1
|
Zhou Y, Tian J, Jiang H, Han M, Wang Y, Lu J. Phylogeography and demographic history of macaques, fascicularis species group, in East Asia: Inferred from multiple genomic markers. Mol Phylogenet Evol 2024; 194:108042. [PMID: 38401812 DOI: 10.1016/j.ympev.2024.108042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 02/06/2024] [Accepted: 02/18/2024] [Indexed: 02/26/2024]
Abstract
Climate changes at larger scales have influenced dispersal and range shifts of many taxa in East Asia. The fascicularis species group of macaques is composed of four species and is widely distributed in Southeast and East Asia. However, its phylogeography and demographic histories are currently poorly understood. Herein, we assembled autosomal, mitogenome, and Y-chromosome data for 106 individuals, and combined them with 174 mtDNA dloop haplotypes of this species group, with particular focus on the demographic histories and dispersal routes of Macaca fuscata, M. cyclopis, and M. mulatta. The results showed: (1) three monophyletic clades for M. fuscata, M. cyclopis, and M. mulatta based on the multiple genomics analyses; (2) the disparate demographic trajectories of the three species after their split ∼1.0 Ma revealed that M. cyclopis and M. fuscata were derived from an ancestral M. mulatta population; (3) the speciation time of M. cyclopis was later than that of M. fuscata, and their divergence time occurred at the beginning of "Ryukyu Coral Sea Stage" (1.0-0.2 Ma) when the East China Sea land bridge was completely submerged by the sea level rose; and (4) the three parallel rivers (Nujiang, Lancangjiang, and Jinshajiang) of Southwestern China divided M. mulatta into Indian and Chinese genetic populations ∼200 kya. These results shed light on understanding not only the evolutionary history of the fascicularis species group but also the formation mechanism of faunal diversity in East Asia during the Pleistocene.
Collapse
Affiliation(s)
- Yanyan Zhou
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; Institute of Biodiversity and Ecology, Zhengzhou University, Zhengzhou 450001, China
| | - Jundong Tian
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; Institute of Biodiversity and Ecology, Zhengzhou University, Zhengzhou 450001, China
| | - Haijun Jiang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; Institute of Biodiversity and Ecology, Zhengzhou University, Zhengzhou 450001, China
| | - Mengya Han
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; Institute of Biodiversity and Ecology, Zhengzhou University, Zhengzhou 450001, China
| | - Yuwei Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; Institute of Biodiversity and Ecology, Zhengzhou University, Zhengzhou 450001, China
| | - Jiqi Lu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; Institute of Biodiversity and Ecology, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
2
|
Lyu B, Liu Q, Wu Y, Nguyen TQ, Che J, Nguyen SN, Myers EA, Burbrink FT, Guo P, Wang J. Genomic analysis reveals deep population divergence in the water snake Trimerodytes percarinatus (Serpentes, Natricidae). Ecol Evol 2024; 14:e11278. [PMID: 38628918 PMCID: PMC11019134 DOI: 10.1002/ece3.11278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 02/26/2024] [Accepted: 04/02/2024] [Indexed: 04/19/2024] Open
Abstract
Although several phylogeographic studies of Asian snakes have been conducted, most have focused on pitvipers, with non-venomous snakes, such as colubrids or natricids, remaining poorly studied. The Chinese keelback water snake (Trimerodytes percarinatus Boulenger) is a widespread, semiaquatic, non-venomous species occurring in China and southeastern Asia. Based on mitochondrial DNA (mtDNA) and single nucleotide polymorphism (SNP) data, we explored the population genetic structure, genetic diversity, and evolutionary history of this species. MtDNA-based phylogenetic analysis showed that T. percarinatus was composed of five highly supported and geographically structured lineages. SNP-based phylogenetic analysis, principal component analysis, and population structure analysis consistently revealed four distinct, geographically non-overlapping lineages, which was different from the mtDNA-based analysis in topology. Estimation of divergence dates and ancestral area of origin suggest that T. percarinatus originated ~12.68 million years ago (95% highest posterior density: 10.36-15.96 Mya) in a region covering southwestern China and Vietnam. Intraspecific divergence may have been triggered by the Qinghai-Xizang Plateau uplift. Population demographics and ecological niche modeling indicated that the effective population size fluctuated during 0.5 Mya and 0.002 Mya. Based on the data collected here, we also comment on the intraspecific taxonomy of T. percarinatus and question the validity of the subspecies T. p. suriki.
Collapse
Affiliation(s)
- Bing Lyu
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life SciencesHainan Normal UniversityHaikouChina
- Faculty of Agriculture, Forestry and Food EngineeringYibin UniversityYibinChina
| | - Qin Liu
- Faculty of Agriculture, Forestry and Food EngineeringYibin UniversityYibinChina
| | - Yayong Wu
- Faculty of Agriculture, Forestry and Food EngineeringYibin UniversityYibinChina
| | - Truong Q. Nguyen
- Institute of Ecology and Biological ResourcesVietnam Academy of Science and TechnologyHanoiVietnam
- Vietnam Academy of Science and TechnologyGraduate University of Science and TechnologyHanoiVietnam
| | - Jing Che
- State Key Laboratory of Genetic Resources and Evolution & Yunnan Key Laboratory of Biodiversity and Ecological Conservation of Gaoligong Mountain, Kunming Institute of ZoologyChinese Academy of SciencesKunmingChina
| | - Sang N. Nguyen
- Institute of Tropical BiologyVietnam Academy of Science and TechnologyHo Chi Minh CityVietnam
| | - Edward A. Myers
- Department of HerpetologyCalifornia Academy of SciencesSan FranciscoCaliforniaUSA
| | - Frank T. Burbrink
- Department of HerpetologyAmerican Museum of Natural HistoryNew YorkNew YorkUSA
| | - Peng Guo
- Faculty of Agriculture, Forestry and Food EngineeringYibin UniversityYibinChina
| | - Jichao Wang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life SciencesHainan Normal UniversityHaikouChina
| |
Collapse
|
3
|
Li H, He W, Wang T, Cui C, Zhang J, Chen X. Comparative transcriptome analysis revealed genes involved in the sexual size dimorphisms and expressed sequence tag-Simple Sequence Repeat loci validation in Odorrana graminea. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2023.1159037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023] Open
Abstract
Sexual size dimorphism (SSD) is widespread among animals and is characterized by differences in body size between sexes. Previous studies suggested SSD might reflect the adaptations of particular sexes to their specific reproductive or ecological roles. The large green cascade frogs (Odorrana graminea) exhibit obvious SSD that females are nearly twice the body size of males. However, the molecular mechanisms underlying SSD of O. graminea are still unknown. In the present study, we first obtained nearly 5 Gb of the transcriptome data through Illumina sequencing, and the de novo transcriptome assembly produced 189,868 unigenes of O. graminea. A total of 774 significantly sex-differentially expressed genes (DEGs) were identified. Of which, 436 DEGs showed significantly higher expression levels in females than those in males, whereas 338 DEGs showed significantly lower expression in females than those in males. We also found 10 sex-differentially expressed genes related to energy metabolism between sexes of O. graminea, and these DEGs were related to the estrogen signaling pathway, oxidative phosphorylation, fatty acid biosynthesis, gastric acid secretion, and nitrogen metabolism. We found that the differences in energy metabolism and steroid hormone synthesis might be the main driving force leading to the sexual growth dimorphism of O. graminea. In addition, a total of 63,269 potential EST-SSR loci and 4,669 EST-SSR loci were detected and validated in different populations of O. graminea and other species within Odorrana. The assembled transcriptome will facilitate functional genomic studies of O. graminea and the developed EST-SSR markers will contribute to the population genetics of the species within Odorrana. The sex-differentially expressed genes involved in energy metabolism might provide insights into the genetic mechanisms underlying the SSD of O. graminea.
Collapse
|
4
|
Multi-locus phylogeny and species delimitations of the striped-back shrew group (Eulipotyphla: Soricidae): Implications for cryptic diversity, taxonomy and multiple speciation patterns. Mol Phylogenet Evol 2022; 177:107619. [PMID: 36007821 DOI: 10.1016/j.ympev.2022.107619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 08/01/2022] [Accepted: 08/17/2022] [Indexed: 11/23/2022]
Abstract
The striped-back shrew group demonstrates remarkable variation in skull and body size, tail length, and brightness of the dorsal stripe; and karyotypic and DNA variation has been reported in recent years. In this study, we investigated the phylogenetic structure of the group, as well as speciation patterns and demographic history in Mountains of Southwestern China and adjacent mountains, including the southern Himalayas, Mts. Bashan, Wushan, and Qinling. We sequenced a total of 462 specimens from 126 localities in the known range of the group, which were sequenced and analyzed based on 6.2 kb of sequence data from two mitochondrial, six nuclear, and two Y chromosome markers. Phylogenetic analyses of the concatenated mtDNA data revealed 14 sympatric and independently evolving lineages within the striped-back shrew group, including Sorex bedfordiae, S. cylindricauda, S. excelsus, S. sinalis and several cryptic species. All concatenated data (ten genes) showed a consistent genetic structure compared to the mtDNA lineages for the group, whereas the nuclear and the Y chromosome data showed a discordant genetic structure compared to the mtDNA lineages for the striped-back shrew group. Species delimitation analyses and deep genetic distance clearly support the species status of the 14 evolving lineages. The divergence time estimation suggested that the striped-back shrew group began to diversify from the middle Pleistocene (2.34 Ma), then flourished at approximately 2.14 Ma, followed by a series of rapid diversifications through the Pleistocene. Our results also revealed multiple mechanisms of speciation in the Mountains of Southwestern China and Adjacent Mountains with complex landscapes and climate. The uplifting of the Qinghai-Tibetan Plateau, Quaternary climate oscillations, riverine barriers, ecological elevation gradients, topographical diversity, and their own low dispersal capacity may have driven the speciation, genetic structure, and phylogeographic patterns of the striped-back shrew group.
Collapse
|
5
|
Chen Z, Chen J, Liu Y, Zhang J, Chen X, Qu Y. Comparative study on gut microbiota in three Anura frogs from a mountain stream. Ecol Evol 2022; 12:e8854. [PMID: 35475186 PMCID: PMC9021931 DOI: 10.1002/ece3.8854] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/29/2022] [Accepted: 04/05/2022] [Indexed: 12/25/2022] Open
Abstract
Composition and diversity in gut microbiota are impacted by a wide variety of factors. The similarity of gut microbiota in related or sympatric species has been gaining recent traction. Here, 16S rRNA gene sequencing technology was employed to study the gut microbiota of three sympatric frog species, namely Odorrana tormota, O. graminea, and Amolops wuyiensis. In these three frog species, the most abundant phylum was Proteobacteria, followed by Bacteroidetes, Verrucomicrobia, and Firmicutes. The most abundant family was Burkholderiaceae in three species. The most dominant genera were Burkholderia, Caballeronia, and Paraburkholderia with the highest relative abundance in O. tormota, O. graminea, and A. wuyiensis, respectively. No differences were observed in alpha diversity indexes among the three frog species. However, bacterial similarity of gut microbiota was significantly different between O. tormota and A. wuyiensis and between O. graminea and A. wuyiensis. Metabolism‐related gene function was predominantly enriched in the gut microbiota of the three evaluated frog species. From these findings, that the relative abundance of the gut microbiota and predicted gene functions differed in three species, we conclude that there were significant differences in the gut microbiota of the three species. Similar alpha diversity and interspecific bacterial similarity in the gut might be related to bacterial transmission among the three Anura frogs evaluated in this study.
Collapse
Affiliation(s)
- Zhuo Chen
- College of Life Sciences Henan Normal University Xinxiang Henan China
- The Observation and Research Field Station of Taihang Mountain Forest Ecosystems of Henan Province Xinxiang Henan China
| | - Jun‐Qiong Chen
- Jiangsu Key Laboratory for Biodiversity and Biotechnology College of Life Sciences Nanjing Normal University Nanjing Jiangsu China
| | - Yao Liu
- College of Life Sciences Henan Normal University Xinxiang Henan China
- The Observation and Research Field Station of Taihang Mountain Forest Ecosystems of Henan Province Xinxiang Henan China
| | - Jie Zhang
- College of Fisheries Henan Normal University Xinxiang Henan China
| | - Xiao‐Hong Chen
- College of Life Sciences Henan Normal University Xinxiang Henan China
- The Observation and Research Field Station of Taihang Mountain Forest Ecosystems of Henan Province Xinxiang Henan China
- Jiangsu Key Laboratory for Biodiversity and Biotechnology College of Life Sciences Nanjing Normal University Nanjing Jiangsu China
| | - Yan‐Fu Qu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology College of Life Sciences Nanjing Normal University Nanjing Jiangsu China
| |
Collapse
|
6
|
Wang X, Tong L, Deng J, Li L, Xiang P, Xu L, Luo Z, Yang K, Song Z. Insights into historical drainage evolution based on the phylogeography of Schizopygopsis malacanthus Herzenstein (Cypriniformes, Cyprinidae) across the upper and middle Yalong River drainage in the Hengduan Mountains region, southwest China. Glob Ecol Conserv 2022. [DOI: 10.1016/j.gecco.2022.e02084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
7
|
Liu S, Rao D, Zhang D, Lwin YH, Mo M, Zuo C, Yin F, Quan R, Li S. Phylogenetic position of Odorrana macrotympana (Yang, 2008) (Anura, Ranidae) and extension of its geographical distribution. HERPETOZOA 2022. [DOI: 10.3897/herpetozoa.35.e77147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Based on a 16S rRNA gene fragment, a molecular phylogeny for the genus Odorrana Fei, Ye & Huang, 1990 was reconstructed, the validity of the poorly-known ranid species O. macrotympana (Yang, 2008) was confirmed and its phylogenetic position was evaluated. In addition, we report the first country record of O. macrotympana from Myanmar, based on our new records from Htamanthi Wildlife Sanctuary, Sagaing Division and present a supplementary description of this species. This report also constitutes the first record of O. macrotympana from outside of China.
Collapse
|
8
|
Dufresnes C, Litvinchuk SN. Diversity, distribution and molecular species delimitation in frogs and toads from the Eastern Palaearctic. Zool J Linn Soc 2021. [DOI: 10.1093/zoolinnean/zlab083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Abstract
Biodiversity analyses can greatly benefit from coherent species delimitation schemes and up-to-date distribution data. In this article, we have made the daring attempt to delimit and map described and undescribed lineages of anuran amphibians in the Eastern Palaearctic (EP) region in its broad sense. Through a literature review, we have evaluated the species status considering reproductive isolation and genetic divergence, combined with an extensive occurrence dataset (nearly 85k localities). Altogether 274 native species from 46 genera and ten families were retrieved, plus eight additional species introduced from other realms. Independent hotspots of species richness were concentrated in southern Tibet (Medog County), the circum-Sichuan Basin region, Taiwan, the Korean Peninsula and the main Japanese islands. Phylogeographic breaks responsible for recent in situ speciation events were shared around the Sichuan Mountains, across Honshu and between the Ryukyu Island groups, but not across shallow water bodies like the Yellow Sea and the Taiwan Strait. Anuran compositions suggested to restrict the zoogeographical limits of the EP to East Asia. In a rapidly evolving field, our study provides a checkpoint to appreciate patterns of species diversity in the EP under a single, spatially explicit, species delimitation framework that integrates phylogeographic data in taxonomic research.
Collapse
Affiliation(s)
- Christophe Dufresnes
- LASER, College of Biology & Environment, Nanjing Forestry University, Nanjing, China
| | - Spartak N Litvinchuk
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
- Department of Biology, Dagestan State University, Makhachkala, Russia
| |
Collapse
|
9
|
Jansen van Rensburg A, Robin M, Phillips B, Van Buskirk J. European common frog ( Rana temporaria) recolonized Switzerland from multiple glacial refugia in northern Italy via trans- and circum-Alpine routes. Ecol Evol 2021; 11:15984-15994. [PMID: 34824805 PMCID: PMC8601898 DOI: 10.1002/ece3.8268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/20/2021] [Accepted: 10/05/2021] [Indexed: 11/12/2022] Open
Abstract
The high mountain ranges of Western Europe had a profound effect on the biotic recolonization of Europe from glacial refugia. The Alps present a particularly interesting case because they form an absolute barrier to dispersal for most taxa, obstructing recolonization from multiple refugia in northern Italy. Here, we investigate the effect of the European Alps on the phylogeographic history of the European common frog Rana temporaria. Based on partial cytochrome b and COXI sequences from Switzerland, we find two mitochondrial lineages roughly north and south of the Alpine ridge, with contact zones between them in eastern and western Switzerland. The northern haplogroup falls within the previously identified Western European haplogroup, while the southern haplogroup is unique to Switzerland. We find that the lineages diverged ~110 kya, at approximately the onset of the last glacial glaciation; this indicates that they are from different glacial refugia. Phylogenetic analyses suggest that the northern and southern haplogroups colonized Switzerland via trans- and circum-Alpine routes from at least two separate refugia in northern Italy. Our results illustrate how a complex recolonization history of the central European Alps can arise from the semi-permeable barrier created by high mountains.
Collapse
Affiliation(s)
- Alexandra Jansen van Rensburg
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichZurichSwitzerland
- Centre for Biodiversity and Environmental ResearchUniversity College LondonLondonUK
| | - Mathieu Robin
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichZurichSwitzerland
| | - Barret Phillips
- Department of Ecology and EvolutionUniversity of LausanneLausanneSwitzerland
| | - Josh Van Buskirk
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichZurichSwitzerland
| |
Collapse
|
10
|
Sun Z, Orozco-terWengel P, Chen G, Sun R, Sun L, Wang H, Shi W, Zhang B. Spatial dynamics of Chinese Muntjac related to past and future climate fluctuations. Curr Zool 2021; 67:361-370. [PMID: 34616935 PMCID: PMC8489110 DOI: 10.1093/cz/zoaa080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 12/16/2020] [Indexed: 11/23/2022] Open
Abstract
Climate fluctuations in the past and in the future are likely to result in population expansions, shifts, or the contraction of the ecological niche of many species, and potentially leading to the changes in their geographical distributions. Prediction of suitable habitats has been developed as a useful tool for the assessment of habitat suitability and resource conservation to protect wildlife. Here, we model the ancestral demographic history of the extant modern Chinese Muntjac Muntiacus reevesi populations using approximate Bayesian computation (ABC) and used the maximum entropy model to simulate the past and predict the future spatial dynamics of the species under climate oscillations. Our results indicated that the suitable habitats for the M. reevesi shifted to the Southeast and contracted during the Last Glacial Maximum, whereas they covered a broader and more northern position in the Middle Holocene. The ABC analyses revealed that the modern M. reevesi populations diverged in the Middle Holocene coinciding with the significant contraction of the highly suitable habitat areas. Furthermore, our predictions suggest that the potentially suitable environment distribution for the species will expand under all future climate scenarios. These results indicated that the M. reevesi diverged in the recent time after the glacial period and simultaneously as its habitat’s expanded in the Middle Holocene. Furthermore, the past and future climate fluctuation triggered the change of Chinese muntjac spatial distribution, which has great influence on the Chinese muntjac’s population demographic history.
Collapse
Affiliation(s)
- Zhonglou Sun
- School of Life Sciences, Anhui University, Hefei, 230601, China
| | | | - Guotao Chen
- School of Life Sciences, Anhui University, Hefei, 230601, China
| | - Ruolei Sun
- School of Life Sciences, Anhui University, Hefei, 230601, China
| | - Lu Sun
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Hui Wang
- School of Life Sciences, Anhui University, Hefei, 230601, China
| | - Wenbo Shi
- School of Life Sciences, Anhui University, Hefei, 230601, China
| | - Baowei Zhang
- School of Life Sciences, Anhui University, Hefei, 230601, China
| |
Collapse
|
11
|
Francuski L, Ludoški J, Milutinović A, Krtinić B, Milankov V. Comparative Phylogeography and Integrative Taxonomy of Ochlerotatus caspius (Dipera: Culicidae) and Ochlerotatus dorsalis. JOURNAL OF MEDICAL ENTOMOLOGY 2021; 58:222-240. [PMID: 33432351 DOI: 10.1093/jme/tjaa153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Indexed: 06/12/2023]
Abstract
Given that accurately identifying pathogen vectors is vital for designing efficient mosquito control programs based on the proper surveillance of the epidemiologically important species, it has been suggested the complementary use of independently evolving genes and morphometric traits as a reliable approach for the characterization and delimitation of related species. Hence, we examined the spatial distribution of COI mtDNA and ITS2 rDNA variation from the historical perspective of Ochlerotatus caspius (Pallas, 1771) and O. dorsalis (Meigen, 1830), while simultaneously testing the utility of the two markers in integrative species delimitation when combined with phenotypic character analyses of larvae and adults. Despite the striking difference in haplotype diversity (high in COI mtDNA, low in ITS2 rDNA), no evident phylogeographic structure was apparent in the Palearctic O. caspius. The Holarctic O. dorsalis species was subdivided into two highly distinctive COI mtDNA phylogroups which corresponded to the Nearctic and Palearctic regions. Strong support for the independence of the two allopatric evolutionary lineages suggested that geographical barrier and climatic changes during Pleistocene caused vicariance of the ancestral range. COI mtDNA reliably distinguished O. caspius and O. dorsalis, while ITS2 rDNA yet again lacked the proper resolution for solving this problem. An integrative approach based on the larval and adult morphological traits have varying taxonomic applications due to their differential diagnostic values. Thus, by the implementation of an integrative taxonomic approach, we successfully detected species borders between the two epidemiologically relevant species and uncovered the presence of cryptic diversity within O. dorsalis.
Collapse
Affiliation(s)
- Ljubinka Francuski
- Faculty of Sciences, Department of Biology and Ecology, University of Novi Sad, Trg Dositeja Obradovića, Novi Sad, Serbia
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Jasmina Ludoški
- Faculty of Sciences, Department of Biology and Ecology, University of Novi Sad, Trg Dositeja Obradovića, Novi Sad, Serbia
| | - Aleksandra Milutinović
- Faculty of Sciences, Department of Biology and Ecology, University of Novi Sad, Trg Dositeja Obradovića, Novi Sad, Serbia
- Faculty of Medicine, Department of General Education Subjects, University of Novi Sad, Novi Sad, Serbia
| | | | - Vesna Milankov
- Faculty of Sciences, Department of Biology and Ecology, University of Novi Sad, Trg Dositeja Obradovića, Novi Sad, Serbia
| |
Collapse
|