1
|
Interpreting phylogenetic conflict: Hybridization in the most speciose genus of lichen-forming fungi. Mol Phylogenet Evol 2022; 174:107543. [PMID: 35690378 DOI: 10.1016/j.ympev.2022.107543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 02/06/2022] [Accepted: 05/13/2022] [Indexed: 11/24/2022]
Abstract
While advances in sequencing technologies have been invaluable for understanding evolutionary relationships, increasingly large genomic data sets may result in conflicting evolutionary signals that are often caused by biological processes, including hybridization. Hybridization has been detected in a variety of organisms, influencing evolutionary processes such as generating reproductive barriers and mixing standing genetic variation. Here, we investigate the potential role of hybridization in the diversification of the most speciose genus of lichen-forming fungi, Xanthoparmelia. As Xanthoparmelia is projected to have gone through recent, rapid diversification, this genus is particularly suitable for investigating and interpreting the origins of phylogenomic conflict. Focusing on a clade of Xanthoparmelia largely restricted to the Holarctic region, we used a genome skimming approach to generate 962 single-copy gene regions representing over 2 Mbp of the mycobiont genome. From this genome-scale dataset, we inferred evolutionary relationships using both concatenation and coalescent-based species tree approaches. We also used three independent tests for hybridization. Although different species tree reconstruction methods recovered largely consistent and well-supported trees, there was widespread incongruence among individual gene trees. Despite challenges in differentiating hybridization from ILS in situations of recent rapid radiations, our genome-wide analyses detected multiple potential hybridization events in the Holarctic clade, suggesting one possible source of trait variability in this hyperdiverse genus. This study highlights the value in using a pluralistic approach for characterizing genome-scale conflict, even in groups with well-resolved phylogenies, while highlighting current challenges in detecting the specific impacts of hybridization.
Collapse
|
2
|
Ritter CD, Coelho LA, Capurucho JM, Borges SH, Cornelius C, Ribas CC. Sister species, different histories: comparative phylogeography of two bird species associated with Amazonian open vegetation. Biol J Linn Soc Lond 2020. [DOI: 10.1093/biolinnean/blaa167] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
Although the expansion of open vegetation within Amazonia was the basis for the Forest Refugia hypothesis, studies of Amazonian biota diversification have focussed mostly on forest taxa. Here we compare the phylogeographic patterns and population history of two sister species associated with Amazonian open-vegetation patches, Elaenia cristata and Elaenia ruficeps (Aves: Tyrannidae). We sampled individuals across Amazonia for both species, and in the central Brazilian savannas (Cerrado) for E. cristata. We sequenced one mitochondrial (ND2) and two nuclear (BFib7 and ACO) markers. We tested for population structure, estimated migration rates and elucidated the historical demography of each species. The Amazon River is the strongest barrier for E. ruficeps and the Branco River is a secondary barrier. For the more broadly distributed E. cristata, there was no discernible population structure. Both species attained their current genetic diversity recently and E. cristata has undergone demographic expansion since the Last Glacial Maximum, The results suggest distinct effects of recent landscape change on population history for the two species. E. ruficeps, which only occurs in Amazonian white sand habitats, has been more isolated in open-vegetation patches than E. cristata, which occupies Amazonian savannas, and extends into the Central Brazilian Cerrado.
Collapse
Affiliation(s)
- Camila D Ritter
- Department of Eukaryotic Microbiology, University of Duisburg-Essen, Universitätsstrasse 5, S05 R04 H83, Essen, Germany
- Coordenação de Biodiversidade e Coleções Zoológicas, Instituto Nacional de Pesquisas da Amazônia, Av. André Araújo 2936, Manaus, AM, Brazil
| | - Laís A Coelho
- Department of Ecology, Evolution, and Environmental Biology, Columbia University, MC-5557, 1200 Amsterdam Avenue, New York, NY, USA
| | - João Mg Capurucho
- Department of Biological Sciences, University of Illinois at Chicago, 845 W. Taylor Street, Chicago, IL, USA
| | - Sergio H Borges
- Universidade Federal do Amazonas, Av. Rodrigo Otávio Jordão Ramos 3000, Bloco E, Setor Sul, Manaus, AM, Brazil
| | - Cíntia Cornelius
- Universidade Federal do Amazonas, Av. Rodrigo Otávio Jordão Ramos 3000, Bloco E, Setor Sul, Manaus, AM, Brazil
| | - Camila C Ribas
- Coordenação de Biodiversidade e Coleções Zoológicas, Instituto Nacional de Pesquisas da Amazônia, Av. André Araújo 2936, Manaus, AM, Brazil
| |
Collapse
|
3
|
Parker E, Dornburg A, Domínguez-Domínguez O, Piller KR. Assessing phylogenetic information to reveal uncertainty in historical data: An example using Goodeinae (Teleostei: Cyprinodontiformes: Goodeidae). Mol Phylogenet Evol 2019; 134:282-290. [DOI: 10.1016/j.ympev.2019.01.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 01/17/2019] [Accepted: 01/30/2019] [Indexed: 01/18/2023]
|