1
|
Drozdova PB, Madyarova EV, Gurkov AN, Saranchina AE, Romanova EV, Petunina JV, Peretolchina TE, Sherbakov DY, Timofeyev MA. Lake Baikal amphipods and their genomes, great and small. Vavilovskii Zhurnal Genet Selektsii 2024; 28:317-325. [PMID: 38952708 PMCID: PMC11214899 DOI: 10.18699/vjgb-24-36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/28/2024] [Accepted: 02/28/2024] [Indexed: 07/03/2024] Open
Abstract
Endemic amphipods (Crustacea: Amphipoda) of Lake Baikal represent an outstanding example of large species flocks occupying a wide range of ecological niches and originating from a handful of ancestor species. Their development took place at a restricted territory and is thus open for comprehensive research. Such examples provide unique opportunities for studying behavioral, anatomic, or physiological adaptations in multiple combinations of environmental conditions and thus attract considerable attention. The existing taxonomies of this group list over 350 species and subspecies, which, according to the molecular phylogenetic studies of marker genes, full transcriptomes and mitochondrial genomes, originated from at least two introductions into the lake. The studies of allozymes and marker genes have revealed a significant cryptic diversity in Baikal amphipods, as well as a large variance in genetic diversity within some morphological species. Crossing experiments conducted so far for two morphological species suggest that the differences in the mitochondrial marker (cytochrome c oxidase subunit I gene) can potentially be applied for making predictions about reproductive isolation. For about one-tenth of the Baikal amphipod species, nuclear genome sizes and chromosome numbers are known. While genome sizes vary within one order of magnitude, the karyotypes are relatively stable (2n = 52 for most species studied). Moreover, analysis of the diversity of repeated sequences in nuclear genomes showed significant between-species differences. Studies of mitochondrial genomes revealed some unusual features, such as variation in length and gene order, as well as duplications of tRNA genes, some of which also underwent remolding (change in anticodon specificity due to point mutations). The next important steps should be (i) the assembly of whole genomes for different species of Baikal amphipods, which is at the moment hampered by complicated genome structures with high repeat content, and (ii) updating species taxonomy taking into account all the data.
Collapse
Affiliation(s)
- P B Drozdova
- Irkutsk State University, Irkutsk, Russia Baikal Research Centre, Irkutsk, Russia
| | | | - A N Gurkov
- Irkutsk State University, Irkutsk, Russia Baikal Research Centre, Irkutsk, Russia
| | | | - E V Romanova
- Limnological Institute of the Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russia
| | - J V Petunina
- Limnological Institute of the Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russia
| | - T E Peretolchina
- Limnological Institute of the Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russia
| | - D Y Sherbakov
- Irkutsk State University, Irkutsk, Russia Limnological Institute of the Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russia Novosibirsk State University, Novosibirsk, Russia
| | | |
Collapse
|
2
|
Lu Z, Lin Q, Zhang H. Characterization of the Complete Mitochondrial Genome of Agelas nakamurai from the South China Sea. Int J Mol Sci 2023; 25:357. [PMID: 38203529 PMCID: PMC10779334 DOI: 10.3390/ijms25010357] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/21/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
The Agelas genus sponges are widely distributed and provide shelter for organisms that inhabit reefs. However, there is a lack of research on the genetic diversity of the Agelas sponges. Additionally, only one Agelas mitochondrial genome has been documented, leaving the characteristics of the Agelas genus's mitogenome in need of further clarification. To address this research gap, we utilized Illumina HiSeq4000 sequencing and de novo assembly to ascertain the complete mitochondrial genome of Agelas sp. specimens, sourced from the South China Sea. Our analysis of the cox1 barcoding similarity and phylogenetic relationship reveals that taxonomically, the Agelas sp. corresponds to Agelas nakamurai. The mitogenome of Agelas nakamurai is 20,885 bp in length, encoding 14 protein-coding genes, 24 transfer RNA genes, and 2 ribosomal RNA genes. Through a comparison of the mitochondrial genes, we discovered that both Agelas nakamurai and Agelas schmidti have an identical gene arrangement. Furthermore, we observed a deletion in the trnD gene and duplication and remodeling of the trnL gene in the Agelas nakamurai's mitogenome. Our evolutionary analysis also identified lineage-specific positive selection sites in the nad3 and nad5 genes of the Agelas sponges' mitogenome. These findings shed light on the gene rearrangement events and positive selection sites in the mitogenome of Agelas nakamurai, providing valuable molecular insights into the evolutionary processes of this genus.
Collapse
Affiliation(s)
- Zijian Lu
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510000, China;
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 510000, China
- University of Chinese Academy of Sciences, Beijing 100000, China
| | - Qiang Lin
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510000, China;
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 510000, China
- University of Chinese Academy of Sciences, Beijing 100000, China
| | - Huixian Zhang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510000, China;
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 510000, China
- University of Chinese Academy of Sciences, Beijing 100000, China
| |
Collapse
|
3
|
The Mitochondrial Genome of a Freshwater Pelagic Amphipod Macrohectopus branickii Is among the Longest in Metazoa. Genes (Basel) 2021; 12:genes12122030. [PMID: 34946978 PMCID: PMC8700879 DOI: 10.3390/genes12122030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/30/2021] [Accepted: 12/06/2021] [Indexed: 12/29/2022] Open
Abstract
There are more than 350 species of amphipods (Crustacea) in Lake Baikal, which have emerged predominantly through the course of endemic radiation. This group represents a remarkable model for studying various aspects of evolution, one of which is the evolution of mitochondrial (mt) genome architectures. We sequenced and assembled the mt genome of a pelagic Baikalian amphipod species Macrohectopus branickii. The mt genome is revealed to have an extraordinary length (42,256 bp), deviating significantly from the genomes of other amphipod species and the majority of animals. The mt genome of M. branickii has a unique gene order within amphipods, duplications of the four tRNA genes and Cox2, and a long non-coding region, that makes up about two thirds of the genome’s size. The extension of the mt genome was most likely caused by multiple duplications and inversions of regions harboring ribosomal RNA genes. In this study, we analyzed the patterns of mt genome length changes in amphipods and other animal phyla. Through a statistical analysis, we demonstrated that the variability in the mt genome length may be a characteristic of certain phyla and is primarily conferred by expansions of non-coding regions.
Collapse
|
4
|
A novel gene order and remolded tRNAs revealed in the mitogenome of Asian gecarcinucid freshwater crabs (Brachyura, Gecarcinucidae). Gene 2021; 813:146102. [PMID: 34933078 DOI: 10.1016/j.gene.2021.146102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/13/2021] [Accepted: 11/16/2021] [Indexed: 11/21/2022]
Abstract
Here we report the first mitochondrial genomes (mitogenomes) of four species of gecarcinucid freshwater crabs (FWCs) in two genera, two from China (Somanniathelphusa hainanensis and S. yangshanensis), one from Laos (Esanthelphusa dugasti), and one from Myanmar (Esanthelphusa keyini). A novel gecarcinucid mitochondrial gene order (GMGO2) that was only found in E. dugasti that contains a total of 42 genes, including one pseudogene, two remolded tRNAs and two duplicated tRNAs. The GMGO2 of E. dugasti was compared with the brachyuran ground-pattern mitochondrial gene order (BMGO), revealing the rearrangements of the positions of 10 tRNAs, two PCGs, and one mNCR. The three other gecarcinucids in this study were all found to possess a previously reported gecarcinucid mitochondrial gene order (GMGO1). The phylogenetic tree reconstructed using the secondary structures of 22 tRNAs of the mitogenomes of 41 species of FWCs provides insights into the evolution of the mitogenome of E. dugasti (GMGO2) which includes remolded and duplicated tRNAs.
Collapse
|
5
|
Kwak Y. An Update on Trichoderma Mitogenomes: Complete De Novo Mitochondrial Genome of the Fungal Biocontrol Agent Trichoderma harzianum (Hypocreales, Sordariomycetes), an Ex-Neotype Strain CBS 226.95, and Tracing the Evolutionary Divergences of Mitogenomes in Trichoderma. Microorganisms 2021; 9:1564. [PMID: 34442643 PMCID: PMC8401334 DOI: 10.3390/microorganisms9081564] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 07/08/2021] [Accepted: 07/19/2021] [Indexed: 12/13/2022] Open
Abstract
Members of the genus Trichoderma (Hypocreales), widely used as biofungicides, biofertilizers, and as model fungi for the industrial production of CAZymes, have actively been studied for the applications of their biological functions. Recently, the study of the nuclear genomes of Trichoderma has expanded in the directions of adaptation and evolution to gain a better understanding of their ecological traits. However, Trichoderma's mitochondria have received much less attention despite mitochondria being the most necessary element for sustaining cell life. In this study, a mitogenome of the fungus Trichoderma harzianum CBS 226.95 was assembled de novo. A 27,632 bp circular DNA molecule was revealed with specific features, such as the intronless of all core PCGs, one homing endonuclease, and a putative overlapping tRNA, on a closer phylogenetic relationship with T. reesei among hypocrealean fungi. Interestingly, the mitogenome of T. harzianum CBS 226.95 was predicted to have evolved earlier than those of other Trichoderma species and also assumed with a selection pressure in the cox3. Considering the bioavailability, both for the ex-neotype strain of the T. harzianum species complex and the most globally representative commercial fungal biocontrol agent, our results on the T. harzianum CBS 226.95 mitogenome provide crucial information which will be helpful criteria in future studies on Trichoderma.
Collapse
Affiliation(s)
- Yunyoung Kwak
- Écologie, Systématique et Évolution, CNRS, Université Paris Sud (Paris XI), Université Paris Saclay, AgroParisTech, 91400 Orsay, France;
- School of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea
- Institute for Quality and Safety Assessment of Agricultural Products, Kyungpook National University, Daegu 41566, Korea
| |
Collapse
|
6
|
Benito JB, Porter ML, Niemiller ML. The mitochondrial genomes of five spring and groundwater amphipods of the family Crangonyctidae (Crustacea: Amphipoda) from eastern North America. MITOCHONDRIAL DNA PART B-RESOURCES 2021; 6:1662-1667. [PMID: 34104729 PMCID: PMC8143621 DOI: 10.1080/23802359.2021.1926350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
We sequenced the mitochondrial genomes of one spring-dwelling (Crangonyx forbesi) and four groundwater amphipods (Bactrurus brachycaudus, Stygobromus allegheniensis, S. pizzinii, and S. t. potomacus) from eastern North America using a shotgun sequencing approach on an Illumina HiSeq 4000 (Illumina, San Diego, CA). All five mitochondrial genomes encoded 13 protein-coding genes, 22 transfer RNAs (tRNAs), and two ribosomal RNAs (rRNAs) representative of subphylum Crustacea. Although the four groundwater species exhibited gene orders nearly identical to the ancestral pancrustacean gene order, the spring-dwelling species, C. forbesi, possessed a transposition of the trnH–nad4–nad4l loci downstream after nad6–cytb–trnS2. Moreover, a long nad5 locus, longer rrnL, and rrnS loci, and unconventional start codons distinguished C. forbesi from the four groundwater amphipods. Overall, our five amphipod mitogenomes add to the increasing publicly available mitogenome resources for amphipods that are not only valuable for studying the evolutionary relationships of this diverse group of crustaceans but for exploring the evolution of mitochondrial genomes in general.
Collapse
Affiliation(s)
- Joseph B Benito
- Department of Biological Sciences, The University of Alabama in Huntsville, Huntsville, AL, USA
| | - Megan L Porter
- School of Life Sciences, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - Matthew L Niemiller
- Department of Biological Sciences, The University of Alabama in Huntsville, Huntsville, AL, USA
| |
Collapse
|
7
|
Romanova EV, Bukin YS, Sherbakov DY. Bioinformatic tools for tRNA gene analyses in mitochondrial DNA sequence data. Data Brief 2020; 29:105284. [PMID: 32140506 PMCID: PMC7049592 DOI: 10.1016/j.dib.2020.105284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/04/2020] [Accepted: 02/06/2020] [Indexed: 11/19/2022] Open
Abstract
The data presented here are related to the research article entitled “Hidden cases of tRNA genes duplication and remolding in mitochondrial genomes of amphipods” (Romanova et al., 2020) [1]. Correct tRNA gene sequence annotation in mitochondrial (mt) and nuclear genomes sometimes can be a challenging task because of the differential performances of tRNA annotation/prediction programmes. These programmes may cause false positive or false negative predictions. Moreover, additional difficulties with annotation may be caused by the presence of duplicated tRNA genes and those coding tRNAs with altered identities occurring as due to a mutation in their anticodon sequence (tRNA gene remolding/recruitment). We developed an R script automating the diagnosis of ancestor tRNA gene coding specificity regardless of anticodon sequence based on genetic distance comparison. Some of the predicted tRNA genes from the mt genomes of amphipods are presented. We also developed an R script for estimation of the best mode of sequence alignment, which was applied to determine the best alignment of tRNA genes in [1], but is also suitable for testing of any nucleotide alignment sets used in phylogenetic inferences.
Collapse
Affiliation(s)
- Elena V. Romanova
- Laboratory of Molecular Systematics, Limnological Institute, Irkutsk, Russian Federation
- Corresponding author.
| | - Yurij S. Bukin
- Laboratory of Molecular Systematics, Limnological Institute, Irkutsk, Russian Federation
- Faculty of Biology and Soil Studies, Irkutsk State University, Irkutsk, Russian Federation
| | - Dmitry Yu. Sherbakov
- Laboratory of Molecular Systematics, Limnological Institute, Irkutsk, Russian Federation
- Faculty of Biology and Soil Studies, Irkutsk State University, Irkutsk, Russian Federation
| |
Collapse
|