1
|
Valente R, Cordeiro M, Pinto B, Machado A, Alves F, Sousa-Pinto I, Ruivo R, Castro LFC. Alterations of pleiotropic neuropeptide-receptor gene couples in Cetacea. BMC Biol 2024; 22:186. [PMID: 39218857 PMCID: PMC11367936 DOI: 10.1186/s12915-024-01984-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/15/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Habitat transitions have considerable consequences in organism homeostasis, as they require the adjustment of several concurrent physiological compartments to maintain stability and adapt to a changing environment. Within the range of molecules with a crucial role in the regulation of different physiological processes, neuropeptides are key agents. Here, we examined the coding status of several neuropeptides and their receptors with pleiotropic activity in Cetacea. RESULTS Analysis of 202 mammalian genomes, including 41 species of Cetacea, exposed an intricate mutational landscape compatible with gene sequence modification and loss. Specifically for Cetacea, in the 12 genes analysed we have determined patterns of loss ranging from species-specific disruptive mutations (e.g. neuropeptide FF-amide peptide precursor; NPFF) to complete erosion of the gene across the cetacean stem lineage (e.g. somatostatin receptor 4; SSTR4). CONCLUSIONS Impairment of some of these neuromodulators may have contributed to the unique energetic metabolism, circadian rhythmicity and diving response displayed by this group of iconic mammals.
Collapse
Affiliation(s)
- Raul Valente
- CIMAR/CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, 4450-208, Matosinhos, S/N, Portugal
- FCUP - Department of Biology, Faculty of Sciences, University of Porto (U. Porto), Rua Do Campo Alegre, Porto, Portugal
| | - Miguel Cordeiro
- CIMAR/CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, 4450-208, Matosinhos, S/N, Portugal
| | - Bernardo Pinto
- CIMAR/CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, 4450-208, Matosinhos, S/N, Portugal
- FCUP - Department of Biology, Faculty of Sciences, University of Porto (U. Porto), Rua Do Campo Alegre, Porto, Portugal
| | - André Machado
- CIMAR/CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, 4450-208, Matosinhos, S/N, Portugal
- FCUP - Department of Biology, Faculty of Sciences, University of Porto (U. Porto), Rua Do Campo Alegre, Porto, Portugal
| | - Filipe Alves
- MARE - Marine and Environmental Sciences Centre, Funchal, Madeira, Portugal
- ARNET - Aquatic Research Network, ARDITI, Funchal, Madeira, Portugal
| | - Isabel Sousa-Pinto
- CIMAR/CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, 4450-208, Matosinhos, S/N, Portugal
- FCUP - Department of Biology, Faculty of Sciences, University of Porto (U. Porto), Rua Do Campo Alegre, Porto, Portugal
| | - Raquel Ruivo
- CIMAR/CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, 4450-208, Matosinhos, S/N, Portugal.
| | - L Filipe C Castro
- CIMAR/CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, 4450-208, Matosinhos, S/N, Portugal.
- FCUP - Department of Biology, Faculty of Sciences, University of Porto (U. Porto), Rua Do Campo Alegre, Porto, Portugal.
| |
Collapse
|
2
|
Balabova DV, Belash EA, Belenkaya SV, Shcherbakov DN, Belov AN, Koval AD, Mironova AV, Bondar AA, Volosnikova EA, Arkhipov SG, Sokolova OO, Chirkova VY, Elchaninov VV. Biochemical Properties of a Promising Milk-Clotting Enzyme, Moose ( Alces alces) Recombinant Chymosin. Foods 2023; 12:3772. [PMID: 37893665 PMCID: PMC10606240 DOI: 10.3390/foods12203772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Moose (Alces alces) recombinant chymosin with a milk-clotting activity of 86 AU/mL was synthesized in the Kluyveromyces lactis expression system. After precipitation with ammonium sulfate and chromatographic purification, a sample of genetically engineered moose chymosin with a specific milk-clotting activity of 15,768 AU/mg was obtained, which was used for extensive biochemical characterization of the enzyme. The threshold of the thermal stability of moose chymosin was 55 °C; its complete inactivation occurred after heating at 60 °C. The total proteolytic activity of moose chymosin was 0.332 A280 units. The ratio of milk-clotting and total proteolytic activities of the enzyme was 0.8. The Km, kcat and kcat/Km values of moose chymosin were 4.7 μM, 98.7 s-1, and 21.1 μM-1 s-1, respectively. The pattern of change in the coagulation activity as a function of pH and Ca2+ concentration was consistent with the requirements for milk coagulants for cheese making. The optimum temperature of the enzyme was 50-55 °C. The introduction of Mg2+, Zn2+, Co2+, Ba2+, Fe2+, Mn2+, Ca2+, and Cu2+ into milk activated the coagulation ability of moose chymosin, while Ni ions on the contrary inhibited its activity. Using previously published data, we compared the biochemical properties of recombinant moose chymosin produced in bacterial (Escherichia coli) and yeast (K. lactis) producers.
Collapse
Affiliation(s)
- Dina V. Balabova
- Institute of Biology and Biotechnology, Altai State University, 656049 Barnaul, Russia
| | - Ekaterina A. Belash
- Institute of Biology and Biotechnology, Altai State University, 656049 Barnaul, Russia
| | - Svetlana V. Belenkaya
- State Research Center for Virology and Biotechnology “Vector”, Rospotrebnadzor, 630559 Koltsovo, Russia
| | - Dmitry N. Shcherbakov
- Institute of Biology and Biotechnology, Altai State University, 656049 Barnaul, Russia
- State Research Center for Virology and Biotechnology “Vector”, Rospotrebnadzor, 630559 Koltsovo, Russia
| | - Alexander N. Belov
- Federal Altai Scientific Center for Agrobiotechnologies, Siberian Research Institute of Cheese Making, 656910 Barnaul, Russia
| | - Anatoly D. Koval
- Federal Altai Scientific Center for Agrobiotechnologies, Siberian Research Institute of Cheese Making, 656910 Barnaul, Russia
| | - Anna V. Mironova
- Federal Altai Scientific Center for Agrobiotechnologies, Siberian Research Institute of Cheese Making, 656910 Barnaul, Russia
| | - Alexander A. Bondar
- JCF “Genomics”, Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Ekaterina A. Volosnikova
- State Research Center for Virology and Biotechnology “Vector”, Rospotrebnadzor, 630559 Koltsovo, Russia
| | - Sergey G. Arkhipov
- Boreskov Institute of Catalysis, Siberan Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Olga O. Sokolova
- Boreskov Institute of Catalysis, Siberan Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Varvara Y. Chirkova
- Institute of Biology and Biotechnology, Altai State University, 656049 Barnaul, Russia
| | - Vadim V. Elchaninov
- Federal Altai Scientific Center for Agrobiotechnologies, Siberian Research Institute of Cheese Making, 656910 Barnaul, Russia
| |
Collapse
|
3
|
Jones TEM, Yates B, Braschi B, Gray K, Tweedie S, Seal RL, Bruford EA. The VGNC: expanding standardized vertebrate gene nomenclature. Genome Biol 2023; 24:115. [PMID: 37173739 PMCID: PMC10176861 DOI: 10.1186/s13059-023-02957-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
The Vertebrate Gene Nomenclature Committee (VGNC) was established in 2016 as a sister project to the HUGO Gene Nomenclature Committee, to approve gene nomenclature in vertebrate species without an existing dedicated nomenclature committee. The VGNC aims to harmonize gene nomenclature across selected vertebrate species in line with human gene nomenclature, with orthologs assigned the same nomenclature where possible. This article presents an overview of the VGNC project and discussion of key findings resulting from this work to date. VGNC-approved nomenclature is accessible at https://vertebrate.genenames.org and is additionally displayed by the NCBI, Ensembl, and UniProt databases.
Collapse
Affiliation(s)
- Tamsin E. M. Jones
- HUGO Gene Nomenclature Committee, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, CB10 1SD Cambridgeshire UK
| | - Bethan Yates
- HUGO Gene Nomenclature Committee, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, CB10 1SD Cambridgeshire UK
- Current address: Tree of Life, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA Cambridgeshire UK
| | - Bryony Braschi
- HUGO Gene Nomenclature Committee, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, CB10 1SD Cambridgeshire UK
| | - Kristian Gray
- HUGO Gene Nomenclature Committee, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, CB10 1SD Cambridgeshire UK
- Department of Haematology, University of Cambridge School of Clinical Medicine, Cambridge, CB2 0AW Cambridgeshire UK
| | - Susan Tweedie
- HUGO Gene Nomenclature Committee, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, CB10 1SD Cambridgeshire UK
| | - Ruth L. Seal
- HUGO Gene Nomenclature Committee, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, CB10 1SD Cambridgeshire UK
- Department of Haematology, University of Cambridge School of Clinical Medicine, Cambridge, CB2 0AW Cambridgeshire UK
| | - Elspeth A. Bruford
- HUGO Gene Nomenclature Committee, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, CB10 1SD Cambridgeshire UK
- Department of Haematology, University of Cambridge School of Clinical Medicine, Cambridge, CB2 0AW Cambridgeshire UK
| |
Collapse
|
4
|
Balabova DV, Belenkaya SV, Volosnikova EA, Hermes T, Chirkova VY, Sharlaeva EA, Shcherbakov DN, Belov AN, Koval AD, Elchaninov VV. Can Recombinant Tree Shrew (Tupaia belangeri chinensis) Chymosin Coagulate Cow (Bos taurus) Milk? APPL BIOCHEM MICRO+ 2022. [DOI: 10.1134/s0003683822060023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Abstract
Genetically engineered chymosin from the tree shrew (Tupaia belangeri chinensis) has been obtained and partially characterized for the first time. The target enzyme was produced in Escherichia coli, strain BL21(DE3). It was shown that tree shrew recombinant chymosin coagulates cow milk (Bos taurus). The total and specific milk-clotting activity of the obtained enzyme was 0.7–5.3 IMCU/mL and 8.8–16.6 IMCU/mg. The nonspecific proteolytic activity of tree shrew recombinant chymosin in relation to total bovine casein was 30 and 117% higher than that of recombinant chymosin of cow and of single-humped camel respectively. It was found that in comparison with most of the known genetically engineered chymosins, the tree shrew enzyme showed exceptionally low thermal stability. After heating at 45°C, the coagulation ability of tree shrew recombinant chymosin decreased by more than 40%, and at 50°C the enzyme lost more than 90% of the initial milk-clotting activity. The Michaelis constant (Km), enzyme turnover number (kcat), and catalytic efficiency (kcat/Km) for genetically engineered chymosin from the tree shrew were 6.3 ± 0.1 µM, 11 927 ± 3169 s–1 and 1968 ± 620 µM–1 s–1, respectively. Comparative analysis showed that the primary structure of the chymosin-sensitive site of cow kappa-casein and the supposed similar sequence of tree shrew kappa-casein differed by 75%. The ability of tree shrew recombinant chymosin to coagulate cow’s milk, along with a low thermal stability and high catalytic efficiency with respect to the substrate, imitating the chymosin-sensitive site of cow kappa-casein, suggests that this enzyme is of potential interest for cheese making.
Collapse
|
5
|
The gastric proton pump in gobiid and mudskipper fishes. Evidence of stomach loss? Comp Biochem Physiol A Mol Integr Physiol 2022; 274:111300. [PMID: 36031062 DOI: 10.1016/j.cbpa.2022.111300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 08/20/2022] [Accepted: 08/21/2022] [Indexed: 01/01/2023]
Abstract
Stomach loss has occurred independently multiple times during gnathostome evolution with notable frequency within the Teleostei. Significantly, this loss of acid-peptic digestion has been found to correlate with the secondary genomic loss of the gastric proton pump subunits (atp4a, atp4b) and pepsinogens/pepsins (pga, pgc). Gastric glands produce gastric juice containing the acid and pepsin and thus their presence is a hallmark feature of a digestive system capable of acid-peptic digestion. However, in gobiid fishes although oesogaster and gastric glands have been identified histologically, their functional significance has been questioned. In the present study we address whether the gastric proton pump is present and expressed in gastric glands of the goby Neogobius species (Gobiidae) and in members of the family Oxudercidae, a group of amphibious gobiid fishes commonly known as mudskippers (genera: Periophthalmus, Boleophthalmus, Periophthalmodon and Scartelaos). We confirmed the presence of gastric glands and have immunohistochemically localized gastric proton pump expression to these glands in Neogobius fluviatilis and Periophthalmus novemradiatus, Periophthalmus barbarus and Boleophthalmus boddarti. Genome analysis in Neogobius melanostomus, Periophthalmus magnuspinnatus, Scartelaos histophorus, Boleophthalmus pectinirostris, and Periophthalmodon schlosseri revealed the presence of both atp4a and atp4b subunit orthologues in all species in a conserved genomic loci organization. Moreover, it was possible to deduce that the complete open reading frame and the key functional amino acid residues are present. The conserved expression of the gastric proton pump provides clear evidence of the potential for gastric acid secretion indicating that acid digestion is retained in these gobiid fishes and not lost.
Collapse
|
6
|
Convergent Cortistatin losses parallel modifications in circadian rhythmicity and energy homeostasis in Cetacea and other mammalian lineages. Genomics 2020; 113:1064-1070. [PMID: 33157262 DOI: 10.1016/j.ygeno.2020.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/26/2020] [Accepted: 11/01/2020] [Indexed: 12/11/2022]
Abstract
The ancestors of Cetacea underwent profound morpho-physiological alterations. By displaying an exclusive aquatic existence, cetaceans evolved unique patterns of locomotor activity, vigilant behaviour, thermoregulation and circadian rhythmicity. Deciphering the molecular landscape governing many of these adaptations is key to understand the evolution of phenotypes. Here, we investigate Cortistatin (CORT), a neuropeptide displaying an important role in mammalian biorhythm regulation. This neuropeptide is a known neuroendocrine factor, stimulating slow-wave sleep, but also involved in the regulation of energy metabolism and hypomotility inducement. We assessed the functional status of CORT in 359 mammalian genomes (25 orders), including 30 species of Cetacea. Our findings indicate that cetaceans and other mammals with atypical biorhythms, thermal constraints and/or energy metabolism, have accumulated deleterious mutations in CORT. In light of the pleiotropic action of this neuropeptide, we suggest that this inactivation contributed to a plethora of phenotypic adjustments to accommodate adaptive solutions to specific ecological niches.
Collapse
|
7
|
Lopes-Marques M, Serrano C, Cardoso AR, Salazar R, Seixas S, Amorim A, Azevedo L, Prata MJ. GBA3: a polymorphic pseudogene in humans that experienced repeated gene loss during mammalian evolution. Sci Rep 2020; 10:11565. [PMID: 32665690 PMCID: PMC7360587 DOI: 10.1038/s41598-020-68106-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 06/03/2020] [Indexed: 11/18/2022] Open
Abstract
The gene encoding the cytosolic β-glucosidase GBA3 shows pseudogenization due to a truncated allele (rs358231) that is polymorphic in humans. Since this enzyme is involved in the transformation of many plant β-glycosides, this particular case of gene loss may have been influenced by dietary adaptations during evolution. In humans, apart from the inactivating allele, we found that GBA3 accumulated additional damaging mutations, implying an extensive GBA3 loss. The allelic distribution of loss-of-function alleles revealed significant differences between human populations which can be partially related with their staple diet. The analysis of mammalian orthologs disclosed that GBA3 underwent at least nine pseudogenization events. Most events of pseudogenization occurred in carnivorous lineages, suggesting a possible link to a β-glycoside poor diet. However, GBA3 was also lost in omnivorous and herbivorous species, hinting that the physiological role of GBA3 is not fully understood and other unknown causes may underlie GBA3 pseudogenization. Such possibility relies upon a putative role in sialic acid biology, where GBA3 participates in a cellular network involving NEU2 and CMAH. Overall, our data shows that the recurrent loss of GBA3 in mammals is likely to represent an evolutionary endpoint of the relaxation of selective constraints triggered by diet-related factors.
Collapse
Affiliation(s)
- Monica Lopes-Marques
- i3S- Instituto de Investigação e Inovação em Saúde, Population Genetics and Evolution Group, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Catarina Serrano
- i3S- Instituto de Investigação e Inovação em Saúde, Population Genetics and Evolution Group, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Ana R. Cardoso
- i3S- Instituto de Investigação e Inovação em Saúde, Population Genetics and Evolution Group, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Renato Salazar
- i3S- Instituto de Investigação e Inovação em Saúde, Population Genetics and Evolution Group, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
| | - Susana Seixas
- i3S- Instituto de Investigação e Inovação em Saúde, Population Genetics and Evolution Group, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
| | - António Amorim
- i3S- Instituto de Investigação e Inovação em Saúde, Population Genetics and Evolution Group, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Luisa Azevedo
- i3S- Instituto de Investigação e Inovação em Saúde, Population Genetics and Evolution Group, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Maria J. Prata
- i3S- Instituto de Investigação e Inovação em Saúde, Population Genetics and Evolution Group, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| |
Collapse
|
8
|
Alves LQ, Alves J, Ribeiro R, Ruivo R, Castro F. The dopamine receptor D 5 gene shows signs of independent erosion in toothed and baleen whales. PeerJ 2019; 7:e7758. [PMID: 31616587 PMCID: PMC6791347 DOI: 10.7717/peerj.7758] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 08/26/2019] [Indexed: 12/30/2022] Open
Abstract
To compare gene loci considering a phylogenetic framework is a promising approach to uncover the genetic basis of human diseases. Imbalance of dopaminergic systems is suspected to underlie some emerging neurological disorders. The physiological functions of dopamine are transduced via G-protein-coupled receptors, including DRD5 which displays a relatively higher affinity toward dopamine. Importantly, DRD5 knockout mice are hypertense, a condition emerging from an increase in sympathetic tone. We investigated the evolution of DRD5, a high affinity receptor for dopamine, in mammals. Surprisingly, among 124 investigated mammalian genomes, we found that Cetacea lineages (Mysticeti and Odontoceti) have independently lost this gene, as well as the burrowing Chrysochloris asiatica (Cape golden mole). We suggest that DRD5 inactivation parallels hypoxia-induced adaptations, such as peripheral vasoconstriction required for deep-diving in Cetacea, in accordance with the convergent evolution of vasoconstrictor genes in hypoxia-exposed animals. Our findings indicate that Cetacea are natural knockouts for DRD5 and might offer valuable insights into the mechanisms of some forms of vasoconstriction responses and hypertension in humans.
Collapse
Affiliation(s)
- Luís Q Alves
- CIIMAR-University of Porto, Matosinhos, Portugal.,FCUP-University of Porto, Porto, Portugal
| | - Juliana Alves
- CIIMAR-University of Porto, Matosinhos, Portugal.,FCUP-University of Porto, Porto, Portugal
| | - Rodrigo Ribeiro
- CIIMAR-University of Porto, Matosinhos, Portugal.,FCUP-University of Porto, Porto, Portugal
| | - Raquel Ruivo
- CIIMAR-University of Porto, Matosinhos, Portugal
| | | |
Collapse
|
9
|
Manguy J, Shields DC. Implications of kappa-casein evolutionary diversity for the self-assembly and aggregation of casein micelles. ROYAL SOCIETY OPEN SCIENCE 2019; 6:190939. [PMID: 31824707 PMCID: PMC6837221 DOI: 10.1098/rsos.190939] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 09/24/2019] [Indexed: 06/10/2023]
Abstract
Milk alpha-, beta- and kappa-casein proteins assemble into casein micelles in breast epithelial cells. The glycomacropeptide (GMP) tails of kappa-casein that extend from the surface of the micelle are key to assembly and aggregation. Aggregation is triggered by stomach pepsin cleavage of GMP from para-kappa-casein (PKC). While one casein micelle model emphasizes the importance of hydrophobic interactions, another focuses on polar residues. We performed an evolutionary analysis of kappa-casein primary sequence and predicted features that potentially impact on protein interactions. We noted more rapid change in the earlier period (166 to 60 Ma). Pepsin and plasmin cleavage sites were avoided in the GMP, which may partly explain its amino acid composition. Short tandem repeats have led to modest expansions of PKC, and to large GMP expansions, suggesting the GMP is less length constrained. Amino acid compositional constraints were assessed across species. Polarity and hydrophobicity properties were insufficient to explain differences between PKC and GMP. Among polar residues, threonine dominates the GMP, compared to serine, probably reflecting its preference for O-glycosylation over phosphorylation. Glutamine, enriched in the bovine PQ-rich region, is not positionally conserved in other species. Among hydrophobic residues, isoleucine is clearly preferred over leucine in the GMP, and patches of hydrophobicity are not markedly positionally conserved. PKC tyrosine and charged residues showed stronger conservation of position, suggesting a role for pi-interactions, seen in other structurally dynamic protein membraneless assemblies. Independent acquisitions of cysteines are consistent with a trend of increasing stabilization of multimers by covalent disulphide bonds, over evolutionary time. In conclusion, kappa-casein compositional and positional constraints appear to be influenced by modification preferences, protease evasion and protein-protein interactions.
Collapse
Affiliation(s)
- Jean Manguy
- UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
- Food for Health Ireland, University College Dublin, Belfield, Dublin 4, Ireland
| | - Denis C. Shields
- UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
- Food for Health Ireland, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
10
|
Lopes-Marques M, Alves LQ, Fonseca MM, Secci-Petretto G, Machado AM, Ruivo R, Castro LFC. Convergent inactivation of the skin-specific C-C motif chemokine ligand 27 in mammalian evolution. Immunogenetics 2019; 71:363-372. [PMID: 31049641 DOI: 10.1007/s00251-019-01114-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 04/05/2019] [Indexed: 12/31/2022]
Abstract
The appearance of mammalian-specific skin features was a key evolutionary event contributing for the elaboration of physiological processes such as thermoregulation, adequate hydration, locomotion, and inflammation. Skin inflammatory and autoimmune processes engage a population of skin-infiltrating T cells expressing a specific C-C chemokine receptor (CCR10) which interacts with an epidermal CC chemokine, the skin-specific C-C motif chemokine ligand 27 (CCL27). CCL27 is selectively produced in the skin by keratinocytes, particularly upon inflammation, mediating the adhesion and homing of skin-infiltrating T cells. Here, we examined the evolution and coding condition of Ccl27 in 112 placental mammalian species. Our findings reveal that a number of open reading frame inactivation events such as insertions, deletions, and start and stop codon mutations independently occurred in Cetacea, Pholidota, Sirenia, Chiroptera, and Rodentia, totalizing 18 species. The diverse habitat settings and lifestyles of Ccl27-eroded lineages probably implied distinct evolutionary triggers rendering this gene unessential. For example, in Cetacea, the rapid renewal of skin layers minimizes the need for an elaborate inflammatory mechanism, mirrored by the absence of epidermal scabs. Our findings suggest that the convergent and independent loss of Ccl27 in mammalian evolution concurred with unique adaptive roads for skin physiology.
Collapse
Affiliation(s)
| | - Luís Q Alves
- CIIMAR-UP, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal.,Department of Biology, Faculty of Sciences, Rua do Campo Alegre 1021/1055, 4169-007, Porto, Portugal
| | - Miguel M Fonseca
- CIIMAR-UP, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal
| | - Giulia Secci-Petretto
- CIIMAR-UP, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal.,Department of Biology, Faculty of Sciences, Rua do Campo Alegre 1021/1055, 4169-007, Porto, Portugal
| | - André M Machado
- CIIMAR-UP, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal.,Department of Biology, Faculty of Sciences, Rua do Campo Alegre 1021/1055, 4169-007, Porto, Portugal
| | - Raquel Ruivo
- CIIMAR-UP, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal.
| | - L Filipe C Castro
- CIIMAR-UP, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal. .,Department of Biology, Faculty of Sciences, Rua do Campo Alegre 1021/1055, 4169-007, Porto, Portugal.
| |
Collapse
|
11
|
Jebb D, Hiller M. Recurrent loss of HMGCS2 shows that ketogenesis is not essential for the evolution of large mammalian brains. eLife 2018; 7:38906. [PMID: 30322448 PMCID: PMC6191284 DOI: 10.7554/elife.38906] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 09/09/2018] [Indexed: 12/04/2022] Open
Abstract
Apart from glucose, fatty acid-derived ketone bodies provide metabolic energy for the brain during fasting and neonatal development. We investigated the evolution of HMGCS2, the key enzyme required for ketone body biosynthesis (ketogenesis). Unexpectedly, we found that three mammalian lineages, comprising cetaceans (dolphins and whales), elephants and mastodons, and Old World fruit bats have lost this gene. Remarkably, many of these species have exceptionally large brains and signs of intelligent behavior. While fruit bats are sensitive to starvation, cetaceans and elephants can still withstand periods of fasting. This suggests that alternative strategies to fuel large brains during fasting evolved repeatedly and reveals flexibility in mammalian energy metabolism. Furthermore, we show that HMGCS2 loss preceded brain size expansion in toothed whales and elephants. Thus, while ketogenesis was likely important for brain size expansion in modern humans, ketogenesis is not a universal precondition for the evolution of large mammalian brains. Our brain requires a lot of energy to work properly. Sugars are usually the main type of fuel for the body, but when they run low – for example during a food shortage – fat, in the form of fatty acids, can be used instead. However, the brain cannot directly process these molecules; instead, fatty acids need to go through ketogenesis, a process that turns fat into ketone bodies, which the organ can then burn. Scientists believe that the ability to create ketone bodies was essential for us to evolve large brains. Yet, it is still unclear if all mammals can transform fatty acids into ketone bodies. One way to look into this question is to track whether other species have HMGCS2, the main enzyme that drives ketogenesis. Jebb and Hiller examined the genomes of 70 different species of mammals for the gene that codes for HMGCS2. The comparisons revealed that cetaceans (whales, dolphins and porpoises), Old World fruit bats and the African savanna elephant have all independently lost their working version of HMGCS2. Yet, many members of these three groups have evolved brains that are large for their body size. The genetic analyses showed that dolphins and elephants developed big brains after the enzyme became inactive, challenging the idea that HMGCS2 – and by extension ketogenesis – is always required for the evolution of large brains. These results may also be useful for conservation efforts. Many fruit bats across the world are severely threatened, and their lack of ketogenesis could explain why these animals are highly sensitive to starvation and quickly die when food becomes scarce.
Collapse
Affiliation(s)
- David Jebb
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Max Planck Institute for the Physics of Complex Systems, Dresden, Germany.,Center for Systems Biology Dresden, Dresden, Germany
| | - Michael Hiller
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Max Planck Institute for the Physics of Complex Systems, Dresden, Germany.,Center for Systems Biology Dresden, Dresden, Germany
| |
Collapse
|
12
|
Cetacea are natural knockouts for IL20. Immunogenetics 2018; 70:681-687. [DOI: 10.1007/s00251-018-1071-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 07/01/2018] [Indexed: 10/28/2022]
|