotide polymorphisms (SNP) and simple sequence repeat (SSR) markers, yielding 89,007 high quality SNPs and 2949 SSRs, respectively. 15,701 SNPs were computationally converted into user-friendly cleaved amplified polymorphic sequence (CAPS) markers and a subset of SNP and CAPS markers were experimentally verified. CAPS markers developed from plastochron-related homologous transcripts from P. axillaris were mapped in an interspecific Petunia population and evaluated for co-localization with QTL for development rate. Conclusions The high quality of the three Petunia spp. transcriptomes coupled with the utility of the SNP data will serve as a resource for further exploration of genetic diversity within the genus and will facilitate efforts to develop genetic and physical maps to aid the identification of QTL associated with traits of interest. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1931-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yufang Guo
- Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA
| | | | - Veronica A Vallejo
- Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA
| | - Cornelius S Barry
- Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA
| | - Ryan M Warner
- Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
30
|
Turchetto C, Segatto ALA, Beduschi J, Bonatto SL, Freitas LB. Genetic differentiation and hybrid identification using microsatellite markers in closely related wild species. AOB PLANTS 2015; 7:plv084. [PMID: 26187606 PMCID: PMC4565426 DOI: 10.1093/aobpla/plv084] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 07/06/2015] [Indexed: 05/08/2023]
Abstract
Identifying the genetic basis of speciation is critical for understanding the evolutionary history of closely related wild species. Recently diverged species facilitate the study of speciation because many genetic and morphological characteristics are still shared by the organisms under study. The Petunia genus grows in South American grasslands and comprises both recently diverged wild species and commercial species. In this work, we analysed two closely related species: Petunia exserta, which has a narrow endemic range and grows exclusively in rocky shelters, and Petunia axillaris, which is widely distributed and comprises three allopatric subspecies. Petunia axillaris ssp. axillaris and P. exserta occur in sympatry, and putative hybrids between them have been identified. Here, we analysed 14 expressed sequence tag-simple sequence repeats (EST-SSRs) in 126 wild individuals and 13 putative morphological hybrids with the goals of identifying differentially encoded alleles to characterize their natural genetic diversity, establishing a genetic profile for each taxon and to verify the presence of hybridization signal. Overall, 143 alleles were identified and all taxa contained private alleles. Four major groups were identified in clustering analyses, which indicated that there are genetic distinctions among the groups. The markers evaluated here will be useful in evolutionary studies involving these species and may help categorize individuals by species, thus enabling the identification of hybrids between both their putative taxa. The individuals with intermediate morphology presented private alleles of their both putative parental species, although they showed a level of genetic mixing that was comparable with some of the individuals with typical P. exserta morphology. The EST-SSR markers scattered throughout the Petunia genome are very efficient tools for characterizing the genetic diversity in wild taxa of this genus and aid in identifying interspecific hybrids based on the presence of private alleles. These properties indicate that these markers will be helpful tools in evolutionary studies.
Collapse
Affiliation(s)
- Caroline Turchetto
- Laboratory of Molecular Evolution, Department of Genetics, Universidade Federal do Rio Grande do Sul, PO Box 15053, Porto Alegre, Brazil
| | - Ana Lúcia A Segatto
- Laboratory of Molecular Evolution, Department of Genetics, Universidade Federal do Rio Grande do Sul, PO Box 15053, Porto Alegre, Brazil
| | - Júlia Beduschi
- Laboratory of Molecular Evolution, Department of Genetics, Universidade Federal do Rio Grande do Sul, PO Box 15053, Porto Alegre, Brazil
| | - Sandro L Bonatto
- Laboratory of Genomic and Molecular Biology, Pontifícia Universidade Católica do Rio Grande do Sul, Ipiranga 6681, 90610-001 Porto Alegre, RS, Brazil
| | - Loreta B Freitas
- Laboratory of Molecular Evolution, Department of Genetics, Universidade Federal do Rio Grande do Sul, PO Box 15053, Porto Alegre, Brazil
| |
Collapse
|
31
|
Ramos-Fregonezi AMC, Fregonezi JN, Cybis GB, Fagundes NJR, Bonatto SL, Freitas LB. Were sea level changes during the Pleistocene in the South Atlantic Coastal Plain a driver of speciation in Petunia (Solanaceae)? BMC Evol Biol 2015; 15:92. [PMID: 25989835 PMCID: PMC4438590 DOI: 10.1186/s12862-015-0363-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 04/27/2015] [Indexed: 11/26/2022] Open
Abstract
Background Quaternary climatic changes led to variations in sea level and these variations played a significant role in the generation of marine terrace deposits in the South Atlantic Coastal Plain. The main consequence of the increase in sea level was local extinction or population displacement, such that coastal species would be found around the new coastline. Our main goal was to investigate the effects of sea level changes on the geographical structure and variability of genetic lineages from a Petunia species endemic to the South Atlantic Coastal Plain. We employed a phylogeographic approach based on plastid sequences obtained from individuals collected from the complete geographic distribution of Petunia integrifolia ssp. depauperata and its sister group. We used population genetics tests to evaluate the degree of genetic variation and structure among and within populations, and we used haplotype network analysis and Bayesian phylogenetic methods to estimate divergence times and population growth. Results We observed three major genetic lineages whose geographical distribution may be related to different transgression/regression events that occurred in this region during the Pleistocene. The divergence time between the monophyletic group P. integrifolia ssp. depauperata and its sister group (P. integrifolia ssp. integrifolia) was compatible with geological estimates of the availability of the coastal plain. Similarly, the origin of each genetic lineage is congruent with geological estimates of habitat availability. Conclusions Diversification of P. integrifolia ssp. depauperata possibly occurred as a consequence of the marine transgression/regression cycles during the Pleistocene. In periods of high sea level, plants were most likely restricted to a refuge area corresponding to fossil dunes and granitic hills, from which they colonized the coast once the sea level came down. The modern pattern of lineage geographical distribution and population variation was established by a range expansion with serial founder effects conditioned on soil availability. Electronic supplementary material The online version of this article (doi:10.1186/s12862-015-0363-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Aline M C Ramos-Fregonezi
- Laboratory of Molecular Evolution, Department of Genetics, Universidade Federal do Rio Grande do Sul, P.O. Box 15053, Porto Alegre, Brazil.
| | - Jeferson N Fregonezi
- Laboratory of Molecular Evolution, Department of Genetics, Universidade Federal do Rio Grande do Sul, P.O. Box 15053, Porto Alegre, Brazil.
| | - Gabriela B Cybis
- Department of Statistics, Universidade Federal do Rio Grande do Sul, P.O. Box 15080, Porto Alegre, Brazil.
| | - Nelson J R Fagundes
- Laboratory of Molecular Evolution, Department of Genetics, Universidade Federal do Rio Grande do Sul, P.O. Box 15053, Porto Alegre, Brazil.
| | - Sandro L Bonatto
- Genomic and Molecular Biology Laboratory, Pontifícia Universidade Católica do Rio Grande do Sul, Ipiranga 6681, 90610 001, Porto Alegre, RS, Brazil.
| | - Loreta B Freitas
- Laboratory of Molecular Evolution, Department of Genetics, Universidade Federal do Rio Grande do Sul, P.O. Box 15053, Porto Alegre, Brazil.
| |
Collapse
|
32
|
Turchetto C, Lima JS, Rodrigues DM, Bonatto SL, Freitas LB. Pollen dispersal and breeding structure in a hawkmoth-pollinated Pampa grasslands species Petunia axillaris (Solanaceae). ANNALS OF BOTANY 2015; 115:939-48. [PMID: 25808656 PMCID: PMC4407064 DOI: 10.1093/aob/mcv025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 02/03/2015] [Indexed: 05/08/2023]
Abstract
BACKGROUND AND AIMS The evolution of selfing is one of the most common transitions in flowering plants, and this change in mating pattern has important systematic and ecological consequences because it often initiates reproductive isolation and speciation. Petunia axillaris (Solanaceae) includes three allopatric subspecies widely distributed in temperate South America that present different degrees of self-compatibity and incompatibility. One of these subspecies is co-distributed with P. exserta in a restricted area and presents a complex, not well-understood mating system. Artificial crossing experiments suggest a complex system of mating in this sympatric area. The main aims of this study were to estimate the pollen dispersal distance and to evaluate the breeding structure of P. axillaris subsp. axillaris, a hawkmoth-pollinated taxon from this sympatric zone. METHODS Pollen dispersal distance was compared with nearest-neighbours distance, and the differentiation in the pollen pool among mother plants was estimated. In addition, the correlation between genetic differentiation and spatial distance among plants was tested. All adult individuals (252) within a space of 2800 m(2) and 15 open-pollinated progeny (285 seedlings) were analysed. Genetic analyses were based on 12 polymorphic microsatellite loci. KEY RESULTS A high proportion of self-pollination was found, indicating a mixed-mating system. The maximum pollen dispersal distance was 1013 m, but most pollination events (96 %) occurred at a distance of 0 m, predominantly in an inbreeding system. Both parents among sampled individuals could be identifed in 60-85 % of the progeny. CONCLUSIONS The results show that most pollen dispersal in the hawkmoth-pollinated P. axillaris subsp. axillaris occurs within populations and there is a high proportion of inbreeding. This mating system appears to favour species integrity in a secondary contact zone with the congener species P. exserta.
Collapse
Affiliation(s)
- Caroline Turchetto
- Laboratory of Molecular Evolution, Department of Genetics, Universidade Federal do Rio Grande do Sul, PO Box 15053, Porto Alegre, Brazil, Laboratory of Genetic Diversity, Universidade Federal de Goiás, PO Box 131, 74001-970 Goiania, GO, Brazil and Laboratory of Genomic and Molecular Biology, Pontifícia Universidade Católica do Rio Grande do Sul, Ipiranga 6681, 90610-001 Porto Alegre, RS, Brazil
| | - Jacqueline S Lima
- Laboratory of Molecular Evolution, Department of Genetics, Universidade Federal do Rio Grande do Sul, PO Box 15053, Porto Alegre, Brazil, Laboratory of Genetic Diversity, Universidade Federal de Goiás, PO Box 131, 74001-970 Goiania, GO, Brazil and Laboratory of Genomic and Molecular Biology, Pontifícia Universidade Católica do Rio Grande do Sul, Ipiranga 6681, 90610-001 Porto Alegre, RS, Brazil
| | - Daniele M Rodrigues
- Laboratory of Molecular Evolution, Department of Genetics, Universidade Federal do Rio Grande do Sul, PO Box 15053, Porto Alegre, Brazil, Laboratory of Genetic Diversity, Universidade Federal de Goiás, PO Box 131, 74001-970 Goiania, GO, Brazil and Laboratory of Genomic and Molecular Biology, Pontifícia Universidade Católica do Rio Grande do Sul, Ipiranga 6681, 90610-001 Porto Alegre, RS, Brazil
| | - Sandro L Bonatto
- Laboratory of Molecular Evolution, Department of Genetics, Universidade Federal do Rio Grande do Sul, PO Box 15053, Porto Alegre, Brazil, Laboratory of Genetic Diversity, Universidade Federal de Goiás, PO Box 131, 74001-970 Goiania, GO, Brazil and Laboratory of Genomic and Molecular Biology, Pontifícia Universidade Católica do Rio Grande do Sul, Ipiranga 6681, 90610-001 Porto Alegre, RS, Brazil
| | - Loreta B Freitas
- Laboratory of Molecular Evolution, Department of Genetics, Universidade Federal do Rio Grande do Sul, PO Box 15053, Porto Alegre, Brazil, Laboratory of Genetic Diversity, Universidade Federal de Goiás, PO Box 131, 74001-970 Goiania, GO, Brazil and Laboratory of Genomic and Molecular Biology, Pontifícia Universidade Católica do Rio Grande do Sul, Ipiranga 6681, 90610-001 Porto Alegre, RS, Brazil
| |
Collapse
|