1
|
Skopalíková J, Leong-Škorničková J, Šída O, Newman M, Chumová Z, Zeisek V, Jarolímová V, Poulsen AD, Dantas-Queiroz MV, Fér T, Záveská E. Ancient hybridization in Curcuma (Zingiberaceae)-Accelerator or brake in lineage diversifications? THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:773-785. [PMID: 37537754 DOI: 10.1111/tpj.16408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 07/13/2023] [Accepted: 07/19/2023] [Indexed: 08/05/2023]
Abstract
Hybridization is a widespread phenomenon in the evolution of plants and exploring its role is crucial to understanding diversification processes of many taxonomic groups. Recently, more attention is focused on the role of ancient hybridization that has repeatedly been shown as triggers of evolutionary radiation, although in some cases, it can prevent further diversification. The causes, frequency, and consequences of ancient hybridization remain to be explored. Here, we present an account of several events of ancient hybridization in turmeric, the economically important plant genus Curcuma (Zingiberaceae), which harbors about 130 known species. We analyzed 1094 targeted low-copy genes and plastomes obtained by next-generation sequencing of 37 species of Curcuma, representing the known genetic diversity and spanning the geographical distribution of the genus. Using phylogenetic network analysis, we show that the entire genus Curcuma as well as its most speciose lineage arose via introgression from the genus Pyrgophyllum and one of the extinct lineages, respectively. We also document a single event of ancient hybridization, with C. vamana as a product, that represents an evolutionary dead end. We further discuss distinct circumstances of those hybridization events that deal mainly with (in)congruence in chromosome counts of the parental lineages.
Collapse
Affiliation(s)
- Jana Skopalíková
- Department of Botany, Charles University, Prague, Czech Republic
- Czech Academy of Sciences, Institute of Botany, Průhonice, Czech Republic
| | - Jana Leong-Škorničková
- The Herbarium, Singapore Botanic Gardens, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Otakar Šída
- Department of Botany, National Museum in Prague, Prague, Czech Republic
| | - Mark Newman
- Royal Botanic Garden Edinburgh, Edinburgh, Scotland, UK
| | - Zuzana Chumová
- Czech Academy of Sciences, Institute of Botany, Průhonice, Czech Republic
| | - Vojtěch Zeisek
- Department of Botany, Charles University, Prague, Czech Republic
- Czech Academy of Sciences, Institute of Botany, Průhonice, Czech Republic
| | - Vlasta Jarolímová
- Czech Academy of Sciences, Institute of Botany, Průhonice, Czech Republic
| | | | | | - Tomáš Fér
- Department of Botany, Charles University, Prague, Czech Republic
| | - Eliška Záveská
- Czech Academy of Sciences, Institute of Botany, Průhonice, Czech Republic
| |
Collapse
|
2
|
Ye Y, Zhou Y, Tan J, Zhu G, Liu J, Xu Y. Cross-Compatibility in Interspecific Hybridization of Different Curcuma Accessions. PLANTS (BASEL, SWITZERLAND) 2023; 12:1961. [PMID: 37653878 PMCID: PMC10220942 DOI: 10.3390/plants12101961] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/06/2023] [Accepted: 05/09/2023] [Indexed: 09/02/2023]
Abstract
Curcuma is extensively cultivated as a medicinal and ornamental plant in tropical and subtropical regions. Due to the bright bract color, distinctive inflorescence and long blooming period, it has become a new favorite in terms of the urban landscape, potted flowers and cut flowers. However, little research on breeding new cultivars using traditional plant breeding methods is available on the genus Curcuma. In the present study, pollen viability and stigma receptivity evaluation were performed, and the genetic relationship of 38 Curcuma accessions was evaluated, then 5 C. alismatifolia Gagnep. (Ca), 2 C. hybrid (Ch), 2 C. sparganiifolia Gagnep. cultivars and 4 Curcuma native species were selected as parents for subsequent interspecific cross-breeding. A total of 132 reciprocal crosses were carried out for interspecific hybridization, including 70 obverse and 62 inverse crosses. Obvious discrepancies among fruit-setting rates were manifested in different combinations and in reciprocal crosses. Results showed that the highest fruit-setting rate (87.5%) was observed in the Ca combinations. There were 87 combinations with a fruit-setting rate of 0%, which meant nearly 65.9% was incompatible. We concluded that C. alismatifolia 'Siam Shadow' (Ch34) was suitable as a male parent and C. petiolata Roxb. (Cpet) was suitable as a female parent to improve the fruit-setting rates. The maximum number of seeds per fruit (45.4) was obtained when C. alismatifolia 'Chiang Mai Pink' (Ca01) was used as a female parent followed by C. attenuata Wall. ex Baker (Catt) (42.8) and C. alismatifolia 'Splash' (Ca63) (39.6) as male parents. The highest germination rate was observed for the Ca group followed by Catt and C. sparganiifolia 'Maetang Sunrise' (Csms). The germination rates of Ca accessions ranged from 58.2% (C. alismatifolia 'Siam Scarlet' (Ca06) as a male parent) to 89.3% (C. alismatifolia 'Sitone' (Ca10) as a male parent) with an average value of 74.0%. Based on the results of hybrid identification, all the individuals from the four combinations exhibited paternal-specific bands, indicating that the true hybrid rates of crossings were 100%. Our results would facilitate the interspecific hybridization and introduction of genetic variation from wild species into the cultivars in Curcuma in the future, which could be helpful in realizing the sustainable application in urban green areas.
Collapse
Affiliation(s)
- Yuanjun Ye
- Guangdong Provincial Key Lab of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (Y.Y.)
- Key Laboratory of Urban Agriculture in South China, Ministry of Agriculture, Guangzhou 510640, China
| | - Yiwei Zhou
- Guangdong Provincial Key Lab of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (Y.Y.)
- Key Laboratory of Urban Agriculture in South China, Ministry of Agriculture, Guangzhou 510640, China
| | - Jianjun Tan
- Guangdong Provincial Key Lab of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (Y.Y.)
- Key Laboratory of Urban Agriculture in South China, Ministry of Agriculture, Guangzhou 510640, China
| | - Genfa Zhu
- Guangdong Provincial Key Lab of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (Y.Y.)
- Key Laboratory of Urban Agriculture in South China, Ministry of Agriculture, Guangzhou 510640, China
| | - Jinmei Liu
- Guangdong Provincial Key Lab of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (Y.Y.)
- Key Laboratory of Urban Agriculture in South China, Ministry of Agriculture, Guangzhou 510640, China
| | - Yechun Xu
- Guangdong Provincial Key Lab of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (Y.Y.)
- Key Laboratory of Urban Agriculture in South China, Ministry of Agriculture, Guangzhou 510640, China
| |
Collapse
|
3
|
Phylogenomics and genome size evolution in Amomum s. s. (Zingiberaceae): Comparison of traditional and modern sequencing methods. Mol Phylogenet Evol 2023; 178:107666. [PMID: 36384185 DOI: 10.1016/j.ympev.2022.107666] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 11/05/2022] [Accepted: 11/08/2022] [Indexed: 11/15/2022]
Abstract
BACKGROUND AND AIMS A targeted enrichment NGS approach was used to construct the phylogeny of Amomum Roxb. (Zingiberaceae). Phylogenies based on hundreds of nuclear genes, the whole plastome and the rDNA cistron were compared with an ITS-based phylogeny. Trends in genome size (GS) evolution were examined, chromosomes were counted and the geographical distribution of phylogenetic lineages was evaluated. METHODS In total, 92 accessions of 54 species were analysed. ITS was obtained for 79 accessions, 37 accessions were processed with Hyb-Seq and sequences from 449 nuclear genes, the whole cpDNA, and the rDNA cistron were analysed using concatenation, coalescence and supertree approaches. The evolution of absolute GS was analysed in a phylogenetic and geographical context. The chromosome numbers of 12 accessions were counted. KEY RESULTS Four groups were recognised in all datasets though their mutual relationships differ among datasets. While group A (A. subulatum and A. petaloideum) is basal to the remaining groups in the nuclear gene phylogeny, in the cpDNA topology it is sister to group B (A. repoeense and related species) and, in the ITS topology, it is sister to group D (the Elettariopsis lineage). The former Elettariopsis makes a monophyletic group. There is an increasing trend in GS during evolution. The largest GS values were found in group D in two tetraploid taxa, A. cinnamomeum and A. aff. biphyllum (both 2n = 96 chromosomes). The rest varied in GS (2C = 3.54-8.78 pg) with a constant chromosome number 2n = 48. There is a weak connection between phylogeny, GS and geography in Amomum. CONCLUSIONS Amomum consists of four groups, and the former Elettariopsis is monophyletic. Species in this group have the largest GS. Two polyploids were found and GS greatly varied in the rest of Amomum.
Collapse
|
4
|
Yin Y, Xie X, Zhou L, Yin X, Guo S, Zhou X, Li Q, Shi X, Peng C, Gao J. A chromosome-scale genome assembly of turmeric provides insights into curcumin biosynthesis and tuber formation mechanism. FRONTIERS IN PLANT SCIENCE 2022; 13:1003835. [PMID: 36226278 PMCID: PMC9549246 DOI: 10.3389/fpls.2022.1003835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/06/2022] [Indexed: 06/01/2023]
Abstract
Curcuma longa, known as the 'golden spice' and 'life spice', is one of the most commonly utilized spices in the world and also has medicinal, cosmetic, dye and flavoring values. Herein, we present the chromosomal-level genome for turmeric to explore the differences between tubers and rhizomes in the regulation of curcumin biosynthesis and the mechanism of tuber formation. We assembled the turmeric genome into 21 pseudochromosomes using Pacbio long reads complemented with Hi-C technologies, which has a total length of 1.11 Gb with scaffold N50 of 50.12 Mb and contains 49,612 protein-coding genes. Genomic evolutionary analysis indicated that turmeric and ginger have shared a recent WGD event. Contraction analysis of gene families showed possible roles for transcription factors, phytohormone signaling, and plant-pathogen interactions associated genes in adaptation to harsh environments. Transcriptomic data from tubers at different developmental stages indicated that candidate genes related to phytohormone signaling and carbohydrate metabolic responses may be associated with the induction of tuber formation. The difference in curcumin content between rhizomes and tubers reflected the remodeling of secondary metabolites under environmental stress, which was associated with plant defense in response to abiotic stresses. Overall, the availability of the C. longa genome provides insight into tuber formation and curcumin biosynthesis in turmeric as well as facilitating the understanding of other Curcuma species.
Collapse
Affiliation(s)
- Yanpeng Yin
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Xiaofang Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Luojing Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xianmei Yin
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shuai Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xianjian Zhou
- Sichuan Provincial Key Laboratory of Quality and Innovation Research of Chinese Materia Medica, Sichuan Academy of Traditional Chinese Medicine Sciences, Chengdu, China
| | - Qingmiao Li
- Sichuan Provincial Key Laboratory of Quality and Innovation Research of Chinese Materia Medica, Sichuan Academy of Traditional Chinese Medicine Sciences, Chengdu, China
| | - Xiaodong Shi
- School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jihai Gao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
5
|
Incompatibility Phylogenetic Signals between Double-Digest Restriction Site-Associated DNA Sequencing and Plastid Genomes in Chinese Curcuma (Zingiberaceae)—A Recent Qinghai–Tibetan Plateau Diversification Genera. FORESTS 2022. [DOI: 10.3390/f13020280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Curcuma is of high economic value, credited to its medicinal, edible, and ornamental properties, which possess all signatures of adaptability, and rapid radiation, especially species of Curcuma (Chinese Curcuma, a recent Qinghai–Tibetan Plateau diversification genera) scattered in China. However, little is known about the incongruent phylogenetic signals within this genera from different inheritance patterns that will militate against the further development of this genera. In this research, we applied complete chloroplast genome data together with double-digest restriction site-associated DNA sequencing data (ddRAD-seq) strategy to investigate phylogenetic signals of Chinese Curcuma species, clustering using two RAD analysis pipelines (STACKS and pyRAD). Phylogenetic trees were obtained from each locus based on the maximum likelihood (ML) and multispecies coalescent (BEAST) methods. For visual comparison, multi-method and different datasets were used to infer the phylogeny. We discovered inconsistent relationships for the Chinese Curcuma with varying degrees of support using different methods and datasets.
Collapse
|
6
|
Cetlová V, Zozomová-Lihová J, Melichárková A, Mártonfiová L, Španiel S. Multiple Drivers of High Species Diversity and Endemism Among Alyssum Annuals in the Mediterranean: The Evolutionary Significance of the Aegean Hotspot. FRONTIERS IN PLANT SCIENCE 2021; 12:627909. [PMID: 33986760 PMCID: PMC8112278 DOI: 10.3389/fpls.2021.627909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 03/22/2021] [Indexed: 05/10/2023]
Abstract
The Mediterranean Basin is a significant hotspot of species diversity and endemism, with various distribution patterns and speciation mechanisms observed in its flora. High species diversity in the Mediterranean is also manifested in the monophyletic lineage of Alyssum annuals (Brassicaceae), but little is known about its origin. These species include both diploids and polyploids that grow mainly in open and disturbed sites across a wide elevational span and show contrasting distribution patterns, ranging from broadly distributed Eurasian species to narrow island endemics. Here, we investigated the evolution of European representatives of this lineage, and aimed to reconstruct their phylogeny, polyploid and genome size evolution using flow cytometric analyses, chloroplast and nuclear high- and low-copy DNA markers. The origin and early diversification of the studied Alyssum lineage could be dated back to the Late Miocene/Pliocene and were likely promoted by the onset of the Mediterranean climate, whereas most of the extant species originated during the Pleistocene. The Aegean region represents a significant diversity center, as it hosts 12 out of 16 recognized European species and comprises several (sub)endemics placed in distinct phylogenetic clades. Because several species, including the closest relatives, occur here sympatrically without apparent niche differences, we can reject simple allopatric speciation via vicariance as well as ecological speciation for most cases. Instead, we suggest scenarios of more complex speciation processes that involved repeated range shifts in response to sea-level changes and recurrent land connections and disconnections since the Pliocene. In addition, multiple polyploidization events significantly contributed to species diversity across the entire distribution range. All seven polyploids, representing both widespread species and endemics to the western or eastern Mediterranean, were inferred to be allopolyploids. Finally, the current distribution patterns have likely been affected also by the human factor (farming and grazing). This study illustrates the complexity of evolutionary and speciation processes in the Mediterranean flora.
Collapse
Affiliation(s)
- Veronika Cetlová
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Judita Zozomová-Lihová
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Andrea Melichárková
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Lenka Mártonfiová
- Botanical Garden of P. J. Šafárik University in Košice, Košice, Slovakia
| | - Stanislav Španiel
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Bratislava, Slovakia
- Department of Botany, Faculty of Science, Charles University, Prague, Czechia
- *Correspondence: Stanislav Španiel,
| |
Collapse
|
7
|
An empirical study on the underutilized medicinal genus Kaempferia from India revealed cytological and genetic variability. THE NUCLEUS 2020. [DOI: 10.1007/s13237-020-00338-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
8
|
Lloyd Evans D, Joshi SV, Wang J. Whole chloroplast genome and gene locus phylogenies reveal the taxonomic placement and relationship of Tripidium (Panicoideae: Andropogoneae) to sugarcane. BMC Evol Biol 2019; 19:33. [PMID: 30683070 PMCID: PMC6347779 DOI: 10.1186/s12862-019-1356-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 01/03/2019] [Indexed: 11/13/2022] Open
Abstract
Background For over 50 years, attempts have been made to introgress agronomically useful traits from Erianthus sect. Ripidium (Tripidium) species into sugarcane based on both genera being part of the ‘Saccharum Complex’, an interbreeding group of species believed to be involved in the origins of sugarcane. However, recent low copy number gene studies indicate that Tripidium and Saccharum are more divergent than previously thought. The extent of genus Tripidium has not been fully explored and many species that should be included in Tripidium are still classified as Saccharum. Moreover, Tripidium is currently defined as incertae sedis within the Andropogoneae, though it has been suggested that members of this genus are related to the Germainiinae. Results Eight newly-sequenced chloroplasts from potential Tripidium species were combined in a phylogenetic study with 46 members of the Panicoideae, including seven Saccharum accessions, two Miscanthidium and three Miscanthus species. A robust chloroplast phylogeny was generated and comparison with a gene locus phylogeny clearly places a monophyletic Tripidium clade outside the bounds of the Saccharinae. A key to the currently identified Tripidium species is presented. Conclusion For the first time, we have undertaken a large-scale whole plastid study of eight newly assembled Tripidium accessions and a gene locus study of five Tripidium accessions. Our findings show that Tripidium and Saccharum are 8 million years divergent, last sharing a common ancestor 12 million years ago. We demonstrate that four species should be removed from Saccharum/Erianthus and included in genus Tripidium. In a genome context, we show that Tripidium evolved from a common ancestor with and extended Germainiinae clade formed from Germainia, Eriochrysis, Apocopis, Pogonatherum and Imperata. We re-define the ‘Saccharum complex’ to a group of genera that can interbreed in the wild and extend the Saccharinae to include Sarga along with Sorghastrum, Microstegium vimineum and Polytrias (but excluding Sorghum). Monophyly of genus Tripidium is confirmed and the genus is expanded to include Tripidium arundinaceum, Tripidium procerum, Tripidium kanashiroi and Tripidium rufipilum. As a consequence, these species are excluded from genus Saccharum. Moreover, we demonstrate that genus Tripidium is distinct from the Germainiinae. Electronic supplementary material The online version of this article (10.1186/s12862-019-1356-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dyfed Lloyd Evans
- South African Sugarcane Research Institute, 170 Flanders Drive, Private Bag X02, Mount Edgecombe, Durban, 4300, South Africa. .,School of Life Sciences, College of Agriculture, Engineering and Science, University of Kwa-Zulu Natal, Private Bag X54001, Durban, 4000, South Africa. .,BeauSci Ltd., Waterbeach, Cambridge, CB25 9TL, UK.
| | - Shailesh V Joshi
- South African Sugarcane Research Institute, 170 Flanders Drive, Private Bag X02, Mount Edgecombe, Durban, 4300, South Africa.,School of Life Sciences, College of Agriculture, Engineering and Science, University of Kwa-Zulu Natal, Private Bag X54001, Durban, 4000, South Africa
| | - Jianping Wang
- Agronomy Department, University of Florida, Gainesville, FL, USA.,Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China.,Plant Molecular and Biology Program, Genetics Institute, University of Florida, Gainesville, FL, USA
| |
Collapse
|
9
|
Kadri Y, Nciri R, Brahmi N, Saidi S, Harrath AH, Alwasel S, Aldahmash W, El Feki A, Allagui MS. Protective effects of Curcuma longa against neurobehavioral and neurochemical damage caused by cerium chloride in mice. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:19555-19565. [PMID: 29732511 DOI: 10.1007/s11356-018-2151-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 04/26/2018] [Indexed: 06/08/2023]
Abstract
Cerium chloride (CeCl3) is considered an environmental pollutant and a potent neurotoxic agent. Medicinal plants have many bioactive compounds that provide protection against damage caused by such pollutants. Curcuma longa is a bioactive compound-rich plant with very important antioxidant properties. To study the preventive and healing effects of Curcuma longa on cerium-damaged mouse brains, we intraperitoneally injected cerium chloride (CeCl3, 20 mg/kg BW) along with Curcuma longa extract, administrated by gavage (100 mg/kg BW), into mice for 60 days. We then examined mouse behavior, brain tissue damage, and brain oxidative stress parameters. Our results revealed a significant modification in the behavior of the CeCl3-treated mice. In addition, CeCl3 induced a significant increment in lipid peroxidation, carbonyl protein (PCO), and advanced oxidation protein product levels, as well as a significant reduction in superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities. Acetylcholinesterase (AChE) activity remarkably increased in the brain of CeCl3-treated mice. Histopathological observations confirmed these results. Curcuma longa attenuated CeCl3-induced oxidative stress and increased the activities of antioxidant enzymes. It also decreased AChE activity in the CeCl3-damaged mouse brain that was confirmed by histopathology. In conclusion, this study suggests that Curcuma longa has a neuroprotective effect against CeCl3-induced damage in the brain.
Collapse
Affiliation(s)
- Yamina Kadri
- Laboratory of Animal Ecophysiology, Faculty of Life Sciences, University of Sfax, Sfax, Tunisia
| | - Riadh Nciri
- Laboratory of Animal Ecophysiology, Faculty of Life Sciences, University of Sfax, Sfax, Tunisia
| | - Noura Brahmi
- Laboratory of Animal Ecophysiology, Faculty of Life Sciences, University of Sfax, Sfax, Tunisia
| | - Saber Saidi
- Laboratory of Animal Ecophysiology, Faculty of Life Sciences, University of Sfax, Sfax, Tunisia
- Department of Biology, Faculty of Science and Arts - Khulais, University of Jeddah, Jeddah, Saudi Arabia
| | - Abdel Halim Harrath
- Zoology Department, College of Sciences, King Saud University, P. O. Box 2455, Riyadh, 11451, Saudi Arabia.
| | - Saleh Alwasel
- Zoology Department, College of Sciences, King Saud University, P. O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Waleed Aldahmash
- Zoology Department, College of Sciences, King Saud University, P. O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Abdelfatteh El Feki
- Laboratory of Animal Ecophysiology, Faculty of Life Sciences, University of Sfax, Sfax, Tunisia
| | - Mohamed Salah Allagui
- Laboratory of Animal Ecophysiology, Faculty of Life Sciences, University of Sfax, Sfax, Tunisia
| |
Collapse
|
10
|
Basak S, Krishnamurthy H, Rangan L. Genome size variation among 3 selected genera of Zingiberoideae. Meta Gene 2018. [DOI: 10.1016/j.mgene.2017.11.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
|
11
|
Bianchi FM, Genevcius BC, Vicentini BDS. Heterospecific mating between distantly related species of stink bugs and its evolutionary implications. J NAT HIST 2017. [DOI: 10.1080/00222933.2017.1395095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Filipe M. Bianchi
- Department of Zoology, Bioscience Institute, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Barbara da S. Vicentini
- Department of Zoology, Bioscience Institute, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|