1
|
Rasul F, You D, Jiang Y, Liu X, Daroch M. Thermophilic cyanobacteria-exciting, yet challenging biotechnological chassis. Appl Microbiol Biotechnol 2024; 108:270. [PMID: 38512481 PMCID: PMC10957709 DOI: 10.1007/s00253-024-13082-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 03/23/2024]
Abstract
Thermophilic cyanobacteria are prokaryotic photoautotrophic microorganisms capable of growth between 45 and 73 °C. They are typically found in hot springs where they serve as essential primary producers. Several key features make these robust photosynthetic microbes biotechnologically relevant. These are highly stable proteins and their complexes, the ability to actively transport and concentrate inorganic carbon and other nutrients, to serve as gene donors, microbial cell factories, and sources of bioactive metabolites. A thorough investigation of the recent progress in thermophilic cyanobacteria reveals a significant increase in the number of newly isolated and delineated organisms and wide application of thermophilic light-harvesting components in biohybrid devices. Yet despite these achievements, there are still deficiencies at the high-end of the biotechnological learning curve, notably in genetic engineering and gene editing. Thermostable proteins could be more widely employed, and an extensive pool of newly available genetic data could be better utilised. In this manuscript, we attempt to showcase the most important recent advances in thermophilic cyanobacterial biotechnology and provide an overview of the future direction of the field and challenges that need to be overcome before thermophilic cyanobacterial biotechnology can bridge the gap with highly advanced biotechnology of their mesophilic counterparts. KEY POINTS: • Increased interest in all aspects of thermophilic cyanobacteria in recent years • Light harvesting components remain the most biotechnologically relevant • Lack of reliable molecular biology tools hinders further development of the chassis.
Collapse
Affiliation(s)
- Faiz Rasul
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Dawei You
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Ying Jiang
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Xiangjian Liu
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Maurycy Daroch
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
| |
Collapse
|
2
|
Fernández-Martínez M, Barquín J, Bonada N, Cantonati M, Churro C, Corbera J, Delgado C, Dulsat-Masvidal M, Garcia G, Margalef O, Pascual R, Peñuelas J, Preece C, Sabater F, Seiler H, Zamora-Marín JM, Romero E. Mediterranean springs: Keystone ecosystems and biodiversity refugia threatened by global change. GLOBAL CHANGE BIOLOGY 2024; 30:e16997. [PMID: 37937346 DOI: 10.1111/gcb.16997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/29/2023] [Accepted: 10/09/2023] [Indexed: 11/09/2023]
Abstract
Mediterranean spring ecosystems are unique habitats at the interface between surface water and groundwater. These ecosystems support a remarkable array of biodiversity and provide important ecological functions and ecosystem services. Spring ecosystems are influenced by abiotic, biotic, and anthropogenic factors such as the lithology of their draining aquifers, their climate, and the land use of their recharge area, all of which affect the water chemistry of the aquifer and the spring discharges. One of the most relevant characteristics of spring ecosystems is the temporal stability of environmental conditions, including physicochemical features of the spring water, across seasons and years. This stability allows a wide range of species to benefit from these ecosystems (particularly during dry periods), fostering an unusually high number of endemic species. However, global change poses important threats to these freshwater ecosystems. Changes in temperature, evapotranspiration, and precipitation patterns can alter the water balance and chemistry of spring water. Eutrophication due to agricultural practices and emergent pollutants, such as pharmaceuticals, personal care products, and pesticides, is also a growing concern for the preservation of spring biodiversity. Here, we provide a synthesis of the main characteristics and functioning of Mediterranean spring ecosystems. We then describe their ecological value and biodiversity patterns and highlight the main risks these ecosystems face. Moreover, we identify existing knowledge gaps to guide future research in order to fully uncover the hidden biodiversity within these habitats and understand the main drivers that govern them. Finally, we provide a brief summary of recommended actions that should be taken to effectively manage and preserve Mediterranean spring ecosystems for future generations. Even though studies on Mediterranean spring ecosystems are still scarce, our review shows there are sufficient data to conclude that their future viability as functional ecosystems is under severe threat.
Collapse
Affiliation(s)
- M Fernández-Martínez
- CREAF, Campus de Bellaterra (UAB), Cerdanyola del Vallès, Spain
- Delegació de la Serralada Litoral Central - ICHN, Mataró, Spain
- Department of Evolutionary Biology, Ecology and Environmental Sciences (BEECA-UB), University of Barcelona, Barcelona, Spain
| | - J Barquín
- Instituto de Hidráulica Ambiental de la Universidad de Cantabria (IHCantabria), Santander, Spain
| | - N Bonada
- Freshwater Ecology, Hydrology and Management Research Group (FEHM), Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), University of Barcelona, Barcelona, Spain
| | - M Cantonati
- BIOME Lab, Department of Biological, Geological and Environmental Sciences - BiGeA, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - C Churro
- Laboratory of Virology and Molecular Biology and Laboratory of Phytoplankton, Department of the Sea and Marine Resources, Portuguese Institute for the Sea and Atmosphere (IPMA), Lisbon, Portugal
- Blue Biotechnology and Ecotoxicology (BBE), CIIMAR - Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Matosinhos, Portugal
| | - J Corbera
- Delegació de la Serralada Litoral Central - ICHN, Mataró, Spain
| | - C Delgado
- Departamento de Ecoloxía e Bioloxía Animal, Facultade de Ciencias, Universidade de Vigo, Vigo, Spain
| | - M Dulsat-Masvidal
- IDAEA-CSIC, Institute of Environmental Assessment and Water Research, Barcelona, Spain
| | - G Garcia
- BioSciCat, The Catalan Society of Sciences for the Conservation of Biodiversity, Tarragona, Spain
| | - O Margalef
- CREAF, Campus de Bellaterra (UAB), Cerdanyola del Vallès, Spain
- Departament de Dinàmica de la Terra i de l'Oceà, GRC RISKNAT, UB-Geomodels, Facultat de Ciències de la Terra, University of Barcelona, Barcelona, Spain
| | - R Pascual
- BioSciCat, The Catalan Society of Sciences for the Conservation of Biodiversity, Tarragona, Spain
| | - J Peñuelas
- CREAF, Campus de Bellaterra (UAB), Cerdanyola del Vallès, Spain
- CSIC, Global Ecology Unit, CREAF-CSIC-UAB, Barcelona, Spain
| | - C Preece
- Institute of Agrifood Research and Technology (IRTA), Sustainability in Biosystems Programme, Barcelona, Spain
| | - F Sabater
- CREAF, Campus de Bellaterra (UAB), Cerdanyola del Vallès, Spain
- Delegació de la Serralada Litoral Central - ICHN, Mataró, Spain
- Department of Evolutionary Biology, Ecology and Environmental Sciences (BEECA-UB), University of Barcelona, Barcelona, Spain
| | - H Seiler
- Vegetation Ecology, Institute of Natural Resource Sciences (IUNR), Zurich University of Applied Sciences (ZHAW), Wädenswil, Switzerland
| | - J M Zamora-Marín
- Department of Applied Biology, Centro de Investigación e Innovación Agroalimentaria (CIAGRO-UMH), Miguel Hernández University of Elche, Elche, Spain
| | - E Romero
- CREAF, Campus de Bellaterra (UAB), Cerdanyola del Vallès, Spain
- Department of Evolutionary Biology, Ecology and Environmental Sciences (BEECA-UB), University of Barcelona, Barcelona, Spain
| |
Collapse
|
3
|
Akagha MU, Pietrasiak N, Bustos DF, Vondrášková A, Lamb SC, Johansen JR. Albertania and Egbenema gen. nov. from Nigeria and the United States, expanding biodiversity in the Oculatellaceae (cyanobacteria). JOURNAL OF PHYCOLOGY 2023; 59:1217-1236. [PMID: 37696506 DOI: 10.1111/jpy.13389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 09/13/2023]
Abstract
Knowledge of the tropical terrestrial cyanobacterial flora from the African continent is still limited. Of 31 strains isolated from soil and subaerial samples collected in Lagos State, Nigeria, three were found to be in the Oculatellaceae, including two species in a new genus. Subsequently, isolates from microbial mats in White Sands National Park in New Mexico, United States, and from a rock near the ocean in Puerto Rico, United States, were found to belong to the new genus as well. Cyanobacterial isolates were characterized microscopically, sequenced for the 16S rRNA gene and associated ITS region, and phylogenetically analyzed. Egbenema gen. nov., with three new species, as well as two new species of Albertania were differentiated from all other Oculatellaceae. Both genera belong to a supported clade within the Oculatellaceae that includes Trichotorquatus and Komarkovaea. The two new species of Albertania, A. egbensis and A. latericola, were from the same sample, but were evolutionarily separate based on 16S rRNA gene phylogenies, percent identity below the 98.7% threshold, and ITS rRNA percent dissimilarity >7.0%. Egbenema aeruginosum gen. et sp. nov. was phylogenetically separated from Trichotorquatus and Albertania but was in a clade with other strains belonging to Egbenema. The two Egbenema strains from the United States are here named Egbenema epilithicum sp. nov. and Egbenema gypsiphilum sp. nov. Our results support the hypothesis that further species discoveries of novel cyanobacteria will likely be made in soils and subaerial habitats, as these habitats continue to be studied, both in tropical and temperate biomes.
Collapse
Affiliation(s)
- Mildred U Akagha
- Department of Biology, John Carroll University, University Heights, Ohio, USA
| | - Nicole Pietrasiak
- School of Life Sciences, University of Nevada-Las Vegas, Las Vegas, Nevada, USA
- Plant & Environmental Sciences Department, New Mexico State University, Las Cruces, New Mexico, USA
| | - David F Bustos
- US DOI White Sands National Park, Alamogordo, New Mexico, USA
| | - Alžběta Vondrášková
- Department of Botany, Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| | - Sandra C Lamb
- Department of Marine Sciences, University of Lagos, Akoka, Nigeria
| | - Jeffrey R Johansen
- Department of Biology, John Carroll University, University Heights, Ohio, USA
- Department of Botany, Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| |
Collapse
|
4
|
Bashir F, Bashir A, Bouaïcha N, Chen L, Codd GA, Neilan B, Xu WL, Ziko L, Rajput VD, Minkina T, Arruda RS, Ganai BA. Cyanotoxins, biosynthetic gene clusters, and factors modulating cyanotoxin biosynthesis. World J Microbiol Biotechnol 2023; 39:241. [PMID: 37394567 DOI: 10.1007/s11274-023-03652-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/17/2023] [Indexed: 07/04/2023]
Abstract
Cyanobacterial harmful algal blooms (CHABs) are a global environmental concern that encompasses public health issues, water availability, and water quality owing to the production of various secondary metabolites (SMs), including cyanotoxins in freshwater, brackish water, and marine ecosystems. The frequency, extent, magnitude, and duration of CHABs are increasing globally. Cyanobacterial species traits and changing environmental conditions, including anthropogenic pressure, eutrophication, and global climate change, together allow cyanobacteria to thrive. The cyanotoxins include a diverse range of low molecular weight compounds with varying biochemical properties and modes of action. With the application of modern molecular biology techniques, many important aspects of cyanobacteria are being elucidated, including aspects of their diversity, gene-environment interactions, and genes that express cyanotoxins. The toxicological, environmental, and economic impacts of CHABs strongly advocate the need for continuing, extensive efforts to monitor cyanobacterial growth and to understand the mechanisms regulating species composition and cyanotoxin biosynthesis. In this review, we critically examined the genomic organization of some cyanobacterial species that lead to the production of cyanotoxins and their characteristic properties discovered to date.
Collapse
Affiliation(s)
- Fahim Bashir
- Department of Environmental Science, University of Kashmir, Srinagar, Jammu and Kashmir, 190006, India
| | - Arif Bashir
- Department of Clinical Biochemistry and Biotechnology, Government College for Women, Nawa-Kadal, Srinagar, Jammu & Kashmir, India
| | - Noureddine Bouaïcha
- Laboratory Ecology, Systematic, and Evolution, UMR 8079 Univ. Paris-Sud, CNRS, AgroParisTech, University Paris-Saclay, 91190, Gif-sur-Yvette, France.
| | - Liang Chen
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science (SEES), Yunnan University (YNU), 650500, Kunming, China.
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology (IHB), Chinese Academy of Sciences (CAS), Wuhan, 430072, China.
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Faculty of Water Resources and Hydroelectric Engineering, Xi'an University of Technology, Xi'an, 710048, China.
| | - Geoffrey A Codd
- Biological and Environmental Sciences, University of Stirling, Stirling, FK9 4LA, Scotland, UK
- School of Life Sciences, University of Dundee, Dundee, DD1 5EH, Scotland, UK
| | - Brett Neilan
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia
| | - Wen-Li Xu
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology (IHB), Chinese Academy of Sciences (CAS), Wuhan, 430072, China
| | - Laila Ziko
- School of Life and Medical Sciences, University of Hertfordshire Hosted By Global Academic Foundation, Cairo, Egypt
- Biology Department, School of Sciences and Engineering, The American University in Cairo, New Cairo, 11835, Egypt
| | - Vishnu D Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-On-Don, Russia
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-On-Don, Russia
| | - Renan Silva Arruda
- Laboratory of Ecology and Physiology of Phytoplankton, Department of Plant Biology, University of Rio de Janeiro State, Rio de Janeiro, Brazil
| | - Bashir Ahmad Ganai
- Center of Research for Development (CORD), University of Kashmir, Srinagar, Jammu and Kashmir, 190006, India.
| |
Collapse
|
5
|
Sandzewicz M, Khomutovska N, Łach Ł, Kwiatowski J, Niyatbekov T, Suska-Malawska M, Jasser I. Salinity matters the most: How environmental factors shape the diversity and structure of cyanobacterial mat communities in high altitude arid ecosystems. Front Microbiol 2023; 14:1108694. [PMID: 37125173 PMCID: PMC10136773 DOI: 10.3389/fmicb.2023.1108694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 03/20/2023] [Indexed: 05/02/2023] Open
Abstract
Introduction Microbial mats are complex communities of benthic microorganisms that occur at the soil-water interphase in lakes' shores, streams, and ponds. In the cold, mountainous desert of Eastern Pamir (Tajikistan), where scarce water bodies are influenced by extreme environmental conditions, photosynthetic cyanobacteria form diverse mats. The mats are characterized by different morphology and thickness. Their habitats exhibit a wide range of conditions; from oligosaline to hypersaline, oligotrophic to hypertrophic, and from cold ponds to hot springs. The aim of the present study was to reveal the taxonomic composition and structure of these mats and to examine which environmental factors influence them. Methods Fifty-one mats were collected from small water bodies around Bulunkul, Karakul, and Rangkul Lakes in 2015 and 2017. The physical and chemical properties of the water were measured in situ, while the concentration of nutrients was analyzed ex-situ. To reveal the taxonomic composition of the mats, the hypervariable V3-V4 region of the 16S rRNA gene was examined using NGS technology. Results The results of bioinformatic analyses were compared with microscopic observations. They showed that Cyanobacteria was the dominant phylum, constituting on average 35% of bacterial ASVs, followed by Proteobacteria (28%), Bacteroidota (11%), and Firmicutes (9%). Synechococcales, Oscillatoriales, and Nostocales orders prevailed in Oxyphotobacteria, with a low contribution of Chroococcales, Gloeobacterales, and Chroococcidiopsidales. Occasionally the non-photosynthetic Vampirivibrionia (Melainabacteria) and Sericytochromatia from sister clades to Oxyphotobacteria were noted in the samples. Moreover, there was a high percentage of unidentified cyanobacterial sequences, as well as the recently described Hillbrichtia pamiria gen. et sp. nov., present in one of the samples. Salinity, followed by Na and K concentrations, correlated positively with the composition and structure of Oxyphotobacteria on different taxonomic levels and the abundance of all bacterial ASVs. Discussion The study suggests that the investigated communities possibly host more novel and endemic species. Among the environmental factors, salinity influenced the Oxyphotobacteria communities the most. Overall, the microenvironmental factors, i.e. the conditions in each of the reservoirs seemed to have a larger impact on the diversity of microbial mats in Pamir than the "subregional" factors, related to altitude, mean annual air temperature and distance between these subregions.
Collapse
Affiliation(s)
- Małgorzata Sandzewicz
- Institute of Environmental Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Nataliia Khomutovska
- Institute of Environmental Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Łukasz Łach
- Institute of Environmental Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Jan Kwiatowski
- Institute of Environmental Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Toirbek Niyatbekov
- Institute of Botany, Plant Physiology and Genetics, Academy Science Republic of Tajikistan, Dushanbe, Tajikistan
| | - Małgorzata Suska-Malawska
- Institute of Environmental Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Iwona Jasser
- Institute of Environmental Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
- *Correspondence: Iwona Jasser,
| |
Collapse
|
6
|
Cobos M, Condori RC, Grandez MA, Estela SL, Del Aguila MT, Castro CG, Rodríguez HN, Vargas JA, Tresierra AB, Barriga LA, Marapara JL, Adrianzén PM, Ruiz R, Castro JC. Genomic analysis and biochemical profiling of an unaxenic strain of Synechococcus sp. isolated from the Peruvian Amazon Basin region. Front Genet 2022; 13:973324. [DOI: 10.3389/fgene.2022.973324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 10/18/2022] [Indexed: 11/10/2022] Open
Abstract
Cyanobacteria are diverse photosynthetic microorganisms able to produce a myriad of bioactive chemicals. To make possible the rational exploitation of these microorganisms, it is fundamental to know their metabolic capabilities and to have genomic resources. In this context, the main objective of this research was to determine the genome features and the biochemical profile of Synechococcus sp. UCP002. The cyanobacterium was isolated from the Peruvian Amazon Basin region and cultured in BG-11 medium. Growth parameters, genome features, and the biochemical profile of the cyanobacterium were determined using standardized methods. Synechococcus sp. UCP002 had a specific growth rate of 0.086 ± 0.008 μ and a doubling time of 8.08 ± 0.78 h. The complete genome of Synechococcus sp. UCP002 had a size of ∼3.53 Mb with a high coverage (∼200x), and its quality parameters were acceptable (completeness = 99.29%, complete and single-copy genes = 97.5%, and contamination = 0.35%). Additionally, the cyanobacterium had six plasmids ranging from 24 to 200 kbp. The annotated genome revealed ∼3,422 genes, ∼ 3,374 protein-coding genes (with ∼41.31% hypothetical protein-coding genes), two CRISPR Cas systems, and 61 non-coding RNAs. Both the genome and plasmids had the genes for prokaryotic defense systems. Additionally, the genome had genes coding the transcription factors of the metalloregulator ArsR/SmtB family, involved in sensing heavy metal pollution. The biochemical profile showed primary nutrients, essential amino acids, some essential fatty acids, pigments (e.g., all-trans-β-carotene, chlorophyll a, and phycocyanin), and phenolic compounds. In conclusion, Synechococcus sp. UCP002 shows biotechnological potential to produce human and animal nutrients and raw materials for biofuels and could be a new source of genes for synthetic biological applications.
Collapse
|
7
|
Mukherjee M, Geeta A, Ghosh S, Prusty A, Dutta S, Sarangi AN, Behera S, Adhikary SP, Tripathy S. Genome Analysis Coupled With Transcriptomics Reveals the Reduced Fitness of a Hot Spring Cyanobacterium Mastigocladus laminosus UU774 Under Exogenous Nitrogen Supplement. Front Microbiol 2022; 13:909289. [PMID: 35847102 PMCID: PMC9284123 DOI: 10.3389/fmicb.2022.909289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/20/2022] [Indexed: 11/13/2022] Open
Abstract
The present study focuses on the stress response of a filamentous, AT-rich, heterocystous cyanobacterium Mastigocladus laminosus UU774, isolated from a hot spring, Taptapani, located in the eastern part of India. The genome of UU774 contains an indispensable fragment, scaffold_38, of unknown origin that is implicated during severe nitrogen and nutrition stress. Prolonged exposure to nitrogen compounds during starvation has profound adverse effects on UU774, leading to loss of mobility, loss of ability to fight pathogens, reduced cell division, decreased nitrogen-fixing ability, reduced ability to form biofilms, reduced photosynthetic and light-sensing ability, and reduced production of secreted effectors and chromosomal toxin genes, among others. Among genes showing extreme downregulation when grown in a medium supplemented with nitrogen with the fold change > 5 are transcriptional regulator gene WalR, carbonic anhydrases, RNA Polymerase Sigma F factor, fimbrial protein, and twitching mobility protein. The reduced expression of key enzymes involved in the uptake of phosphate and enzymes protecting oxygen-sensitive nitrogenases is significant during the presence of nitrogen. UU774 is presumed to withstand heat by overexpressing peptidases that may be degrading abnormally folded proteins produced during heat. The absence of a key gene responsible for heterocyst pattern formation, patS, and an aberrant hetN without a functional motif probably lead to the formation of a chaotic heterocyst pattern in UU774. We suggest that UU774 has diverged from Fischerella sp. PCC 9339, another hot spring species isolated in the United States.
Collapse
Affiliation(s)
- Mayuri Mukherjee
- Computational Genomics Lab, Structural Biology and Bioinformatics Division, CSIR Indian Institute of Chemical Biology, Kolkata, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Aribam Geeta
- Computational Genomics Lab, Structural Biology and Bioinformatics Division, CSIR Indian Institute of Chemical Biology, Kolkata, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Samrat Ghosh
- Computational Genomics Lab, Structural Biology and Bioinformatics Division, CSIR Indian Institute of Chemical Biology, Kolkata, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Asharani Prusty
- Computational Genomics Lab, Structural Biology and Bioinformatics Division, CSIR Indian Institute of Chemical Biology, Kolkata, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Subhajeet Dutta
- Computational Genomics Lab, Structural Biology and Bioinformatics Division, CSIR Indian Institute of Chemical Biology, Kolkata, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Aditya Narayan Sarangi
- Computational Genomics Lab, Structural Biology and Bioinformatics Division, CSIR Indian Institute of Chemical Biology, Kolkata, India
| | - Smrutisanjita Behera
- Computational Genomics Lab, Structural Biology and Bioinformatics Division, CSIR Indian Institute of Chemical Biology, Kolkata, India
| | | | - Sucheta Tripathy
- Computational Genomics Lab, Structural Biology and Bioinformatics Division, CSIR Indian Institute of Chemical Biology, Kolkata, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|