1
|
Mamun TI, Sultana S, Aovi FI, Kumar N, Vijay D, Fulco UL, Al-Dies AAM, Hassan HM, Al-Emam A, Oliveira JIN. Identification of novel influenza virus H3N2 nucleoprotein inhibitors using most promising epicatechin derivatives. Comput Biol Chem 2024; 115:108293. [PMID: 39642540 DOI: 10.1016/j.compbiolchem.2024.108293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/23/2024] [Accepted: 11/24/2024] [Indexed: 12/09/2024]
Abstract
Influenza A virus is a leading cause of acute respiratory tract infections, posing a significant global health threat. Current treatment options are limited and increasingly ineffective due to viral mutations. This study aimed to identify potential drug candidates targeting the nucleoprotein of the H3N2 subtype of Influenza A virus. We focused on epicatechin derivatives and employed a series of computational approaches, including ADMET profiling, drug-likeness evaluation, PASS predictions, molecular docking, molecular dynamics simulations, Principal Component Analysis (PCA), dynamic cross-correlation matrix (DCCM) analyses, and free energy landscape assessments. Molecular docking and dynamics simulations revealed strong and stable binding interactions between the derivatives and the target protein, with complexes 01 and 81 exhibiting the highest binding affinities. Additionally, ADMET profiling indicated favorable pharmacokinetic properties for these compounds, supporting their potential as effective antiviral agents. Compound 81 demonstrated exceptional quantum chemical descriptors, including a small HOMO-LUMO energy gap, high electronegativity, and significant softness, suggesting high chemical reactivity and strong electron-accepting capabilities. These properties enhance Compound 81's potential to interact effectively with the H3N2 nucleoprotein. Experimental validation is strongly recommended to advance these compounds toward the development of novel antiviral therapies to address the global threat of influenza.
Collapse
Affiliation(s)
- Tajul Islam Mamun
- Department of Epidemiology and Public Health, Sylhet Agricultural University, Sylhet 3100, Bangladesh.
| | - Sharifa Sultana
- Computational Biology research laboratory, Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Farjana Islam Aovi
- Computational Biology research laboratory, Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Neeraj Kumar
- Department of Pharmaceutical Chemistry, Bhupal Nobles' College of Pharmacy Udaipur, Rajasthan 313001, India
| | - Dharmarpu Vijay
- Molecular Spectroscopy Laboratory, Department of Physics, D.N.R. College (A), Bhimavaram 534202, India
| | - Umberto Laino Fulco
- Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Al-Anood M Al-Dies
- Chemistry Department, Umm Al-Qura University, Al-Qunfudah University College, Saudi Arabia
| | - Hesham M Hassan
- Department of Pathology, College of Medicine, King Khalid University, Asir 61421, Saudi Arabia; Department of pathology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Ahmed Al-Emam
- Department of Pathology, College of Medicine, King Khalid University, Asir 61421, Saudi Arabia
| | - Jonas Ivan Nobre Oliveira
- Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Natal, RN, Brazil.
| |
Collapse
|
2
|
Li R, Han Q, Li X, Liu X, Jiao W. Natural Product-Derived Phytochemicals for Influenza A Virus (H1N1) Prevention and Treatment. Molecules 2024; 29:2371. [PMID: 38792236 PMCID: PMC11124286 DOI: 10.3390/molecules29102371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
Influenza A (H1N1) viruses are prone to antigenic mutations and are more variable than other influenza viruses. Therefore, they have caused continuous harm to human public health since the pandemic in 2009 and in recent times. Influenza A (H1N1) can be prevented and treated in various ways, such as direct inhibition of the virus and regulation of human immunity. Among antiviral drugs, the use of natural products in treating influenza has a long history, and natural medicine has been widely considered the focus of development programs for new, safe anti-influenza drugs. In this paper, we focus on influenza A (H1N1) and summarize the natural product-derived phytochemicals for influenza A virus (H1N1) prevention and treatment, including marine natural products, flavonoids, alkaloids, terpenoids and their derivatives, phenols and their derivatives, polysaccharides, and derivatives of natural products for prevention and treatment of influenza A (H1N1) virus. We further discuss the toxicity and antiviral mechanism against influenza A (H1N1) as well as the druggability of natural products. We hope that this review will facilitate the study of the role of natural products against influenza A (H1N1) activity and provide a promising alternative for further anti-influenza A drug development.
Collapse
Affiliation(s)
- Ruichen Li
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450003, China; (R.L.); (X.L.)
| | - Qianru Han
- Foreign Language Education Department, Zhengzhou Shuqing Medical College, Zhengzhou 450064, China;
| | - Xiaokun Li
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450003, China; (R.L.); (X.L.)
| | - Xinguang Liu
- Co-Construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of China, Zhengzhou 450003, China
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450003, China
| | - Weijie Jiao
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450003, China; (R.L.); (X.L.)
- Department of Pharmacy, Henan Province Hospital of Traditional Chinese Medicine, Zhengzhou 450046, China
| |
Collapse
|
3
|
Li L, Liu T, Wang Q, Ding Y, Jiang Y, Wu Z, Wang X, Dou H, Jia Y, Jiao B. Genetic characterization and whole-genome sequencing-based genetic analysis of influenza virus in Jining City during 2021-2022. Front Microbiol 2023; 14:1196451. [PMID: 37426015 PMCID: PMC10324579 DOI: 10.3389/fmicb.2023.1196451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/02/2023] [Indexed: 07/11/2023] Open
Abstract
Background The influenza virus poses a significant threat to global public health due to its high mutation rate. Continuous surveillance, development of new vaccines, and public health measures are crucial in managing and mitigating the impact of influenza outbreaks. Methods Nasal swabs were collected from individuals with influenza-like symptoms in Jining City during 2021-2022. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was used to detect influenza A viruses, followed by isolation using MDCK cells. Additionally, nucleic acid detection was performed to identify influenza A H1N1, seasonal H3N2, B/Victoria, and B/Yamagata strains. Whole-genome sequencing was conducted on 24 influenza virus strains, and subsequent analyses included characterization, phylogenetic construction, mutation analysis, and assessment of nucleotide diversity. Results A total of 1,543 throat swab samples were collected. The study revealed the dominance of the B/Victoria influenza virus in Jining during 2021-2022. Whole-genome sequencing showed co-prevalence of B/Victoria influenza viruses in the branches of Victoria clade 1A.3a.1 and Victoria clade 1A.3a.2, with a higher incidence observed in winter and spring. Comparative analysis demonstrated lower similarity in the HA, MP, and PB2 gene segments of the 24 sequenced influenza virus strains compared to the Northern Hemisphere vaccine strain B/Washington/02/2019. Mutations were identified in all antigenic epitopes of the HA protein at R133G, N150K, and N197D, and the 17-sequence antigenic epitopes exhibited more than 4 amino acid variation sites, resulting in antigenic drift. Moreover, one sequence had a D197N mutation in the NA protein, while seven sequences had a K338R mutation in the PA protein. Conclusion This study highlights the predominant presence of B/Victoria influenza strain in Jining from 2021 to 2022. The analysis also identified amino acid site variations in the antigenic epitopes, contributing to antigenic drift.
Collapse
Affiliation(s)
- Libo Li
- Department of Laboratory, Jining Center for Disease Control and Prevention, Jining, China
| | - Tiantian Liu
- Department of Laboratory, Jining Center for Disease Control and Prevention, Jining, China
| | - Qingchuan Wang
- Department of Medicine, Jining Municipal Government Hospital, Jining, China
| | - Yi Ding
- Department of Laboratory, Jining Center for Disease Control and Prevention, Jining, China
| | - Yajuan Jiang
- Department of Laboratory, Jining Center for Disease Control and Prevention, Jining, China
| | - Zengding Wu
- Department of AI and Bioinformatics, Nanjing Chengshi BioTech (TheraRNA) Co., Ltd., Nanjing, China
| | - Xiaoyu Wang
- Department of Laboratory, Jining Center for Disease Control and Prevention, Jining, China
| | - Huixin Dou
- Department of Laboratory, Jining Center for Disease Control and Prevention, Jining, China
| | - Yongjian Jia
- Department of Laboratory, Jining Center for Disease Control and Prevention, Jining, China
| | - Boyan Jiao
- Department of Laboratory, Jining Center for Disease Control and Prevention, Jining, China
| |
Collapse
|
4
|
Pellegrini F, Buonavoglia A, Omar AH, Diakoudi G, Lucente MS, Odigie AE, Sposato A, Augelli R, Camero M, Decaro N, Elia G, Bányai K, Martella V, Lanave G. A Cold Case of Equine Influenza Disentangled with Nanopore Sequencing. Animals (Basel) 2023; 13:ani13071153. [PMID: 37048408 PMCID: PMC10093709 DOI: 10.3390/ani13071153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/13/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
Massive sequencing techniques have allowed us to develop straightforward approaches for the whole genome sequencing of viruses, including influenza viruses, generating information that is useful for improving the levels and dimensions of data analysis, even for archival samples. Using the Nanopore platform, we determined the whole genome sequence of an H3N8 equine influenza virus, identified from a 2005 outbreak in Apulia, Italy, whose origin had remained epidemiologically unexplained. The virus was tightly related (>99% at the nucleotide level) in all the genome segments to viruses identified in Poland in 2005–2008 and it was seemingly introduced locally with horse trading for the meat industry. In the phylogenetic analysis based on the eight genome segments, strain ITA/2005/horse/Bari was found to cluster with sub-lineage Florida 2 in the HA and M genes, whilst in the other genes it clustered with strains of the Eurasian lineage, revealing a multi-reassortant nature.
Collapse
Affiliation(s)
- Francesco Pellegrini
- Department of Veterinary Medicine, University of Bari, 70010 Valenzano, Italy (G.L.)
| | - Alessio Buonavoglia
- Department of Veterinary Medicine, University of Bari, 70010 Valenzano, Italy (G.L.)
| | - Ahmed H. Omar
- Department of Veterinary Medicine, University of Bari, 70010 Valenzano, Italy (G.L.)
| | - Georgia Diakoudi
- Department of Veterinary Medicine, University of Bari, 70010 Valenzano, Italy (G.L.)
| | - Maria S. Lucente
- Department of Veterinary Medicine, University of Bari, 70010 Valenzano, Italy (G.L.)
| | - Amienwanlen E. Odigie
- Department of Veterinary Medicine, University of Bari, 70010 Valenzano, Italy (G.L.)
| | - Alessio Sposato
- Department of Veterinary Medicine, University of Bari, 70010 Valenzano, Italy (G.L.)
| | | | - Michele Camero
- Department of Veterinary Medicine, University of Bari, 70010 Valenzano, Italy (G.L.)
| | - Nicola Decaro
- Department of Veterinary Medicine, University of Bari, 70010 Valenzano, Italy (G.L.)
| | - Gabriella Elia
- Department of Veterinary Medicine, University of Bari, 70010 Valenzano, Italy (G.L.)
| | - Krisztián Bányai
- Veterinary Medical Research Institute, 1143 Budapest, Hungary
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, 1400 Budapest, Hungary
| | - Vito Martella
- Department of Veterinary Medicine, University of Bari, 70010 Valenzano, Italy (G.L.)
- Correspondence:
| | - Gianvito Lanave
- Department of Veterinary Medicine, University of Bari, 70010 Valenzano, Italy (G.L.)
| |
Collapse
|
5
|
Recent Advances in Influenza, HIV and SARS-CoV-2 Infection Prevention and Drug Treatment—The Need for Precision Medicine. CHEMISTRY 2022. [DOI: 10.3390/chemistry4020019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Viruses, and in particular, RNA viruses, dominate the WHO’s current list of ten global health threats. Of these, we review the widespread and most common HIV, influenza virus, and SARS-CoV-2 infections, as well as their possible prevention by vaccination and treatments by pharmacotherapeutic approaches. Beyond the vaccination, we discuss the virus-targeting and host-targeting drugs approved in the last five years, in the case of SARS-CoV-2 in the last one year, as well as new drug candidates and lead molecules that have been published in the same periods. We share our views on vaccination and pharmacotherapy, their mutually reinforcing strategic significance in combating pandemics, and the pros and cons of host and virus-targeted drug therapy. The COVID-19 pandemic has provided evidence of our limited armamentarium to fight emerging viral diseases. Novel broad-spectrum vaccines as well as drugs that could even be applied as prophylactic treatments or in early phases of the viremia, possibly through oral administration, are needed in all three areas. To meet these needs, the use of multi-data-based precision medicine in the practice and innovation of vaccination and drug therapy is inevitable.
Collapse
|
6
|
Maleki A, Russo G, Parasiliti Palumbo GA, Pappalardo F. In silico design of recombinant multi-epitope vaccine against influenza A virus. BMC Bioinformatics 2022; 22:617. [PMID: 35109785 PMCID: PMC8808469 DOI: 10.1186/s12859-022-04581-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 01/20/2022] [Indexed: 11/10/2022] Open
Abstract
Background Influenza A virus is one of the leading causes of annual mortality. The emerging of novel escape variants of the influenza A virus is still a considerable challenge in the annual process of vaccine production. The evolution of vaccines ranks among the most critical successes in medicine and has eradicated numerous infectious diseases. Recently, multi-epitope vaccines, which are based on the selection of epitopes, have been increasingly investigated.
Results This study utilized an immunoinformatic approach to design a recombinant multi-epitope vaccine based on a highly conserved epitope of hemagglutinin, neuraminidase, and membrane matrix proteins with fewer changes or mutate over time. The potential B cells, cytotoxic T lymphocytes (CTL), and CD4 T cell epitopes were identified. The recombinant multi-epitope vaccine was designed using specific linkers and a proper adjuvant. Moreover, some bioinformatics online servers and datasets were used to evaluate the immunogenicity and chemical properties of selected epitopes. In addition, Universal Immune System Simulator (UISS) in silico trial computational framework was run after influenza exposure and recombinant multi-epitope vaccine administration, showing a good immune response in terms of immunoglobulins of class G (IgG), T Helper 1 cells (TH1), epithelial cells (EP) and interferon gamma (IFN-g) levels. Furthermore, after a reverse translation (i.e., convertion of amino acid sequence to nucleotide one) and codon optimization phase, the optimized sequence was placed between the two EcoRV/MscI restriction sites in the PET32a+ vector. Conclusions The proposed “Recombinant multi-epitope vaccine” was predicted with unique and acceptable immunological properties. This recombinant multi-epitope vaccine can be successfully expressed in the prokaryotic system and accepted for immunogenicity studies against the influenza virus at the in silico level. The multi-epitope vaccine was then tested with the Universal Immune System Simulator (UISS) in silico trial platform. It revealed slight immune protection against the influenza virus, shedding the light that a multistep bioinformatics approach including molecular and cellular level is mandatory to avoid inappropriate vaccine efficacy predictions. Supplementary Information The online version contains supplementary material available at 10.1186/s12859-022-04581-6.
Collapse
Affiliation(s)
- Avisa Maleki
- Department of Mathematics and Computer Science, University of Catania, 95125, Catania, Italy
| | - Giulia Russo
- Department of Drug and Health Sciences, University of Catania, 95125, Catania, Italy
| | | | - Francesco Pappalardo
- Department of Drug and Health Sciences, University of Catania, 95125, Catania, Italy.
| |
Collapse
|
7
|
Yin H, Jiang N, Shi W, Chi X, Liu S, Chen JL, Wang S. Development and Effects of Influenza Antiviral Drugs. Molecules 2021; 26:molecules26040810. [PMID: 33557246 PMCID: PMC7913928 DOI: 10.3390/molecules26040810] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/28/2021] [Accepted: 02/01/2021] [Indexed: 12/15/2022] Open
Abstract
Influenza virus is a highly contagious zoonotic respiratory disease that causes seasonal outbreaks each year and unpredictable pandemics occasionally with high morbidity and mortality rates, posing a great threat to public health worldwide. Besides the limited effect of vaccines, the problem is exacerbated by the lack of drugs with strong antiviral activity against all flu strains. Currently, there are two classes of antiviral drugs available that are chemosynthetic and approved against influenza A virus for prophylactic and therapeutic treatment, but the appearance of drug-resistant virus strains is a serious issue that strikes at the core of influenza control. There is therefore an urgent need to develop new antiviral drugs. Many reports have shown that the development of novel bioactive plant extracts and microbial extracts has significant advantages in influenza treatment. This paper comprehensively reviews the development and effects of chemosynthetic drugs, plant extracts, and microbial extracts with influenza antiviral activity, hoping to provide some references for novel antiviral drug design and promising alternative candidates for further anti-influenza drug development.
Collapse
|
8
|
Ishikawa SA, Zhukova A, Iwasaki W, Gascuel O. A Fast Likelihood Method to Reconstruct and Visualize Ancestral Scenarios. Mol Biol Evol 2019; 36:2069-2085. [PMID: 31127303 PMCID: PMC6735705 DOI: 10.1093/molbev/msz131] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The reconstruction of ancestral scenarios is widely used to study the evolution of characters along phylogenetic trees. One commonly uses the marginal posterior probabilities of the character states, or the joint reconstruction of the most likely scenario. However, marginal reconstructions provide users with state probabilities, which are difficult to interpret and visualize, whereas joint reconstructions select a unique state for every tree node and thus do not reflect the uncertainty of inferences. We propose a simple and fast approach, which is in between these two extremes. We use decision-theory concepts (namely, the Brier score) to associate each node in the tree to a set of likely states. A unique state is predicted in tree regions with low uncertainty, whereas several states are predicted in uncertain regions, typically around the tree root. To visualize the results, we cluster the neighboring nodes associated with the same states and use graph visualization tools. The method is implemented in the PastML program and web server. The results on simulated data demonstrate the accuracy and robustness of the approach. PastML was applied to the phylogeography of Dengue serotype 2 (DENV2), and the evolution of drug resistances in a large HIV data set. These analyses took a few minutes and provided convincing results. PastML retrieved the main transmission routes of human DENV2 and showed the uncertainty of the human-sylvatic DENV2 geographic origin. With HIV, the results show that resistance mutations mostly emerge independently under treatment pressure, but resistance clusters are found, corresponding to transmissions among untreated patients.
Collapse
Affiliation(s)
- Sohta A Ishikawa
- Unité Bioinformatique Evolutive, Institut Pasteur, C3BI USR 3756 IP & CNRS, Paris, France
- Department of Biological Sciences, The University of Tokyo, Tokyo, Japan
- Evolutionary Genomics of RNA Viruses, Virology Department, Institut Pasteur, Paris, France
| | - Anna Zhukova
- Unité Bioinformatique Evolutive, Institut Pasteur, C3BI USR 3756 IP & CNRS, Paris, France
| | - Wataru Iwasaki
- Department of Biological Sciences, The University of Tokyo, Tokyo, Japan
| | - Olivier Gascuel
- Unité Bioinformatique Evolutive, Institut Pasteur, C3BI USR 3756 IP & CNRS, Paris, France
| |
Collapse
|
9
|
Equine Influenza Virus in Asia: Phylogeographic Pattern and Molecular Features Reveal Circulation of an Autochthonous Lineage. J Virol 2019; 93:JVI.00116-19. [PMID: 31019053 DOI: 10.1128/jvi.00116-19] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 04/09/2019] [Indexed: 12/12/2022] Open
Abstract
Equine influenza virus (EIV) causes severe acute respiratory disease in horses. Currently, the strains belonging to the H3N8 subtype are divided into two clades, Florida clade 1 (FC1) and Florida clade 2 (FC2), which emerged in 2002. Both FC1 and FC2 clades were reported in Asian and Middle East countries in the last decade. In this study, we described the evolution, epidemiology, and molecular characteristic of the EIV lineages, with focus on those detected in Asia from 2007 to 2017. The full genome phylogeny showed that FC1 and FC2 constituted separate and divergent lineages, without evidence of reassortment between the clades. While FC1 evolved as a single lineage, FC2 showed a divergent event around 2004 giving rise to two well-supported and coexisting sublineages, European and Asian. Furthermore, two different spread patterns of EIV in Asian countries were identified. The FC1 outbreaks were caused by independent introductions of EIV from the Americas, with the Asian isolates genetically similar to the contemporary American lineages. On the other hand, the FC2 strains detected in Asian mainland countries conformed to an autochthonous monophyletic group with a common ancestor dated in 2006 and showed evidence of an endemic circulation in a local host. Characteristic aminoacidic signature patterns were detected in all viral proteins in both Asian-FC1 and FC2 populations. Several changes were located at the top of the HA1 protein, inside or near antigenic sites. Further studies are needed to assess the potential impact of these antigenic changes in vaccination programs.IMPORTANCE The complex and continuous antigenic evolution of equine influenza viruses (EIVs) remains a major hurdle for vaccine development and the design of effective immunization programs. The present study provides a comprehensive analysis showing the EIV evolutionary dynamics, including the spread and circulation within the Asian continent and its relationship to global EIV populations over a 10-year period. Moreover, we provide a better understanding of EIV molecular evolution in Asian countries and its consequences on the antigenicity. The study underscores the association between the global horse movement and the circulation of EIV in this region. Understanding EIV evolution is imperative in order to mitigate the risk of outbreaks affecting the horse industry and to help with the selection of the viral strains to be included in the formulation of future vaccines.
Collapse
|
10
|
Bagdonaite I, Vakhrushev SY, Joshi HJ, Wandall HH. Viral glycoproteomes: technologies for characterization and outlook for vaccine design. FEBS Lett 2018; 592:3898-3920. [PMID: 29961944 DOI: 10.1002/1873-3468.13177] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 06/13/2018] [Accepted: 06/26/2018] [Indexed: 12/27/2022]
Abstract
It has long been known that surface proteins of most enveloped viruses are covered with glycans. It has furthermore been demonstrated that glycosylation is essential for propagation and immune evasion for many viruses. The recent development of high-resolution mass spectrometry techniques has enabled identification not only of the precise structures but also the positions of such post-translational modifications on viruses, revealing substantial differences in extent of glycosylation and glycan maturation for different classes of viruses. In-depth characterization of glycosylation and other post-translational modifications of viral envelope glycoproteins is essential for rational design of vaccines and antivirals. In this Review, we provide an overview of techniques used to address viral glycosylation and summarize information on glycosylation of enveloped viruses representing ongoing public health challenges. Furthermore, we discuss how knowledge on glycosylation can be translated to means to prevent and combat viral infections.
Collapse
Affiliation(s)
- Ieva Bagdonaite
- Department of Cellular and Molecular Medicine, Copenhagen Center for Glycomics, University of Copenhagen, Denmark
| | - Sergey Y Vakhrushev
- Department of Cellular and Molecular Medicine, Copenhagen Center for Glycomics, University of Copenhagen, Denmark
| | - Hiren J Joshi
- Department of Cellular and Molecular Medicine, Copenhagen Center for Glycomics, University of Copenhagen, Denmark
| | - Hans H Wandall
- Department of Cellular and Molecular Medicine, Copenhagen Center for Glycomics, University of Copenhagen, Denmark
| |
Collapse
|