1
|
Cowart DA, Schiaparelli S, Alvaro MC, Cecchetto M, Le Port A, Jollivet D, Hourdez S. Origin, diversity, and biogeography of Antarctic scale worms (Polychaeta: Polynoidae): a wide-scale barcoding approach. Ecol Evol 2022; 12:e9093. [PMID: 35866013 PMCID: PMC9288932 DOI: 10.1002/ece3.9093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 05/06/2022] [Accepted: 05/23/2022] [Indexed: 11/14/2022] Open
Abstract
The Antarctic marine environment hosts diversified and highly endemic benthos owing to its unique geologic and climatic history. Current warming trends have increased the urgency of understanding Antarctic species history to predict how environmental changes will impact ecosystem functioning. Antarctic benthic lineages have traditionally been examined under three hypotheses: (1) high endemism and local radiation, (2) emergence of deep-sea taxa through thermohaline circulation, and (3) species migrations across the Polar Front. In this study, we investigated which hypotheses best describe benthic invertebrate origins by examining Antarctic scale worms (Polynoidae). We amassed 691 polynoid sequences from the Southern Ocean and neighboring areas: the Kerguelen and Tierra del Fuego (South America) archipelagos, the Indian Ocean, and waters around New Zealand. We performed phylogenetic reconstructions to identify lineages across geographic regions, aided by mitochondrial markers cytochrome c oxidase subunit I (Cox1) and 16S ribosomal RNA (16S). Additionally, we produced haplotype networks at the species scale to examine genetic diversity, biogeographic separations, and past demography. The Cox1 dataset provided the most illuminating insights into the evolution of polynoids, with a total of 36 lineages identified. Eunoe sp. was present at Tierra del Fuego and Kerguelen, in favor of the latter acting as a migration crossroads. Harmothoe fuligineum, widespread around the Antarctic continent, was also present but isolated at Kerguelen, possibly resulting from historical freeze-thaw cycles. The genus Polyeunoa appears to have diversified prior to colonizing the continent, leading to the co-occurrence of at least three cryptic species around the Southern and Indian Oceans. Analyses identified that nearly all populations are presently expanding following a bottleneck event, possibly caused by habitat reduction from the last glacial episodes. Findings support multiple origins for contemporary Antarctic polynoids, and some species investigated here provide information on ancestral scenarios of (re)colonization. First, it is apparent that species collected from the Antarctic continent are endemic, as the absence of closely related species in the Kerguelen and Tierra del Fuego datasets for most lineages argues in favor of Hypothesis 1 of local origin. Next, Eunoe sp. and H. fuligineum, however, support the possibility of Kerguelen and other sub-Antarctic islands acting as a crossroads for larvae of some species, in support of Hypothesis 3. Finally, the genus Polyeunoa, conversely, is found at depths greater than 150 m and may have a deep origin, in line with Hypothesis 2. These "non endemic" groups, nevertheless, have a distribution that is either north or south of the Antarctic Polar Front, indicating that there is still a barrier to dispersal, even in the deep sea.
Collapse
Affiliation(s)
- Dominique A. Cowart
- Department of Evolution, Ecology, and BehaviorUniversity of Illinois at Urbana – ChampaignUrbanaIllinoisUSA
- Company for Open Ocean Observations and Logging (COOOL)La RéunionFrance
| | - Stefano Schiaparelli
- Department of Earth, Environmental and Life Science (DiSTAV)University of GenoaGenoaItaly
- Italian National Antarctic Museum (MNA, Section of Genoa)University of GenoaGenoaItaly
| | - Maria Chiara Alvaro
- Department of Earth, Environmental and Life Science (DiSTAV)University of GenoaGenoaItaly
| | - Matteo Cecchetto
- Department of Earth, Environmental and Life Science (DiSTAV)University of GenoaGenoaItaly
- Italian National Antarctic Museum (MNA, Section of Genoa)University of GenoaGenoaItaly
| | - Anne‐Sophie Le Port
- CNRS UMR 7144 ‘Adaptation et Diversité en Milieux Marins’ (AD2M)Team ‘Dynamique de la Diversité Marine’ (DyDiv), Station Biologique de RoscoffSorbonne UniversitéRoscoffFrance
| | - Didier Jollivet
- CNRS UMR 7144 ‘Adaptation et Diversité en Milieux Marins’ (AD2M)Team ‘Dynamique de la Diversité Marine’ (DyDiv), Station Biologique de RoscoffSorbonne UniversitéRoscoffFrance
| | - Stephane Hourdez
- CNRS UMR 7144 ‘Adaptation et Diversité en Milieux Marins’ (AD2M)Team ‘Dynamique de la Diversité Marine’ (DyDiv), Station Biologique de RoscoffSorbonne UniversitéRoscoffFrance
- Laboratoire d'Ecogéochimie des Environnements Benthiques (LECOB), Observatoire Océanologique de BanyulsUMR 8222 CNRS‐Sorbonne UniversitéBanyuls‐sur‐merFrance
| |
Collapse
|
2
|
Majewski W, Holzmann M, Gooday AJ, Majda A, Mamos T, Pawlowski J. Cenozoic climatic changes drive evolution and dispersal of coastal benthic foraminifera in the Southern Ocean. Sci Rep 2021; 11:19869. [PMID: 34615927 PMCID: PMC8494791 DOI: 10.1038/s41598-021-99155-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 09/21/2021] [Indexed: 02/08/2023] Open
Abstract
The Antarctic coastal fauna is characterized by high endemism related to the progressive cooling of Antarctic waters and their isolation by the Antarctic Circumpolar Current. The origin of the Antarctic coastal fauna could involve either colonization from adjoining deep-sea areas or migration through the Drake Passage from sub-Antarctic areas. Here, we tested these hypotheses by comparing the morphology and genetics of benthic foraminifera collected from Antarctica, sub-Antarctic coastal settings in South Georgia, the Falkland Islands and Patagonian fjords. We analyzed four genera (Cassidulina, Globocassidulina, Cassidulinoides, Ehrenbergina) of the family Cassidulinidae that are represented by at least nine species in our samples. Focusing on the genera Globocassidulina and Cassidulinoides, our results showed that the first split between sub-Antarctic and Antarctic lineages took place during the mid-Miocene climate reorganization, probably about 20 to 17 million years ago (Ma). It was followed by a divergence between Antarctic species ~ 10 Ma, probably related to the cooling of deep water and vertical structuring of the water-column, as well as broadening and deepening of the continental shelf. The gene flow across the Drake Passage, as well as between South America and South Georgia, seems to have occurred from the Late Miocene to the Early Pliocene. It appears that climate warming during 7-5 Ma and the migration of the Polar Front breached biogeographic barriers and facilitated inter-species hybridization. The latest radiation coincided with glacial intensification (~ 2 Ma), which accelerated geographic fragmentation of populations, demographic changes, and genetic diversification in Antarctic species. Our results show that the evolution of Antarctic and sub-Antarctic coastal benthic foraminifera was linked to the tectonic and climatic history of the area, but their evolutionary response was not uniform and reflected species-specific ecological adaptations that influenced the dispersal patterns and biogeography of each species in different ways.
Collapse
Affiliation(s)
- Wojciech Majewski
- Institute of Paleobiology, Polish Academy of Sciences, Twarda 51/55, 00-818, Warsaw, Poland.
| | - Maria Holzmann
- Department of Genetics and Evolution, University of Geneva, Sciences III, 30 Quai Ernest Ansermet, 1211, Geneve 4, Switzerland
| | - Andrew J Gooday
- National Oceanography Centre, European Way, Southampton, SO14 3ZH, UK
| | - Aneta Majda
- Institute of Paleobiology, Polish Academy of Sciences, Twarda 51/55, 00-818, Warsaw, Poland
| | - Tomasz Mamos
- Department of Invertebrate Zoology and Hydrobiology, University of Lodz, Banacha 12/16, 90-237, Łódź, Poland
| | - Jan Pawlowski
- Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, 81-712, Sopot, Poland
| |
Collapse
|
3
|
Abstract
The Antarctic environment is famously inhospitable to most terrestrial biodiversity, traditionally viewed as a driver of species extinction. Combining population- and species-level molecular data, we show that beetles on islands along the Antarctic Polar Front diversified in response to major climatic events over the last 50 Ma in surprising synchrony with the region’s marine organisms. Unique algae- and moss-feeding habits enabled beetles to capitalize on cooling conditions, which resulted in a decline in flowering plants—the typical hosts for beetles elsewhere. Antarctica’s cooling paleoclimate thus fostered the diversification of both terrestrial and marine life. Climatically driven evolutionary processes since the Miocene may underpin much of the region’s diversity, are still ongoing, and should be further investigated among Antarctic biota. Global cooling and glacial–interglacial cycles since Antarctica’s isolation have been responsible for the diversification of the region’s marine fauna. By contrast, these same Earth system processes are thought to have played little role terrestrially, other than driving widespread extinctions. Here, we show that on islands along the Antarctic Polar Front, paleoclimatic processes have been key to diversification of one of the world’s most geographically isolated and unique groups of herbivorous beetles—Ectemnorhinini weevils. Combining phylogenomic, phylogenetic, and phylogeographic approaches, we demonstrate that these weevils colonized the sub-Antarctic islands from Africa at least 50 Ma ago and repeatedly dispersed among them. As the climate cooled from the mid-Miocene, diversification of the beetles accelerated, resulting in two species-rich clades. One of these clades specialized to feed on cryptogams, typical of the polar habitats that came to prevail under Miocene conditions yet remarkable as a food source for any beetle. This clade’s most unusual representative is a marine weevil currently undergoing further speciation. The other clade retained the more common weevil habit of feeding on angiosperms, which likely survived glaciation in isolated refugia. Diversification of Ectemnorhinini weevils occurred in synchrony with many other Antarctic radiations, including penguins and notothenioid fishes, and coincided with major environmental changes. Our results thus indicate that geo-climatically driven diversification has progressed similarly for Antarctic marine and terrestrial organisms since the Miocene, potentially constituting a general biodiversity paradigm that should be sought broadly for the region’s taxa.
Collapse
|
4
|
Bowen BW, Forsman ZH, Whitney JL, Faucci A, Hoban M, Canfield SJ, Johnston EC, Coleman RR, Copus JM, Vicente J, Toonen RJ. Species Radiations in the Sea: What the Flock? J Hered 2021; 111:70-83. [PMID: 31943081 DOI: 10.1093/jhered/esz075] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 11/06/2019] [Indexed: 12/13/2022] Open
Abstract
Species flocks are proliferations of closely-related species, usually after colonization of depauperate habitat. These radiations are abundant on oceanic islands and in ancient freshwater lakes, but rare in marine habitats. This contrast is well documented in the Hawaiian Archipelago, where terrestrial examples include the speciose silverswords (sunflower family Asteraceae), Drosophila fruit flies, and honeycreepers (passerine birds), all derived from one or a few ancestral lineages. The marine fauna of Hawai'i is also the product of rare colonization events, but these colonizations usually yield only one species. Dispersal ability is key to understanding this evolutionary inequity. While terrestrial fauna rarely colonize between oceanic islands, marine fauna with pelagic larvae can make this leap in every generation. An informative exception is the marine fauna that lack a pelagic larval stage. These low-dispersal species emulate a "terrestrial" mode of reproduction (brooding, viviparity, crawl-away larvae), yielding marine species flocks in scattered locations around the world. Elsewhere, aquatic species flocks are concentrated in specific geographic settings, including the ancient lakes of Baikal (Siberia) and Tanganyika (eastern Africa), and Antarctica. These locations host multiple species flocks across a broad taxonomic spectrum, indicating a unifying evolutionary phenomenon. Hence marine species flocks can be singular cases that arise due to restricted dispersal or other intrinsic features, or they can be geographically clustered, promoted by extrinsic ecological circumstances. Here, we review and contrast intrinsic cases of species flocks in individual taxa, and extrinsic cases of geological/ecological opportunity, to elucidate the processes of species radiations.
Collapse
Affiliation(s)
- Brian W Bowen
- Hawai'i Institute of Marine Biology, University of Hawai'i, Kaneohe, HI
| | - Zac H Forsman
- Hawai'i Institute of Marine Biology, University of Hawai'i, Kaneohe, HI
| | - Jonathan L Whitney
- Joint Institute for Marine and Atmospheric Research, University of Hawai'i, Honolulu, HI
| | - Anuschka Faucci
- Math & Sciences Division, Leeward Community College, University of Hawai'i, Pearl City, HI
| | - Mykle Hoban
- Hawai'i Institute of Marine Biology, University of Hawai'i, Kaneohe, HI
| | | | - Erika C Johnston
- Hawai'i Institute of Marine Biology, University of Hawai'i, Kaneohe, HI
| | - Richard R Coleman
- Hawai'i Institute of Marine Biology, University of Hawai'i, Kaneohe, HI
| | - Joshua M Copus
- Hawai'i Institute of Marine Biology, University of Hawai'i, Kaneohe, HI
| | - Jan Vicente
- Hawai'i Institute of Marine Biology, University of Hawai'i, Kaneohe, HI
| | - Robert J Toonen
- Hawai'i Institute of Marine Biology, University of Hawai'i, Kaneohe, HI
| |
Collapse
|
5
|
Copilaş-Ciocianu D, Borko Š, Fišer C. The late blooming amphipods: Global change promoted post-Jurassic ecological radiation despite Palaeozoic origin. Mol Phylogenet Evol 2020; 143:106664. [DOI: 10.1016/j.ympev.2019.106664] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 10/19/2019] [Accepted: 10/24/2019] [Indexed: 01/04/2023]
|
6
|
Phylogenomics of the longitarsal Colossendeidae: The evolutionary history of an Antarctic sea spider radiation. Mol Phylogenet Evol 2019; 136:206-214. [PMID: 31002869 DOI: 10.1016/j.ympev.2019.04.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 04/15/2019] [Accepted: 04/15/2019] [Indexed: 11/20/2022]
Abstract
Sea spiders (Pycnogonida) constitute a group of marine benthic arthropods that has a particularly high species diversity in the Southern Ocean. The "longitarsal" group of the sea spider family Colossendeidae is especially abundant in this region. However, this group also includes some representatives from other oceans, which raises the question where the group originates from. Therefore, we here investigated the phylogeny of the group with a hybrid enrichment approach that yielded a dataset of 1607 genes and over one million base pairs. We obtained a well-resolved phylogeny of the group, which is mostly consistent with morphological data. The data support an Antarctic origin of the longitarsal Colossendeidae and multiple dispersal events to other regions, which occurred at different timescales. This scenario is consistent with evidence found in other groups of marine invertebrates and highlights the role of the Southern Ocean as a source for non-Antarctic biota, especially of the deep sea. Our results suggest an initially slow rate of diversification followed by a more rapid radiation possibly correlated with the mid-Miocene cooling of Antarctica, similar to what is found in other taxa.
Collapse
|
7
|
Halanych KM, Mahon AR. Challenging Dogma Concerning Biogeographic Patterns of Antarctica and the Southern Ocean. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2018. [DOI: 10.1146/annurev-ecolsys-121415-032139] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Antarctica is enormous, cold, remote, and particularly sensitive to climate change. Most biological research below 60°S has focused on the isolated nature of the biota and how organisms have adapted to the cold and ice. However, biogeographic patterns in Antarctica and the Southern Ocean, and the processes explaining how those patterns came about, still await adequate explanation. Both terrestrial and marine organisms have been influenced by climatic change (e.g., glaciation), physical phenomena (e.g., oceanic currents), and/or potential barriers to gene flow (e.g., steep thermal gradients). Whereas the Antarctic region contains diverse and complex marine communities, terrestrial systems tend to be comparatively simple with limited diversity. Here, we challenge the current dogma used to explain the diversity and biogeographic patterns present in the Antarctic. We assert that relatively modern processes within the last few million years, rather than geo-logical events that occurred in the Eocene and Miocene, account for present patterns of biodiversity in the region. Additionally, reproductive life history stages appear to have little influence in structuring genetic patterns in the Antarctic, as currents and glacial patterns are noted to be more important drivers of organismal patterns of distribution. Finally, we highlight the need for additional sampling, high-throughput genomic approaches, and broad, multinational cooperation for addressing outstanding questions of Antarctic biogeography and biodiversity.
Collapse
Affiliation(s)
- Kenneth M. Halanych
- Molette Biology Laboratory for Environmental and Climate Change Studies, Department of Biological Sciences, Auburn University, Auburn, Alabama 36849, USA
| | - Andrew R. Mahon
- Department of Biology, Central Michigan University, Mount Pleasant, Michigan 48859, USA
| |
Collapse
|
8
|
Beermann J, Westbury MV, Hofreiter M, Hilgers L, Deister F, Neumann H, Raupach MJ. Cryptic species in a well-known habitat: applying taxonomics to the amphipod genus Epimeria (Crustacea, Peracarida). Sci Rep 2018; 8:6893. [PMID: 29720606 PMCID: PMC5931980 DOI: 10.1038/s41598-018-25225-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 04/17/2018] [Indexed: 11/19/2022] Open
Abstract
Taxonomy plays a central role in biological sciences. It provides a communication system for scientists as it aims to enable correct identification of the studied organisms. As a consequence, species descriptions should seek to include as much available information as possible at species level to follow an integrative concept of 'taxonomics'. Here, we describe the cryptic species Epimeria frankei sp. nov. from the North Sea, and also redescribe its sister species, Epimeria cornigera. The morphological information obtained is substantiated by DNA barcodes and complete nuclear 18S rRNA gene sequences. In addition, we provide, for the first time, full mitochondrial genome data as part of a metazoan species description for a holotype, as well as the neotype. This study represents the first successful implementation of the recently proposed concept of taxonomics, using data from high-throughput technologies for integrative taxonomic studies, allowing the highest level of confidence for both biodiversity and ecological research.
Collapse
Affiliation(s)
- Jan Beermann
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Department of Functional Ecology, PO Box 120161, 27515, Bremerhaven, Germany.
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Biologische Anstalt Helgoland, Helgoland, Germany.
- Helmholtz Institute for Functional Marine Biodiversity, Oldenburg, Germany.
| | - Michael V Westbury
- University of Potsdam, Institute for Biochemistry and Biology, Karl-Liebknecht-Str. 24-25, 14476, Potsdam, Germany
| | - Michael Hofreiter
- University of Potsdam, Institute for Biochemistry and Biology, Karl-Liebknecht-Str. 24-25, 14476, Potsdam, Germany
| | - Leon Hilgers
- University of Potsdam, Institute for Biochemistry and Biology, Karl-Liebknecht-Str. 24-25, 14476, Potsdam, Germany
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Invalidenstr. 43, 10115, Berlin, Germany
| | - Fabian Deister
- Carl von Ossietzky University Oldenburg, Institute for Biology and Environmental Sciences, PO Box 2503, 26111, Oldenburg, Germany
| | - Hermann Neumann
- Senckenberg am Meer, Department for Marine Research, Südstrand 40, 26382, Wilhelmshaven, Germany
| | - Michael J Raupach
- Carl von Ossietzky University Oldenburg, Institute for Biology and Environmental Sciences, PO Box 2503, 26111, Oldenburg, Germany
- Senckenberg am Meer, German Center of Marine Biodiversity (DZMB), Südstrand 44, 26382, Wilhelmshaven, Germany
| |
Collapse
|
9
|
Taylor JD, Glover EA, Harper EM, Crame JA, Ikebe C, Williams ST. Left in the cold? Evolutionary origin of Laternula elliptica, a keystone bivalve species of Antarctic benthos. Biol J Linn Soc Lond 2018. [DOI: 10.1093/biolinnean/blx144] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|