1
|
Li XZ, Li YL, Wang YN, Zhu JS. Translation of Mutant Repetitive Genomic Sequences in Hirsutella sinensis and Changes in the Secondary Structures and Functional Specifications of the Encoded Proteins. Int J Mol Sci 2024; 25:11178. [PMID: 39456960 PMCID: PMC11508423 DOI: 10.3390/ijms252011178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/12/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Multiple repetitive sequences of authentic genes commonly exist in fungal genomes. AT-biased genotypes of Ophiocordyceps sinensis have been hypothesized as repetitive pseudogenes in the genome of Hirsutella sinensis (GC-biased Genotype #1 of O. sinensis) and are generated through repeat-induced point mutation (RIP), which is charactered by cytosine-to-thymine and guanine-to-adenine transitions, concurrent epigenetic methylation, and dysfunctionality. This multilocus study examined repetitive sequences in the H. sinensis genome and transcriptome using a bioinformatic approach and revealed that 8.2% of the authentic genes had repetitive copies, including various allelic insertions/deletions, transversions, and transitions. The transcripts for the repetitive sequences, regardless of the decreases, increases, or bidirectional changes in the AT content, were identified in the H. sinensis transcriptome, resulting in changes in the secondary protein structure and functional specification. Multiple repetitive internal transcribed spacer (ITS) copies containing multiple insertion/deletion and transversion alleles in the genome of H. sinensis were GC-biased and were theoretically not generated through RIP mutagenesis. The repetitive ITS copies were genetically and phylogenetically distinct from the AT-biased O. sinensis genotypes that possess multiple transition alleles. The sequences of Genotypes #2-17 of O. sinensis, both GC- and AT-biased, were absent from the H. sinensis genome, belong to the interindividual fungi, and differentially occur in different compartments of the natural Cordyceps sinensis insect-fungi complex, which contains >90 fungal species from >37 genera. Metatranscriptomic analyses of natural C. sinensis revealed the transcriptional silencing of 5.8S genes in all C. sinensis-colonizing fungi in natural settings, including H. sinensis and other genotypes of O. sinensis. Thus, AT-biased genotypes of O. sinensis might have evolved through advanced evolutionary mechanisms, not through RIP mutagenesis, in parallel with GC-biased Genotype #1 of H. sinensis from a common genetic ancestor over the long course of evolution.
Collapse
Affiliation(s)
- Xiu-Zhang Li
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal Science and Veterinary, Qinghai University, Xining 810016, China or (X.-Z.L.); or (Y.-L.L.)
| | - Yu-Ling Li
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal Science and Veterinary, Qinghai University, Xining 810016, China or (X.-Z.L.); or (Y.-L.L.)
| | - Ya-Nan Wang
- State Key Laboratory of Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China;
| | - Jia-Shi Zhu
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal Science and Veterinary, Qinghai University, Xining 810016, China or (X.-Z.L.); or (Y.-L.L.)
- Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| |
Collapse
|
2
|
Li XZ, Xiao MJ, Li YL, Gao L, Zhu JS. Mutations and Differential Transcription of Mating-Type and Pheromone Receptor Genes in Hirsutella sinensis and the Natural Cordyceps sinensis Insect-Fungi Complex. BIOLOGY 2024; 13:632. [PMID: 39194570 DOI: 10.3390/biology13080632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/07/2024] [Accepted: 08/15/2024] [Indexed: 08/29/2024]
Abstract
Sexual reproduction in ascomycetes is controlled by the mating-type (MAT) locus. (Pseudo)homothallic reproduction has been hypothesized on the basis of genetic data from Hirsutella sinensis (Genotype #1 of Ophiocordyceps sinensis). However, the differential occurrence and differential transcription of mating-type genes in the MAT1-1 and MAT1-2 idiomorphs were found in the genome and transcriptome assemblies of H. sinensis, and the introns of the MAT1-2-1 transcript were alternatively spliced with an unspliced intron I that contains stop codons. These findings reveal that O. sinensis reproduction is controlled at the genetic, transcriptional, and coupled transcriptional-translational levels. This study revealed that mutant mating proteins could potentially have various secondary structures. Differential occurrence and transcription of the a-/α-pheromone receptor genes were also found in H. sinensis. The data were inconsistent with self-fertilization under (pseudo)homothallism but suggest the self-sterility of H. sinensis and the requirement of mating partners to achieve O. sinensis sexual outcrossing under heterothallism or hybridization. Although consistent occurrence and transcription of the mating-type genes of both the MAT1-1 and MAT1-2 idiomorphs have been reported in natural and cultivated Cordyceps sinensis insect-fungi complexes, the mutant MAT1-1-1 and α-pheromone receptor transcripts in natural C. sinensis result in N-terminal or middle-truncated proteins with significantly altered overall hydrophobicity and secondary structures of the proteins, suggesting heterogeneous fungal source(s) of the proteins and hybridization reproduction because of the co-occurrence of multiple genomically independent genotypes of O. sinensis and >90 fungal species in natural C. sinensis.
Collapse
Affiliation(s)
- Xiu-Zhang Li
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal Science and Veterinary, Qinghai University, Xining 810016, China
| | - Meng-Jun Xiao
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal Science and Veterinary, Qinghai University, Xining 810016, China
| | - Yu-Ling Li
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal Science and Veterinary, Qinghai University, Xining 810016, China
| | - Ling Gao
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal Science and Veterinary, Qinghai University, Xining 810016, China
| | - Jia-Shi Zhu
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal Science and Veterinary, Qinghai University, Xining 810016, China
| |
Collapse
|
3
|
Li YL, Li XZ, Yao YS, Wu ZM, Gao L, Tan NZ, Luo ZQ, Xie WD, Wu JY, Zhu JS. Differential coexistence of multiple genotypes of Ophiocordyceps sinensis in the stromata, ascocarps and ascospores of natural Cordyceps sinensis. PLoS One 2023; 18:e0270776. [PMID: 36893131 PMCID: PMC9997936 DOI: 10.1371/journal.pone.0270776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 02/17/2023] [Indexed: 03/10/2023] Open
Abstract
OBJECTIVE To examine the differential occurrence of Ophiocordyceps sinensis genotypes in the stroma, stromal fertile portion (SFP) densely covered with numerous ascocarps, and ascospores of natural Cordyceps sinensis. METHODS Immature and mature C. sinensis specimens were harvested. Mature C. sinensis specimens were continuously cultivated in our laboratory (altitude 2,200 m). The SFPs (with ascocarps) and ascospores of C. sinensis were collected for microscopic and molecular analyses using species-/genotype-specific primers. Sequences of mutant genotypes of O. sinensis were aligned with that of Genotype #1 Hirsutella sinensis and compared phylogenetically using a Bayesian majority-rule method. RESULTS Fully and semiejected ascospores were collected from the same specimens. The semiejected ascospores tightly adhered to the surface of the asci as observed by the naked eye and under optical and confocal microscopies. The multicellular heterokaryotic ascospores showed uneven staining of nuclei. The immature and mature stromata, SFPs (with ascocarps) and ascospores were found to differentially contain several GC- and AT-biased genotypes of O. sinensis, Samsoniella hepiali, and an AB067719-type fungus. The genotypes within AT-biased Cluster-A in the Bayesian tree occurred in all compartments of C. sinensis, but those within AT-biased Cluster-B were present in immature and mature stromata and SPFs but absent in the ascospores. Genotype #13 of O. sinensis was present in semi-ejected ascospores and Genotype #14 in fully ejected ascospores. GC-biased Genotypes #13-14 featured large DNA segment substitutions and genetic material recombination between the genomes of the parental fungi (H. sinensis and the AB067719-type fungus). These ascosporic offspring genotypes combined with varying abundances of S. hepiali in the 2 types of ascospores participated in the control of the development, maturation and ejection of the ascospores. CONCLUSION Multiple genotypes of O. sinensis coexist differentially in the stromata, SFPs and 2 types of C. sinensis ascospores, along with S. hepiali and the AB067719-type fungus. The fungal components in different combinations and their dynamic alterations in the compartments of C. sinensis during maturation play symbiotic roles in the lifecycle of natural C. sinensis.
Collapse
Affiliation(s)
- Yu-Ling Li
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal and Veterinary Sciences, Qinghai University, Xining, Qinghai, China
| | - Xiu-Zhang Li
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal and Veterinary Sciences, Qinghai University, Xining, Qinghai, China
| | - Yi-Sang Yao
- Shenzhen Key Laboratory of Health Science and Technology, Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Zi-Mei Wu
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Ling Gao
- Shenzhen Key Laboratory of Health Science and Technology, Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Ning-Zhi Tan
- Shenzhen Key Laboratory of Health Science and Technology, Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Zhou-Qing Luo
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Wei-Dong Xie
- Shenzhen Key Laboratory of Health Science and Technology, Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Jian-Yong Wu
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology, Shenzhen, Guangdong, China
- Department of Applied Biology and Chemistry Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Jia-Shi Zhu
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal and Veterinary Sciences, Qinghai University, Xining, Qinghai, China
- Shenzhen Key Laboratory of Health Science and Technology, Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| |
Collapse
|