1
|
Su H, Hao T, Yu M, Zhou W, Wu L, Sheng Y, Yi Z. Complex evolutionary patterns within the tubulin gene family of ciliates, unicellular eukaryotes with diverse microtubular structures. BMC Biol 2024; 22:170. [PMID: 39135200 PMCID: PMC11321004 DOI: 10.1186/s12915-024-01969-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 08/01/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND Tubulins are major components of the eukaryotic cytoskeletons that are crucial in many cellular processes. Ciliated protists comprise one of the oldest eukaryotic lineages possessing cilia over their cell surface and assembling many diverse microtubular structures. As such, ciliates are excellent model organisms to clarify the origin and evolution of tubulins in the early stages of eukaryote evolution. Nonetheless, the evolutionary history of the tubulin subfamilies within and among ciliate classes is unclear. RESULTS We analyzed the evolutionary pattern of ciliate tubulin gene family based on genomes/transcriptomes of 60 species covering 10 ciliate classes. Results showed: (1) Six tubulin subfamilies (α_Tub, β_Tub, γ_Tub, δ_Tub, ε_Tub, and ζ_Tub) originated from the last eukaryotic common ancestor (LECA) were observed within ciliates. Among them, α_Tub, β_Tub, and γ_Tub were present in all ciliate species, while δ_Tub, ε_Tub, and ζ_Tub might be independently lost in some species. (2) The evolutionary history of the tubulin subfamilies varied. Evolutionary history of ciliate γ_Tub, δ_Tub, ε_Tub, and ζ_Tub showed a certain degree of consistency with the phylogeny of species after the divergence of ciliate classes, while the evolutionary history of ciliate α_Tub and β_Tub varied among different classes. (3) Ciliate α- and β-tubulin isoforms could be classified into an "ancestral group" present in LECA and a "divergent group" containing only ciliate sequences. Alveolata-specific expansion events probably occurred within the "ancestral group" of α_Tub and β_Tub. The "divergent group" might be important for ciliate morphological differentiation and wide environmental adaptability. (4) Expansion events of the tubulin gene family appeared to be consistent with whole genome duplication (WGD) events in some degree. More Paramecium-specific tubulin expansions were detected than Tetrahymena-specific ones. Compared to other Paramecium species, the Paramecium aurelia complex underwent a more recent WGD which might have experienced more tubulin expansion events. CONCLUSIONS Evolutionary history among different tubulin gene subfamilies seemed to vary within ciliated protists. And the complex evolutionary patterns of tubulins among different ciliate classes might drive functional diversification. Our investigation provided meaningful information for understanding the evolution of tubulin gene family in the early stages of eukaryote evolution.
Collapse
Affiliation(s)
- Hua Su
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Tingting Hao
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Minjie Yu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Wuyu Zhou
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Lei Wu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, South China Normal University, Guangzhou, 510631, China
- School of Marine and Fisheries, Guangdong Eco-engineering Polytechnic, Guangzhou, 510320, China
| | - Yalan Sheng
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Zhenzhen Yi
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
2
|
Pecina L, Vďačný P. DNA barcoding and coalescent-based delimitation of endosymbiotic clevelandellid ciliates (Ciliophora: Clevelandellida): a shift to molecular taxonomy in the inventory of ciliate diversity in panesthiine cockroaches. Zool J Linn Soc 2021. [DOI: 10.1093/zoolinnean/zlab063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
Phylogenetically distinct lineages may be hidden behind identical or highly similar morphologies. The phenomenon of morphological crypticity has been recently detected in symbiotic ciliates of the family Clevelandellidae, as multivariate and Fourier shape analyses failed to distinguish genetically distinct taxa. To address the question of species boundaries, the phylogenetic information contained in the rDNA cistron of clevelandellid ciliates, which had been isolated from the digestive tract of blaberid cockroaches, was studied using a multifaceted statistical approach. Multigene phylogenies revealed that the genus Clevelandella is paraphyletic containing members of the genus Paraclevelandia. To resolve the paraphyly of Clevelandella, two new genera, Anteclevelandella gen. nov. and Rhynchoclevelandella gen. nov., are proposed based on morphological synapomorphies and shared molecular characters. Multigene analyses and Bayesian species delimitation supported the existence of 13 distinct species within the family Clevelandellidae, eight of which represent new taxa. Moreover, two new Nyctotherus species were recognized within the clade that is sister to the Clevelandellidae. According to the present distance and network analyses, the first two domains of the 28S rRNA gene showed much higher power for species discrimination than the 18S rRNA gene and ITS region. Therefore, the former molecular marker was proposed to be a suitable group-specific barcode for the family Clevelandellidae.
Collapse
Affiliation(s)
- Lukáš Pecina
- Department of Zoology, Faculty of Natural Sciences, Comenius University in Bratislava, 842 15 Bratislava, Slovakia
| | - Peter Vďačný
- Department of Zoology, Faculty of Natural Sciences, Comenius University in Bratislava, 842 15 Bratislava, Slovakia
| |
Collapse
|
3
|
Zhang Q, Xu J, Warren A, Yang R, Shen Z, Yi Z. Assessing the utility of Hsp90 gene for inferring evolutionary relationships within the ciliate subclass Hypotricha (Protista, Ciliophora). BMC Evol Biol 2020; 20:86. [PMID: 32677880 PMCID: PMC7364784 DOI: 10.1186/s12862-020-01653-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 07/07/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Although phylogenomic analyses are increasingly used to reveal evolutionary relationships among ciliates, relatively few nuclear protein-coding gene markers have been tested for their suitability as candidates for inferring phylogenies within this group. In this study, we investigate the utility of the heat-shock protein 90 gene (Hsp90) as a marker for inferring phylogenetic relationships among hypotrich ciliates. RESULTS A total of 87 novel Hsp90 gene sequences of 10 hypotrich species were generated. Of these, 85 were distinct sequences. Phylogenetic analyses based on these data showed that: (1) the Hsp90 gene amino acid trees are comparable to the small subunit rDNA tree for recovering phylogenetic relationships at the rank of class, but lack sufficient phylogenetic signal for inferring evolutionary relationships at the genus level; (2) Hsp90 gene paralogs are recent and therefore unlikely to pose a significant problem for recovering hypotrich clades; (3) definitions of some hypotrich orders and families need to be revised as their monophylies are not supported by various gene markers; (4) The order Sporadotrichida is paraphyletic, but the monophyly of the "core" Urostylida is supported; (5) both the subfamily Oxytrichinae and the genus Urosoma seem to be non-monophyletic, but monophyly of Urosoma is not rejected by AU tests. CONCLUSIONS Our results for the first time demonstrate that the Hsp90 gene is comparable to SSU rDNA for recovering phylogenetic relationships at the rank of class, and its paralogs are unlikely to pose a significant problem for recovering hypotrich clades. This study shows the value of careful gene marker selection for phylogenomic analyses of ciliates.
Collapse
Affiliation(s)
- Qi Zhang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, South China Normal University, Guangzhou, 510631, China.,Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China
| | - Jiahui Xu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, South China Normal University, Guangzhou, 510631, China.,Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China
| | - Alan Warren
- Department of Life Sciences, Natural History Museum, London, SW7 5BD, UK
| | - Ran Yang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Zhuo Shen
- Institute of Microbial Ecology and Matter Cycle, School of Marine Sciences, Sun Yat-sen University, Zhuhai, 519000, China. .,Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China.
| | - Zhenzhen Yi
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, South China Normal University, Guangzhou, 510631, China. .,Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China.
| |
Collapse
|
4
|
Obert T, Vďačný P. Delimitation of five astome ciliate species isolated from the digestive tube of three ecologically different groups of lumbricid earthworms, using the internal transcribed spacer region and the hypervariable D1/D2 region of the 28S rRNA gene. BMC Evol Biol 2020; 20:37. [PMID: 32171235 PMCID: PMC7071660 DOI: 10.1186/s12862-020-1601-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 03/03/2020] [Indexed: 01/19/2023] Open
Abstract
Background Various ecological groups of earthworms very likely constitute sharply isolated niches that might permit speciation of their symbiotic ciliates, even though no distinct morphological features appear to be recognizable among ciliates originating from different host groups. The nuclear highly variable ITS1–5.8S-ITS2 region and the hypervariable D1/D2 region of the 28S rRNA gene have proven to be useful tools for the delimitation of species boundaries in closely related free-living ciliate taxa. In the present study, the power of these molecular markers as well as of the secondary structure of the ITS2 molecule were tested for the first time in order to discriminate the species of endosymbiotic ciliates that were isolated from the gastrointestinal tract of three ecologically different groups of lumbricid earthworms. Results Nineteen new ITS1–5.8S-ITS2 region and D1/D2-28S rRNA gene sequences were obtained from five astome species (Anoplophrya lumbrici, A. vulgaris, Metaradiophrya lumbrici, M. varians, and Subanoplophrya nodulata comb. n.), which were living in the digestive tube of three ecological groups of earthworms. Phylogenetic analyses of the rRNA locus and secondary structure analyses of the ITS2 molecule robustly resolved their phylogenetic relationships and supported the distinctness of all five species, although previous multivariate morphometric analyses were not able to separate congeners in the genera Anoplophrya and Metaradiophrya. The occurrence of all five taxa, as delimited by molecular analyses, was perfectly correlated with the ecological groups of their host earthworms. Conclusions The present study indicates that morphology-based taxonomy of astome ciliates needs to be tested in the light of molecular and ecological data as well. The use of morphological identification alone is likely to miss species that are well delimited based on molecular markers and ecological traits and can lead to the underestimation of diversity and overestimation of host range. An integrative approach along with distinctly increased taxon sampling would be helpful to assess the consistency of the eco-evolutionary trend in astome ciliates.
Collapse
Affiliation(s)
- Tomáš Obert
- Department of Zoology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, 842 15, Slovak Republic
| | - Peter Vďačný
- Department of Zoology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, 842 15, Slovak Republic.
| |
Collapse
|
5
|
Foissner W. A detailed description of a Brazilian Holophrya teres (Ehrenberg, 1834) and nomenclatural revision of the genus Holophrya (Ciliophora, Prostomatida). Eur J Protistol 2019; 80:125662. [PMID: 32245612 DOI: 10.1016/j.ejop.2019.125662] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/26/2019] [Accepted: 11/30/2019] [Indexed: 11/18/2022]
Abstract
I studied a Brazilian population of Holophrya teres (Ehrenberg, 1834) Foissner, Berger and Kohmann, 1994, using live observation, morphometry, silver impregnation, and scanning electron microscopy. This showed a fair similarity with European populations, especially in having a large (about 13 × 5 μm in vivo) micronucleus pyriform in broad-side view and cuneate in narrow-side view. Several new structures were discovered, viz., an internal oral basket, teeth on anterior end of the oral basket rods, and a buccal seal closing the oral basket when not feeding. Based on this knowledge, I provide an improved diagnosis for H. teres, which can be used as template in further species descriptions. Depending on brosse implantation in the somatic ciliature, the genus was split in Holophrya, Hillerophrya nov. gen., Vdacnyophrya nov. gen., and Bardeleophrya nov. gen. Twenty-one Prorodon species were combined with the holophryid genera, using brosse and thick oral basket rods as main markers. This revealed two new species, viz., Holophrya longiarmata nov. spec. and H. agamalievi nov. spec.
Collapse
Affiliation(s)
- Wilhelm Foissner
- University of Salzburg, Hellbrunnerstrasse 34, 5020 Salzburg, Austria.
| |
Collapse
|
6
|
Shazib SUA, Vďačný P, Slovák M, Gentekaki E, Shin MK. Deciphering phylogenetic relationships and delimiting species boundaries using a Bayesian coalescent approach in protists: A case study of the ciliate genus Spirostomum (Ciliophora, Heterotrichea). Sci Rep 2019; 9:16360. [PMID: 31704993 PMCID: PMC6841689 DOI: 10.1038/s41598-019-52722-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 10/22/2019] [Indexed: 11/09/2022] Open
Abstract
The ciliate genus Spirostomum comprises eight morphospecies, inhabiting diverse aquatic environments worldwide, where they can be used as water quality indicators. Although Spirostomum species are relatively easily identified using morphological methods, the previous nuclear rDNA-based phylogenies indicated several conflicts in morphospecies delineation. Moreover, the single locus phylogenies and previous analytical approaches could not unambiguously resolve phylogenetic relationships among Spirostomum morphospecies. Here, we attempt to investigate species boundaries and evolutionary history of Spirostomum taxa, using 166 new sequences from multiple populations employing one mitochondrial locus (CO1 gene) and two nuclear loci (rRNA operon and alpha-tubulin gene). In accordance with previous studies, relationships among the eight Spirostomum morphospecies were poorly supported statistically in individual gene trees. To overcome this problem, we utilised for the first time in ciliates the Bayesian coalescent approach, which accounts for ancestral polymorphisms, incomplete lineage sorting, and recombination. This strategy enabled us to robustly resolve deep relationships between Spirostomum species and to support the hypothesis that taxa with compact macronucleus and taxa with moniliform macronucleus each form a distinct lineage. Bayesian coalescent-based delimitation analyses strongly statistically supported the traditional morphospecies concept but also indicated that there are two S. minus-like cryptic species and S. teres is non-monophyletic. Spirostomum teres was very likely defined by a set of ancestral features of lineages that also gave rise to S. yagiui and S. dharwarensis. However, molecular data from type populations of the morphospecies S. minus and S. teres are required to unambiguously resolve the taxonomic problems.
Collapse
Affiliation(s)
| | - Peter Vďačný
- Department of Zoology, Comenius University in Bratislava, 842 15, Bratislava, Slovakia
| | - Marek Slovák
- Plant Science and Biodiversity Centre, Institute of Botany, Slovak Academy of Sciences, 845 23, Bratislava, Slovakia.,Department of Botany, Charles University, 128 01, Prague, Czech Republic
| | - Eleni Gentekaki
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - Mann Kyoon Shin
- Department of Biological Science, University of Ulsan, Ulsan, 44610, South Korea.
| |
Collapse
|
7
|
Gruber MS, Mühlthaler A, Agatha S. Ultrastructural Studies on a Model Tintinnid - Schmidingerella meunieri (Kofoid and Campbell, 1929) Agatha and Strüder-Kypke, 2012 (Ciliophora). I. Somatic Kinetids with Unique Ultrastructure. ACTA PROTOZOOL 2019; 57:195-214. [PMID: 31168163 PMCID: PMC6546599 DOI: 10.4467/16890027ap.18.015.10091] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Molecular phylogenies of Oligotrichea currently do not contain all genera and families and display topologies which are often incongruent with morphological findings. In ciliates, the somatic kinetids are rather conserved, i.e., their ultrastructures, particularly the fibrillar associates, often characterise the main groups, except for the choreotrichids. Four different kinetid types are found in protargol-stained choreotrichids and used for reconstructing the taxon's evolution (the "Kinetid Transformation Hypothesis"). Proof for this hypothesis requires transmission electron microscopic studies, which are very rare in the choreotrichids and oligotrichids. Such an approach provides insights into the ultrastructural variability of somatic kinetids in spirotrichs and may also detect apomorphies characterising certain choreotrichid families. In the model tintinnid Schmidingerella meunieri, the ultrastructure of the three kinetid types in the somatic ciliature is studied in cryofixed cells. The data support the "Kinetid Transformation Hypothesis" regarding tintinnids with a ventral kinety. This first detailed study on kinetids in tintinnids and choreotrichids in general reveals totally new kinetid types in ciliates: beyond the three common associates, they are characterised by two or three conspicuous microtubular ribbons extending on the kinetids' left sides. These extraordinary ribbons form together with the overlapping postciliary ribbons a unique network in the cortex of the anterior cell portion. The evolutionary constrains which might have fostered the development of such structures are discussed for the Oligotrichea, the choreotrichids, and tintinnids as their first occurrence is currently uncertain. Additionally, the kinetids in tintinnids, aloricate choreotrichids, oligotrichids, hypotrichs, and euplotids are compared.
Collapse
Affiliation(s)
- Michael S Gruber
- Department of Biosciences, University of Salzburg, Salzburg, Austria
| | | | - Sabine Agatha
- Department of Biosciences, University of Salzburg, Salzburg, Austria
| |
Collapse
|
8
|
Vd’ačný P, Foissner W. Re-analysis of the 18S rRNA gene phylogeny of the ciliate class Colpodea. Eur J Protistol 2019; 67:89-105. [DOI: 10.1016/j.ejop.2018.11.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 11/20/2018] [Accepted: 11/28/2018] [Indexed: 10/27/2022]
|