1
|
Prates I, Hutchinson MN, Singhal S, Moritz C, Rabosky DL. Notes from the taxonomic disaster zone: Evolutionary drivers of intractable species boundaries in an Australian lizard clade (Scincidae: Ctenotus). Mol Ecol 2024; 33:e17074. [PMID: 37461158 DOI: 10.1111/mec.17074] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 06/06/2023] [Accepted: 07/04/2023] [Indexed: 10/18/2024]
Abstract
Genomic-scale datasets, sophisticated analytical techniques, and conceptual advances have disproportionately failed to resolve species boundaries in some groups relative to others. To understand the processes that underlie taxonomic intractability, we dissect the speciation history of an Australian lizard clade that arguably represents a "worst-case" scenario for species delimitation within vertebrates: the Ctenotus inornatus species group, a clade beset with decoupled genetic and phenotypic breaks, uncertain geographic ranges, and parallelism in purportedly diagnostic morphological characters. We sampled hundreds of localities to generate a genomic perspective on population divergence, structure, and admixture. Our results revealed rampant paraphyly of nominate taxa in the group, with lineages that are either morphologically cryptic or polytypic. Isolation-by-distance patterns reflect spatially continuous differentiation among certain pairs of putative species, yet genetic and geographic distances are decoupled in other pairs. Comparisons of mitochondrial and nuclear gene trees, tests of nuclear introgression, and historical demographic modelling identified gene flow between divergent candidate species. Levels of admixture are decoupled from phylogenetic relatedness; gene flow is often higher between sympatric species than between parapatric populations of the same species. Such idiosyncratic patterns of introgression contribute to species boundaries that are fuzzy while also varying in fuzziness. Our results suggest that "taxonomic disaster zones" like the C. inornatus species group result from spatial variation in the porosity of species boundaries and the resulting patterns of genetic and phenotypic variation. This study raises questions about the origin and persistence of hybridizing species and highlights the unique insights provided by taxa that have long eluded straightforward taxonomic categorization.
Collapse
Affiliation(s)
- Ivan Prates
- Department of Ecology and Evolutionary Biology and Museum of Zoology, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Sonal Singhal
- Department of Biology, California State University - Dominguez Hills, Carson, California, USA
| | - Craig Moritz
- Division of Ecology and Evolution and Centre for Biodiversity Analysis, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Daniel L Rabosky
- Department of Ecology and Evolutionary Biology and Museum of Zoology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
2
|
Carvalho PS, Santana DJ, Zaher H, Myers EA. Effects of Environmental Variation in Structuring Population Genetic Variation in the False-Water Cobras (Xenodontinae: Hydrodynastes). Evol Biol 2023. [DOI: 10.1007/s11692-023-09601-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
3
|
Rivera D, Prates I, Caldwell JP, Rodrigues MT, Fujita MK. Testing assertions of widespread introgressive hybridization in a clade of neotropical toads with low mate selectivity (Rhinella granulosa species group). Heredity (Edinb) 2023; 130:14-21. [PMID: 36333595 DOI: 10.1038/s41437-022-00571-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022] Open
Abstract
Discordance between different genomic regions, often identified through multilocus sequencing of selected markers, presents particular difficulties in identifying historical processes which drive species diversity and boundaries. Mechanisms causing discordance, such as incomplete lineage sorting or introgression due to interspecific hybridization, are better identified based on population-level genomic datasets. In the toads of the Rhinella granulosa species group, patterns of mito-nuclear discordance and potential hybridization have been reported by several studies. However, these patterns were proposed based on few loci, such that alternative mechanisms behind gene-tree heterogeneity cannot be ruled out. Using genome-wide ddRADseq loci from a subset of species within this clade, we found only partial concordance between currently recognized species-level taxon boundaries and patterns of genetic structure. While most taxa within the R. granulosa group correspond to clades, genetic clustering analyses sometimes grouped distinct taxonomic units into a single cluster. Moreover, levels of admixture between inferred clusters were limited and restricted to a single taxon pair which is best explained by incomplete lineage sorting as opposed to introgressive hybridization, according to D-statistics results. These findings contradict previous assertions of widespread cryptic diversity and gene flow within the R. granulosa clade. Lastly, our analyses suggest that diversification events within the Rhinella granulosa group mostly dated back to the early Pliocene, being generally younger than species divergences in other closely related clades that present high levels of cross-species gene flow. This finding uniquely contradicts common assertions that this young clade of toads exhibits interspecific hybridization.
Collapse
Affiliation(s)
- Danielle Rivera
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, USA.
- Amphibian and Reptile Diversity Research Center, University of Texas at Arlington, Arlington, TX, USA.
| | - Ivan Prates
- Department of Ecology and Evolutionary Biology and Museum of Zoology, University of Michigan, Ann Arbor, MI, USA
| | - Janalee P Caldwell
- Sam Noble Museum and Department of Biology, University of Oklahoma, Norman, OK, USA
| | - Miguel Trefaut Rodrigues
- Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Matthew K Fujita
- Amphibian and Reptile Diversity Research Center, University of Texas at Arlington, Arlington, TX, USA
- Department of Biology and Amphibian and Reptile Diversity Research Center, University of Texas at Arlington, Arlington, TX, USA
| |
Collapse
|
4
|
Camurugi F, Oliveira EF, Lima GS, Marques R, Magalhães FM, Colli GR, Mesquita DO, Garda AA. Isolation by distance and past climate resistance shaped the distribution of genealogical lineages of a neotropical lizard. SYST BIODIVERS 2022. [DOI: 10.1080/14772000.2022.2084470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Felipe Camurugi
- Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Cidade Universitária, Campo Grande, Brazil
| | - Eliana F. Oliveira
- Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Cidade Universitária, Campo Grande, Brazil
| | - Guilherme S. Lima
- Programa de Pós-Graduação em Ciências Biológicas, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil
| | - Ricardo Marques
- Programa de Pós-Graduação em Ciências Biológicas, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil
| | - Felipe M. Magalhães
- Programa de Pós-Graduação em Ciências Biológicas, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil
- Earth and Environmental Sciences, Ecology and Evolution, Rutgers University-Newark, Newark, New Jersey, USA
| | - Guarino R. Colli
- Departamento de Zoologia, Universidade de Brasília, Brasília, Distrito Federal, Brazil
| | - Daniel O. Mesquita
- Departamento de Sistemática e Ecologia, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil
| | - Adrian A. Garda
- Departamento Botânica e Zoologia, Universidade Federal do Rio Grande do Norte, Campus Universitário, Natal, Rio Grande do Norte, Brazil
| |
Collapse
|
5
|
Damasceno RP, Carnaval AC, Sass C, Sousa Recoder R, Moritz C, Trefaut Rodrigues M. Geographic restriction, genetic divergence, and morphological disparity in the Brazilian Atlantic Forests: Insights from Leposoma lizards (Gymnophthalmidae, Squamata). Mol Phylogenet Evol 2020; 154:106993. [PMID: 33148523 DOI: 10.1016/j.ympev.2020.106993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 09/01/2020] [Accepted: 09/28/2020] [Indexed: 10/23/2022]
Abstract
Lineage differentiation, long-term persistence, and range limitation promote high levels of phylogenetic and phylogeographic endemisms and likely underlie the abundant morphologically cryptic diversity observed in the Brazilian Atlantic Forests (AF). We explore lineage differentiation and range restriction in the AF and ask if genetic divergence and morphological disparity are correlated by integrating coalescent-based species delimitation, molecular phylogenetic, and morphological analyses in the lizard genus Leposoma. We present the first species tree for Leposoma and of their tribe, the Ecpleopodini. The analyses are based on the largest dataset ever assembled for Leposoma in terms of number of species (all represented), genetic markers (12 loci), and geographic coverage (~2,500 km). The exercise allows us to robustly delimit species within the genus and phylogeographic lineages within all species. We find support for the monophyly of the genus and for the recognition of a yet undescribed species around the Baía de Todos-os-Santos, in the state of Bahia; this form is distinct from all other congeners, both genetically and morphologically. We find that L. baturitensis, from the northeastern state of Ceará, is basal to the genus - and sister to a clade of six species restricted to the AF across the eastern coast of Brazil. Relationships within this coastal clade are ((((L. annectans, Leposoma sp.), L. scincoides), L. puk) (L. nanodactylus, L. sinepollex)). Phylogenetic and phylogeographic analyses, together with precise distribution data, allowed us to update the ranges of species and phylogeographic lineages. We reveal pervasive geographic restriction of divergent lineages in Leposoma at and below species level and discuss how forest refuges and rivers might have contributed to it. We find that morphological disparity lags behind genetic divergence in the genus because although they are correlated, the first accumulates at a much slower rate than the latter. We hope to encourage new studies in the area of AF north of the Doce river; phylogeographic sampling in that region has been much less common relative to southern sites, yet it may hold the key to several important processes defining biodiversity patterns in eastern Brazil. This appears to specially apply to processes underlying geographic restriction of morphologically cryptic, yet genetic divergent lineages, as the case of Leposoma.
Collapse
Affiliation(s)
- Roberta P Damasceno
- Instituto de Biociências, Universidade de São Paulo, Rua do Matão, trav. 14, n. 321, Cidade Universitária, São Paulo, SP 05508-090, Brazil; Museum of Vertebrate Zoology, University of California, Berkeley, 3101 Valley Life Sciences Building, Berkeley, CA 94720, USA.
| | - Ana Carolina Carnaval
- Department of Biology, City College of New York and the Biology Program at the Graduate Center of CUNY, 160 Convent Avenue, Marshak Life Science Building J-526, New York, NY 10031, USA.
| | - Chodon Sass
- Museum of Vertebrate Zoology, University of California, Berkeley, 3101 Valley Life Sciences Building, Berkeley, CA 94720, USA; University and Jepson Herbaria, University of California, Berkeley, 1001 Valley Life Sciences Building, Berkeley, CA 94720, USA.
| | - Renato Sousa Recoder
- Instituto de Biociências, Universidade de São Paulo, Rua do Matão, trav. 14, n. 321, Cidade Universitária, São Paulo, SP 05508-090, Brazil
| | - Craig Moritz
- Museum of Vertebrate Zoology, University of California, Berkeley, 3101 Valley Life Sciences Building, Berkeley, CA 94720, USA; Division of Ecology and Evolution, Research School of Biology, and Centre for Biodiversity Analysis, The Australian National University, 46 Sullivans Creek Road, Acton, ACT 2601, Australia.
| | - Miguel Trefaut Rodrigues
- Instituto de Biociências, Universidade de São Paulo, Rua do Matão, trav. 14, n. 321, Cidade Universitária, São Paulo, SP 05508-090, Brazil.
| |
Collapse
|
6
|
From micro- to macroevolution: insights from a Neotropical bromeliad with high population genetic structure adapted to rock outcrops. Heredity (Edinb) 2020; 125:353-370. [PMID: 32681156 DOI: 10.1038/s41437-020-0342-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 07/03/2020] [Accepted: 07/07/2020] [Indexed: 12/15/2022] Open
Abstract
Geographic isolation and reduced population sizes can lead to local extinction, low efficacy of selection and decreased speciation. However, population differentiation is an essential step of biological diversification. In allopatric speciation, geographically isolated populations differentiate and persist until the evolution of reproductive isolation and ecological divergence completes the speciation process. Pitcairnia flammea allows us to study the evolutionary consequences of habitat fragmentation on naturally disjoint rock-outcrop species from the Brazilian Atlantic Rainforest (BAF). Our main results showed low-to-moderate genetic diversity within populations, and deep population structuring caused by limited gene flow, low connectivity, genetic drift and inbreeding of long-term isolation and persistence of rock-outcrop populations throughout Quaternary climatic oscillations. Bayesian phylogenetic and model-based clustering analyses found no clear northern and southern phylogeographic structure commonly reported for many BAF organisms. Although we found two main lineages diverging by ~2 Mya during the early Pleistocene, species' delimitation analysis assigned most of the populations as independent evolving entities, suggesting an important role of disjoint rock outcrops in promoting high endemism in this rich biome. Lastly, we detected limited gene flow in sympatric populations although some hybridization and introgression were observed, suggesting a continuous speciation process in this species complex. Our data not only inform us about the extensive differentiation and limited gene flow found among Pitcairnia flammea species complex, but they also contain information about the mechanisms that shape the genetic architecture of small and fragmented populations of isolated rock outcrop of recently radiated plants.
Collapse
|