1
|
Chew XZ, Cobcroft J, Hutson KS. Fish ectoparasite detection, collection and curation. ADVANCES IN PARASITOLOGY 2024; 125:105-157. [PMID: 39095111 DOI: 10.1016/bs.apar.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Fish parasitology is a dynamic and internationally important discipline with numerous biological, ecological and practical applications. We reviewed optimal fish and parasite sampling methods for key ectoparasite phyla (i.e. Ciliophora, Platyhelminthes, Annelida and Arthropoda) as well as recent advances in molecular detection of ectoparasites in aquatic environments. Ideally, fish capture and anaesthesia as well as parasite recovery methods should be validated to eliminate potential sampling bias and inaccuracy in determining ectoparasite population parameters. There are considerable advantages to working with fresh samples and live parasites, when combined with appropriate fixation methods, as sampling using dead or decaying materials can lead to rapid decomposition of soft-bodied parasites and subsequent challenges for identification. Sampling methods differ between target phyla, and sometimes genera, with optimum techniques largely associated with identification of parasite microhabitat and the method of attachment. International advances in fish parasitology can be achieved through the accession of whole specimens and/or molecular voucher specimens (i.e. hologenophores) in curated collections for further study. This approach is now critical for data quality because of the increased application of environmental DNA (eDNA) for the detection and surveillance of parasites in aquatic environments where the whole organism may be unavailable. Optimal fish parasite sampling methods are emphasised to aid repeatability and reliability of parasitological studies that require accurate biodiversity and impact assessments, as well as precise surveillance and diagnostics.
Collapse
Affiliation(s)
- Xian Zhe Chew
- James Cook University Singapore, Singapore City, Singapore
| | - Jennifer Cobcroft
- James Cook University Singapore, Singapore City, Singapore; College of Science and Engineering, Centre for Sustainable Tropical Fisheries and Aquaculture, James Cook University, Townsville, QLD, Australia
| | - Kate S Hutson
- College of Science and Engineering, Centre for Sustainable Tropical Fisheries and Aquaculture, James Cook University, Townsville, QLD, Australia; Cawthron Institute, Nelson, New Zealand.
| |
Collapse
|
2
|
Caña-Bozada VH, Huerta-Ocampo JÁ, Bojórquez-Velázquez E, Elizalde-Contreras JM, May ER, Morales-Serna FN. Proteomic analysis of Neobenedenia sp. and Rhabdosynochus viridisi (Monogenea, Monopisthocotylea): Insights into potential vaccine targets and diagnostic markers for finfish aquaculture. Vet Parasitol 2024; 329:110196. [PMID: 38763120 DOI: 10.1016/j.vetpar.2024.110196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 04/22/2024] [Accepted: 05/07/2024] [Indexed: 05/21/2024]
Abstract
Monogeneans are parasitic flatworms that represent a significant threat to the aquaculture industry. Species like Neobenedenia melleni (Capsalidae) and Rhabdosynochus viridisi (Diplectanidae) have been identified as causing diseases in farmed fish. In the past years, molecular research on monogeneans of the subclass Monopisthocotylea has focused on the generation of genomic and transcriptomic information and the identification in silico of some protein families of veterinary interest. Proteomic analysis has been suggested as a powerful tool to investigate proteins in parasites and identify potential targets for vaccine development and diagnosis. To date, the proteomic dataset for monogeneans has been restricted to a species of the subclass Polyopisthocotylea, while in monopisthocotyleans there is no proteomic data. In this study, we present the first proteomic data on two monopisthocotylean species, Neobenedenia sp. and R. viridisi, obtained from three distinct sample types: tissue, excretory-secretory products (ESPs), and eggs. A total of 1691 and 1846 expressed proteins were identified in Neobenedenia sp. and R. viridisi, respectively. The actin family was the largest protein family, followed by the tubulin family and the heat shock protein 70 (HSP70) family. We focused mainly on ESPs because they are important to modulate the host immune system. We identified proteins of the actin, tubulin, HSP70 and HSP90 families in both tissue and ESPs, which have been recognized for their antigenic activities in parasitic flatworms. Furthermore, our study uncovered the presence of proteins within ESPs, such as annexin, calcium-binding protein, fructose bisphosphate aldolase, glutamate dehydrogenase, myoferlin, and paramyosin, that are targets for immunodiagnostic and vaccine development and hold paramount relevance in veterinary medicine. This study expands our knowledge of monogeneans and identified proteins that, in other platyhelminths are potential targets for vaccines and drug discovery.
Collapse
Affiliation(s)
| | | | | | | | - Eliel Ruiz May
- Instituto de Ecología, A.C., Xalapa, Veracruz 91070, Mexico
| | - Francisco N Morales-Serna
- Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Mazatlán, Sinaloa 82040, Mexico
| |
Collapse
|
3
|
Zedam FZ, Bouguerche C, Ahmed M, Tazerouti F. Morphological and molecular characterization of Encotyllabe vallei Monticelli, 1907 (Monopisthocotylea, Monogenea) from the gilthead seabream Sparus aurata Linnaeus (Teleostei, Sparidae) from the southwestern Mediterranean and notes on host specificity of the genus Encotyllabe Diesing, 1850. J Helminthol 2023; 97:e82. [PMID: 37933575 DOI: 10.1017/s0022149x23000688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Incomplete original descriptions, the unavailability or poor conditions of specimens and the lack of detailed redescriptions have caused the validity of several species of the genus Encotyllabe Diesing, 1850 to be questioned. To date, seven of the recognized species were described upon one or two specimens, hindering study of intraspecific variations. This was made worse by considering few morphoanatomical differences sufficient to erect new species. Among Encotyllabe spp. occurring in Mediterranean waters, E. vallei was first described from the gilt-head bream Sparus aurata (Sparidae) off Italy. Although beautifully illustrated for a paper from that century, morphometric data for E. vallei from the type-host S. aurata remain unavailable. Previous records of E. vallei provided either morphometrical or molecular data, and its validity was questioned. We provide a redescription of E. vallei based on newly collected specimens from the S. aurata from the southwestern Mediterranean (off Algeria) using integrative taxonomy. Analysis of cox1 sequences of E. vallei from S. aurata, compared to sequences from other sparid hosts, mainly Pagellus bogaraveo, revealed a divergence not exceeding 2%, suggesting a stenoxenic specificity for this monogenean. Given that P. bogaraveo is the type-host for Encotyllabe pagelli, we were tempted to suggest a synonymy between E. vallei and E. pagelli. We refrained from doing so because E. pagelli was first described from the Atlantic coast off Brest, France. Morphological data for Encotyllabe from P. bogaraveo are warranted assessing the host specificity of E. vallei and whether there might be a species complex within individual sparid fish species.
Collapse
Affiliation(s)
- Fatima-Zohra Zedam
- Université des Sciences et de la Technologie Houari Boumediene (U.S.T.H.B), Faculté des Sciences Biologiques, Département d'Écologie et Environnement, Laboratoire de Biodiverasité et Environnement, Interactions et Génomes, BP 32, El Alia Bab Ezzouar, Alger, Algeria
| | | | - Mohammed Ahmed
- Department of Zoology, Swedish Museum of Natural History, Stockholm, Sweden
| | - Fadila Tazerouti
- Université des Sciences et de la Technologie Houari Boumediene (U.S.T.H.B), Faculté des Sciences Biologiques, Département d'Écologie et Environnement, Laboratoire de Biodiverasité et Environnement, Interactions et Génomes, BP 32, El Alia Bab Ezzouar, Alger, Algeria
| |
Collapse
|
4
|
Paredes-Trujillo A, Hernández D, Vidal-Martínez VM. New Records of Neobenedenia girellae (Hargis, 1955) (Monogenea: Capsalidae) in Marine Ornamental Fish Imported to Yucatan, Mexico. COMP PARASITOL 2022. [DOI: 10.1654/copa-d-22-00003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Amelia Paredes-Trujillo
- Laboratorio de Sanidad Acuícola, Campus 6 de Investigaciones, Instituto EPOMEX, Universidad Autónoma de Campeche, Av. Agustin Melgar s/n, Col. Buenavista 24039, Campeche, Mexico (e-mail: ) and
| | - David Hernández
- Laboratorio de Parasitología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional Antigua Carretera a Progreso km 6 C.P. 97310, Mérida Yucatan, Mexico
| | - Victor Manuel Vidal-Martínez
- Laboratorio de Parasitología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional Antigua Carretera a Progreso km 6 C.P. 97310, Mérida Yucatan, Mexico
| |
Collapse
|
5
|
Narvaez P, Morais RA, Vaughan DB, Grutter AS, Hutson KS. Cleaner fish are potential super-spreaders. J Exp Biol 2022; 225:276034. [PMID: 35855672 DOI: 10.1242/jeb.244469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/05/2022] [Indexed: 11/20/2022]
Abstract
Cleaning symbiosis is critical for maintaining healthy biological communities in tropical marine ecosystems. However, potential negative impacts of mutualism, such as the transmission of pathogens and parasites during cleaning interactions, have rarely been evaluated. Here, we investigated whether the dedicated bluestreak cleaner wrasse Labroides dimidiatus, is susceptible to, and can transmit generalist ectoparasites between client fish. In laboratory experiments, L. dimidiatus were exposed to infective stages of three generalist ectoparasite species with contrasting life-histories. Labroides dimidiatus were susceptible to infection by the gnathiid isopod, Gnathia aureamaculosa, but significantly less susceptible to the ciliate protozoan, Cryptocaryon irritans, and the monogenean flatworm, Neobenedenia girellae, compared to control host species (Coris batuensis or Lates calcarifer). The potential for parasite transmission from a client fish to the cleaner fish was simulated using experimentally transplanted mobile adult (i.e., egg-producing) monogenean flatworms on L. dimidiatus. Parasites remained attached to cleaners for an average of two days, during which parasite egg production continued, but was reduced compared to control fish. Over this timespan, a wild cleaner may engage in several thousand cleaning interactions, providing numerous opportunities for mobile parasites to exploit cleaners as vectors. Our study provides the first experimental evidence that L. dimidiatus exhibits resistance to infective stages of some parasites yet has the potential to temporarily transport adult parasites. We propose that some parasites that evade being eaten by cleaner fish could exploit cleaning interactions as a mechanism for transmission and spread.
Collapse
Affiliation(s)
- Pauline Narvaez
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, 1 James Cook Drive, 5 Townsville, Queensland 4810, Australia.,College of Science and Engineering, James Cook University, 1 James Cook Drive, Townsville, Queensland 4810, Australia.,Centre for Sustainable Tropical Fisheries and Aquaculture, James Cook University, 1 James Cook Drive, Townsville, Queensland 4810, Australia
| | - Renato A Morais
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, 1 James Cook Drive, 5 Townsville, Queensland 4810, Australia.,College of Science and Engineering, James Cook University, 1 James Cook Drive, Townsville, Queensland 4810, Australia
| | - David B Vaughan
- School of Access Education, Central Queensland University, 554-700 Yaamba Road, Rockhampton, Queensland 4701, Australia.,Coastal Marine Ecosystems Research Centre, Central Queensland University, 554-700 Yaamba Road, Rockhampton, Queensland 4701, Australia
| | - Alexandra S Grutter
- School of Biological Sciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Kate S Hutson
- College of Science and Engineering, James Cook University, 1 James Cook Drive, Townsville, Queensland 4810, Australia.,Centre for Sustainable Tropical Fisheries and Aquaculture, James Cook University, 1 James Cook Drive, Townsville, Queensland 4810, Australia.,Cawthron Institute, 98 Halifax Street East, Nelson 7010, New Zealand
| |
Collapse
|
6
|
Monogenean body size, but not reproduction, increases with infracommunity density. Int J Parasitol 2022; 52:539-545. [DOI: 10.1016/j.ijpara.2022.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 03/09/2022] [Accepted: 03/21/2022] [Indexed: 11/23/2022]
|
7
|
Occurrence of Neobenedenia girellae (Monogenea: Capsalidae) in Gilthead Seabream Sparus aurata (Actinopterygii: Sparidae) Cultured in Portugal. Pathogens 2021; 10:pathogens10101269. [PMID: 34684218 PMCID: PMC8538979 DOI: 10.3390/pathogens10101269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/27/2021] [Accepted: 09/27/2021] [Indexed: 11/17/2022] Open
Abstract
Monogenean capsalids of the genus Neobenedenia are widespread parasites of wild and farmed marine fish, and represent a potential threat to mariculture due to their pathogenicity and ability to cause mortality in fish maintained in controlled conditions. The identification of Neobenedenia species and, consequently, the definition of their host specificity is often problematic due to their highly conserved morphology; therefore, in order to establish their specific identity, microscopic observation should be complemented with molecular analysis. The present work aims at characterizing Neobenedenia specimens infecting the skin of cage reared gilthead seabream Sparus aurata from Portugal. Parasite samples obtained from caged fish were processed for morphological analysis, through observation in light and scanning electron microscopy, and for molecular analysis, through amplification and sequencing of 28S rDNA and cytB, aimed at identifying them to the species level. Our results showed that the collected parasites belonged to the species Neobenedenia girellae; the susceptibility of S. aurata towards this pathogenic capsalid monogenean highlighted in the present work represents an important risk in the farming of this valuable fish species.
Collapse
|
8
|
Shirakashi S, Asai N, Miura M. Phototactic responses in four monogenean oncomiracidia. Parasitol Res 2021; 120:3173-3180. [PMID: 34405279 DOI: 10.1007/s00436-021-07280-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 08/05/2021] [Indexed: 11/25/2022]
Abstract
Phototaxis is the common behavioral response exhibited by the oncomiracidia of various monogeneans. However, the changes in the oncomiracidial swimming behavior in response to light cues are not well understood. Here, we investigated the light responses of four monogeneans that are important pathogens in mariculture, namely Benedenia epinepheli, Benedenia seriolae, Neobenedenia girellae, and Heteraxine heterocerca. The swimming trajectory and speed of oncomiracidia of each species were assessed in a glass Petri dish with an LED light placed adjacent to it, based on three different light responses: LED light in the off position (normal swimming), LED light in the on position (phototactic behavior), and immediately (< 5 s) after switching the LED light off (photophobic behavior). The oncomiracidia of all four species exhibited positive phototactic and photophobic responses; however, the change in swimming speed between each response differed among the species. The oncomiracidia of three species (B. epinepheli, N. girellae, and H. heterocerca) exhibited high swimming speed, as a phototactic response; in contrast, the oncomiracidia of B. seriolae exhibited reduced swimming speed when moving toward the light source. Benedenia epinepheli and H. heterocerca exhibited the highest swimming speed during the phototaxis phase, whereas B. seriolae and N. girellae exhibited the highest swimming speed during the photophobic phase. These light responses are considered adaptive traits to increase the chance of encountering and infecting suitable hosts in nature, and such responses could potentially be applied to the control of parasite infections in aquaculture.
Collapse
Affiliation(s)
- Sho Shirakashi
- Aquaculture Research Institute , Kindai University, Shirahama 3153, Wakayama, 649-2211, Japan.
| | - Nanami Asai
- Aquaculture Research Institute , Kindai University, Shirahama 3153, Wakayama, 649-2211, Japan
| | - Mayuko Miura
- Aquaculture Research Institute , Kindai University, Shirahama 3153, Wakayama, 649-2211, Japan
| |
Collapse
|
9
|
Subekti S, Amiin MK, Ardiyanti HB, Yudarana MA, Achmadi I, Akbar REK. Molecular epidemiology of helminth diseases of the humpback grouper, Cromileptes altivelis, as a pattern for mapping fish diseases in the Sunda Strait, Indonesia. Vet World 2021; 14:1324-1329. [PMID: 34220138 PMCID: PMC8243681 DOI: 10.14202/vetworld.2021.1324-1329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 04/12/2021] [Indexed: 11/25/2022] Open
Abstract
Background and Aim: Neobenedeniagirellae and Haliotremaepinepheli are important but neglected helminth parasites of marine fish. The humpback grouper, the most relevant definitive host, harbors several Neobenedenia and Haliotrema spp. simultaneously on body surfaces and gills. These species can be distinguished morphologically This study aimed to identify Neobenedenia and Haliotrema spp. infestations in monogenean humpback grouper by multiplex polymerase chain reaction method, which seems to be widely distributed in the study area. Data can be used as a basis for mapping disease patterns in Strait waters. Materials and Methods: Eighty humpback groupers (Cromileptes altivelis) were collected from eight different areas in the Sunda Strait and examined using scrapings from body surfaces and gill lamellae followed by multiplex PCR for identification. Results: Parasites on body surfaces were recovered from 49 fish (61.2%) and were found on gill lamellae in 72 fish (90%) by microscopic examination. Endoparasites were absent. Ectoparasites identified included, N. girellae, Neobenedenia melleni eggs, Neobenedenia pasifica, Neobenedenia longiprostata, Haliotrema eukurodai, H. kurodai, Haliotrema leporinus, Haliotrema dongshaense, Haliotrema angelopterum, Haliotrema aurigae, Haliotrema scyphovagina, and H. epinepheli. Conclusion: The distribution of trematode disease in humpback grouper in Sunda Strait waters was revealed. All parasites were from genera, Neobenedenia and Haliotrema. Risks associated with these parasites should not be overlooked. Prevention and control programs need to be extended to other marine fish. Humpback grouper should be dewormed more frequently.
Collapse
Affiliation(s)
- Sri Subekti
- Department of Marine, Faculty of Fisheries and Marine, Universitas Airlangga, Surabaya, Indonesia
| | - Muhammad Kholiqul Amiin
- Department of Biotechnology Fisheries and Marine, Universitas Airlangga, Mulyorejo, Surabaya 60115, East Java, Indonesia
| | - Hervina Benazir Ardiyanti
- Department of Biotechnology Fisheries and Marine, Universitas Airlangga, Mulyorejo, Surabaya 60115, East Java, Indonesia
| | - Muhammad Aiman Yudarana
- Department of Biotechnology Fisheries and Marine, Universitas Airlangga, Mulyorejo, Surabaya 60115, East Java, Indonesia
| | - Ivan Achmadi
- Department of Biotechnology Fisheries and Marine, Universitas Airlangga, Mulyorejo, Surabaya 60115, East Java, Indonesia
| | - Rizhar Eman Karunia Akbar
- Department of Biotechnology Fisheries and Marine, Universitas Airlangga, Mulyorejo, Surabaya 60115, East Java, Indonesia
| |
Collapse
|
10
|
González MT, Leiva NV, Sepúlveda F, Asencio G, Baeza JA. Genetic homogeneity coupled with morphometric variability suggests high phenotypic plasticity in the sea louse Caligus rogercresseyi (Boxshall and Bravo, 2000), infecting farmed salmon (Salmo salar) along a wide latitudinal range in southern Chile. JOURNAL OF FISH DISEASES 2021; 44:633-638. [PMID: 33484476 DOI: 10.1111/jfd.13341] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/11/2020] [Accepted: 11/13/2020] [Indexed: 06/12/2023]
Abstract
The sea louse Caligus rogercresseyi is the most important pathogen causing "caligidosis" in the Chilean salmon industry. In this study, using cox1 gene, we evaluate the genetic variation of C. rogercresseyi from farmed Salmo salar along a latitudinal range (40°-52°S) in south Chile to determine whether morphological differences are explained by genetic or environmental factors. Female parasites were randomly collected from S. salar at five farms. Body variation was examined using multivariate analyses and genetic heterogeneity was explored with AMOVA. C. rogercresseyi exhibited significant morphometric variability among sites and parasites collected from >54°S were the longest ones. Parasites did not show genetic structure among farms. Thus, C. rogercresseyi infesting salmons is panmictic along an extensive latitudinal range in south Chile. The same genetic pattern can be explained by the frequent movement of parasitized S. salar among farms in that region. Phenotypic plasticity in parasites could be explained by natural or aquaculture-mediated environment variability. C. rogercreseyi from 54°S could favor the local spread of this disease, suggesting an immediate health risk for the recent salmon industry in that region. Further research is required to confirm genetic homogeneity of this parasite along its geographical distribution using more powerful markers (e.g. SNPs).
Collapse
Affiliation(s)
- María Teresa González
- Instituto de Ciencias Naturales "Alexander von Humboldt", Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta, Antofagasta, Chile
| | - Natalia Verónica Leiva
- Instituto de Ciencias Naturales "Alexander von Humboldt", Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta, Antofagasta, Chile
| | - Fabiola Sepúlveda
- Instituto de Ciencias Naturales "Alexander von Humboldt", Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta, Antofagasta, Chile
| | - Gladys Asencio
- Centro i-mar, Universidad de Los Lagos, Puerto Montt, Chile
| | - Juan Antonio Baeza
- Department of Biological Sciences, Clemson University, Clemson, SC, USA
- Smithsonian Marine Station at Fort Pierce, Fort Pierce, FL, USA
- Departamento de Biología Marina, Facultad de Ciencias del Mar, Universidad Católica del Norte, Coquimbo, Chile
| |
Collapse
|
11
|
Trujillo-González A, Becker JA, Huerlimann R, Saunders RJ, Hutson KS. Can environmental DNA be used for aquatic biosecurity in the aquarium fish trade? Biol Invasions 2019. [DOI: 10.1007/s10530-019-02152-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Effects of temperature on the life cycle of Neobenedenia sp. (Monogenea: Capsalidae) from Seriola rivoliana (Almaco jack) in Bahía de La Paz, BCS Mexico. Parasitol Res 2019; 118:3267-3277. [DOI: 10.1007/s00436-019-06460-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 09/11/2019] [Indexed: 10/25/2022]
|