1
|
Zhao L, Svetec N, Begun DJ. De Novo Genes. Annu Rev Genet 2024; 58:211-232. [PMID: 39088850 DOI: 10.1146/annurev-genet-111523-102413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2024]
Abstract
Although the majority of annotated new genes in a given genome appear to have arisen from duplication-related mechanisms, recent studies have shown that genes can also originate de novo from ancestrally nongenic sequences. Investigating de novo-originated genes offers rich opportunities to understand the origin and functions of new genes, their regulatory mechanisms, and the associated evolutionary processes. Such studies have uncovered unexpected and intriguing facets of gene origination, offering novel perspectives on the complexity of the genome and gene evolution. In this review, we provide an overview of the research progress in this field, highlight recent advancements, identify key technical and conceptual challenges, and underscore critical questions that remain to be addressed.
Collapse
Affiliation(s)
- Li Zhao
- Laboratory of Evolutionary Genetics and Genomics, The Rockefeller University, New York, NY, USA; ,
| | - Nicolas Svetec
- Laboratory of Evolutionary Genetics and Genomics, The Rockefeller University, New York, NY, USA; ,
| | - David J Begun
- Department of Evolution and Ecology, University of California, Davis, California, USA;
| |
Collapse
|
2
|
Yadalam PK, Anegundi RV, Ardila CM. Evolution Oroinformatics: A Deep Learning Perspective in Personalised Dental Care. Int Dent J 2024; 74:1174-1175. [PMID: 38853054 PMCID: PMC11561509 DOI: 10.1016/j.identj.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 05/06/2024] [Indexed: 06/11/2024] Open
Affiliation(s)
- Pradeep Kumar Yadalam
- Department of Periodontics, Saveetha Dental College, Saveetha Institute of Medical and Technology Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu, India
| | - Raghavendra Vamsi Anegundi
- Department of Periodontics, Saveetha Dental College, Saveetha Institute of Medical and Technology Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu, India
| | - Carlos-M Ardila
- Colombia. Biomedical Stomatology Research Group, Universidad de Antioquia, Medellín, Colombia.
| |
Collapse
|
3
|
Uribe C, Nery MF, Zavala K, Mardones GA, Riadi G, Opazo JC. Evolution of ion channels in cetaceans: a natural experiment in the tree of life. Sci Rep 2024; 14:17024. [PMID: 39043711 PMCID: PMC11266680 DOI: 10.1038/s41598-024-66082-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 06/26/2024] [Indexed: 07/25/2024] Open
Abstract
Cetaceans represent a natural experiment within the tree of life in which a lineage changed from terrestrial to aquatic habitats. This shift involved phenotypic modifications, representing an opportunity to explore the genetic bases of phenotypic diversity. Among the different molecular systems that maintain cellular homeostasis, ion channels are crucial for the proper physiological functioning of all living species. This study aims to explore the evolution of ion channels during the evolutionary history of cetaceans. To do so, we created a bioinformatic pipeline to annotate the repertoire of ion channels in the genome of the species included in our sampling. Our main results show that cetaceans have, on average, fewer protein-coding genes and a higher percentage of annotated ion channels than non-cetacean mammals. Signals of positive selection were detected in ion channels related to the heart, locomotion, visual and neurological phenotypes. Interestingly, we predict that the NaV1.5 ion channel of most toothed whales (odontocetes) is sensitive to tetrodotoxin, similar to NaV1.7, given the presence of tyrosine instead of cysteine, in a specific position of the ion channel. Finally, the gene turnover rate of the cetacean crown group is more than three times faster than that of non-cetacean mammals.
Collapse
Affiliation(s)
- Cristóbal Uribe
- Department of Bioinformatics, Program in Sciences Mention Modeling of Chemical and Biological Systems, School of Bioinformatics Engineering, Center for Bioinformatics, Simulation and Modeling, CBSM, Faculty of Engineering, University of Talca, Campus Talca, Talca, Chile
| | - Mariana F Nery
- Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas-UNICAMP, Cidade Universitária, Campinas, Brazil
| | - Kattina Zavala
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Valdivia, Chile
| | - Gonzalo A Mardones
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Valdivia, Chile
- Integrative Biology Group, Valdivia, Chile
| | - Gonzalo Riadi
- Department of Bioinformatics, Center for Bioinformatics, Simulation and Modeling, Faculty of Engineering, CBSM, University of Talca, Talca, Chile.
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Valdivia, Chile.
| | - Juan C Opazo
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Valdivia, Chile.
- Integrative Biology Group, Valdivia, Chile.
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Valdivia, Chile.
| |
Collapse
|
4
|
Randall JG, Gatesy J, McGowen MR, Springer MS. Molecular Evidence for Relaxed Selection on the Enamel Genes of Toothed Whales (Odontoceti) with Degenerative Enamel Phenotypes. Genes (Basel) 2024; 15:228. [PMID: 38397217 PMCID: PMC10888366 DOI: 10.3390/genes15020228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Different species of toothed whales (Odontoceti) exhibit a variety of tooth forms and enamel types. Some odontocetes have highly prismatic enamel with Hunter-Schreger bands, whereas enamel is vestigial or entirely lacking in other species. Different tooth forms and enamel types are associated with alternate feeding strategies that range from biting and grasping prey with teeth in most oceanic and river dolphins to the suction feeding of softer prey items without the use of teeth in many beaked whales. At the molecular level, previous studies have documented inactivating mutations in the enamel-specific genes of some odontocete species that lack complex enamel. At a broader scale, however, it is unclear whether enamel complexity across the full diversity of extant Odontoceti correlates with the relative strength of purifying selection on enamel-specific genes. Here, we employ sequence alignments for seven enamel-specific genes (ACP4, AMBN, AMELX, AMTN, ENAM, KLK4, MMP20) in 62 odontocete species that are representative of all extant families. The sequences for 33 odontocete species were obtained from databases, and sequences for the remaining 29 species were newly generated for this study. We screened these alignments for inactivating mutations (e.g., frameshift indels) and provide a comprehensive catalog of these mutations in species with one or more inactivated enamel genes. Inactivating mutations are rare in Delphinidae (oceanic dolphins) and Platanistidae/Inioidea (river dolphins) that have higher enamel complexity scores. By contrast, mutations are much more numerous in clades such as Monodontidae (narwhal, beluga), Ziphiidae (beaked whales), Physeteroidea (sperm whales), and Phocoenidae (porpoises) that are characterized by simpler enamel or even enamelless teeth. Further, several higher-level taxa (e.g., Hyperoodon, Kogiidae, Monodontidae) possess shared inactivating mutations in one or more enamel genes, which suggests loss of function of these genes in the common ancestor of each clade. We also performed selection (dN/dS) analyses on a concatenation of these genes and used linear regression and Spearman's rank-order correlation to test for correlations between enamel complexity and two different measures of selection intensity (# of inactivating mutations per million years, dN/dS values). Selection analyses revealed that relaxed purifying selection is especially prominent in physeteroids, monodontids, and phocoenids. Linear regressions and correlation analyses revealed a strong negative correlation between selective pressure (dN/dS values) and enamel complexity. Stronger purifying selection (low dN/dS) is found on branches with more complex enamel and weaker purifying selection (higher dN/dS) occurs on branches with less complex enamel or enamelless teeth. As odontocetes diversified into a variety of feeding modes, in particular, the suction capture of prey, a reduced reliance on the dentition for prey capture resulted in the relaxed selection of genes that are critical to enamel development.
Collapse
Affiliation(s)
- Jason G. Randall
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 92521, USA;
| | - John Gatesy
- Division of Vertebrate Zoology, American Museum of Natural History, New York, NY 10024, USA;
| | - Michael R. McGowen
- Department of Vertebrate Zoology, Smithsonian National Museum of Natural History, MRC 108, P.O. Box 37012, Washington, DC 20013, USA;
| | - Mark S. Springer
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 92521, USA;
| |
Collapse
|
5
|
Zhou H, Fu N, Tian Y, Zhang N, Fan Q, Zeng F, Wang Y, Bai G, Chen B. Transcriptome Sequencing of Gingival Tissues from Impacted Third Molars Patients Reveals the Alterations of Gene Expression. Comb Chem High Throughput Screen 2024; 27:2350-2365. [PMID: 38178683 DOI: 10.2174/0113862073256803231114095626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/25/2023] [Accepted: 10/02/2023] [Indexed: 01/06/2024]
Abstract
OBJECTIVE The removal of impacted third molars by surgery may occur with a series of complications, whereas limited information about the postoperative pathogenesis is available. The objective of this study is to identify changes in gene expression after flap surgical removal of impacted third molars and provide potential information to reduce postoperative complications. METHODS The gingival tissues of twenty patients with flap surgical removal of impacted third molars and twenty healthy volunteers were collected for gene expression testing. The collected gingival tissues were used RNA sequencing technology and quantitative real-time PCR validation was performed. DEG was mapped to protein databases such as GO and KEGG for functional annotation and, based on annotation information, for mining of differential expression genes in patients with mpacted third molars. RESULTS A total of 555 genes were differentially expressed. Among the top up-regulated genes, HLA-DRB4, CCL20, and CXCL8 were strongly associated with immune response and signal transduction. Among the top down-regulated genes, SPRR2B, CLDN17, LCE3D and LCE3E were related to keratinocyte differentiation, IFITM5, and BGLAP were related to bone mineralization, UGT2B17 is associated with susceptibility to osteoporosis. KEGG results showed that the DEGs were related to multiple disease-related pathways. CONCLUSION This first transcriptome analysis of gingival tissues from patients with surgical removal of impacted third molars provides new insights into postoperative genetic changes. The results may establish a basis for future research on minimizing the incidence of complications after flap-treated third molars.
Collapse
Affiliation(s)
- Haolin Zhou
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, Institute of Life Sciences, Zunyi Medical University, Zunyi, Guizhou, 563000, China
- Hospital of Stomatology, Zunyi Medical University, Zunyi, Guizhou, 563000, China
| | - Nanqing Fu
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, Institute of Life Sciences, Zunyi Medical University, Zunyi, Guizhou, 563000, China
| | - Yuan Tian
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, Institute of Life Sciences, Zunyi Medical University, Zunyi, Guizhou, 563000, China
- Hospital of Stomatology, Zunyi Medical University, Zunyi, Guizhou, 563000, China
| | - Nini Zhang
- Hospital of Stomatology, Zunyi Medical University, Zunyi, Guizhou, 563000, China
| | - Qin Fan
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, Institute of Life Sciences, Zunyi Medical University, Zunyi, Guizhou, 563000, China
- Hospital of Stomatology, Zunyi Medical University, Zunyi, Guizhou, 563000, China
| | - Fengjiao Zeng
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, Institute of Life Sciences, Zunyi Medical University, Zunyi, Guizhou, 563000, China
- Hospital of Stomatology, Zunyi Medical University, Zunyi, Guizhou, 563000, China
| | - Yueyue Wang
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, Institute of Life Sciences, Zunyi Medical University, Zunyi, Guizhou, 563000, China
- Hospital of Stomatology, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Guohui Bai
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, Institute of Life Sciences, Zunyi Medical University, Zunyi, Guizhou, 563000, China
- Hospital of Stomatology, Zunyi Medical University, Zunyi, Guizhou, 563000, China
| | - Bin Chen
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, Institute of Life Sciences, Zunyi Medical University, Zunyi, Guizhou, 563000, China
| |
Collapse
|
6
|
Hautier L, Gomes Rodrigues H, Ferreira-Cardoso S, Emerling CA, Porcher ML, Asher RJ, Portela Miguez R, Delsuc F. From teeth to pad: tooth loss and development of keratinous structures in sirenians. Proc Biol Sci 2023; 290:20231932. [PMID: 38018114 PMCID: PMC10685118 DOI: 10.1098/rspb.2023.1932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/03/2023] [Indexed: 11/30/2023] Open
Abstract
Sirenians are a well-known example of morphological adaptation to a shallow-water grazing diet characterized by a modified feeding apparatus and orofacial morphology. Such adaptations were accompanied by an anterior tooth reduction associated with the development of keratinized pads, the evolution of which remains elusive. Among sirenians, the recently extinct Steller's sea cow represents a special case for being completely toothless. Here, we used μ-CT scans of sirenian crania to understand how motor-sensor systems associated with tooth innervation responded to innovations such as keratinized pads and continuous dental replacement. In addition, we surveyed nine genes associated with dental reduction for signatures of loss of function. Our results reveal how patterns of innervation changed with modifications of the dental formula, especially continuous replacement in manatees. Both our morphological and genomic data show that dental development was not completely lost in the edentulous Steller's sea cows. By tracing the phylogenetic history of tooth innervation, we illustrate the role of development in promoting the innervation of keratinized pads, similar to the secondary use of dental canals for innervating neomorphic keratinized structures in other tetrapod groups.
Collapse
Affiliation(s)
- Lionel Hautier
- Institut des Sciences de l’Évolution, Université Montpellier, CNRS, IRD, EPHE, Montpellier 34095, France
- Mammal Section, Life Sciences, Vertebrate Division, The Natural History Museum, London, UK
| | - Helder Gomes Rodrigues
- Centre de Recherche en Paléontologie—Paris (CR2P), UMR CNRS 7207, Muséum National d'Histoire Naturelle, Sorbonne Université, Paris, France
| | - Sérgio Ferreira-Cardoso
- Institut des Sciences de l’Évolution, Université Montpellier, CNRS, IRD, EPHE, Montpellier 34095, France
| | | | - Marie-Lou Porcher
- Institut des Sciences de l’Évolution, Université Montpellier, CNRS, IRD, EPHE, Montpellier 34095, France
| | - Robert J. Asher
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Roberto Portela Miguez
- Mammal Section, Life Sciences, Vertebrate Division, The Natural History Museum, London, UK
| | - Frédéric Delsuc
- Institut des Sciences de l’Évolution, Université Montpellier, CNRS, IRD, EPHE, Montpellier 34095, France
| |
Collapse
|
7
|
Springer MS, Emerling CA, Gatesy J. Three Blind Moles: Molecular Evolutionary Insights on the Tempo and Mode of Convergent Eye Degeneration in Notoryctes typhlops (Southern Marsupial Mole) and Two Chrysochlorids (Golden Moles). Genes (Basel) 2023; 14:2018. [PMID: 38002961 PMCID: PMC10671557 DOI: 10.3390/genes14112018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/20/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023] Open
Abstract
Golden moles (Chrysochloridae) and marsupial moles (Notoryctidae) are textbook examples of convergent evolution. Both taxa are highly adapted to subterranean lifestyles and have powerful limbs for digging through the soil/sand, ears that are adapted for low-frequency hearing, vestigial eyes that are covered by skin and fur, and the absence of optic nerve connections between the eyes and the brain. The eyes of marsupial moles also lack a lens as well as retinal rods and cones. Two hypotheses have been proposed to account for the greater degeneracy of the eyes of marsupial moles than golden moles. First, marsupial moles may have had more time to adapt to their underground habitat than other moles. Second, the eyes of marsupial moles may have been rapidly and recently vestigialized to (1) reduce the injurious effects of sand getting into the eyes and (2) accommodate the enlargement of lacrimal glands that keep the nasal cavity moist and prevent the entry of sand into the nasal passages during burrowing. Here, we employ molecular evolutionary methods on DNA sequences for 38 eye genes, most of which are eye-specific, to investigate the timing of relaxed selection (=neutral evolution) for different groups of eye-specific genes that serve as proxies for distinct functional components of the eye (rod phototransduction, cone phototransduction, lens/cornea). Our taxon sampling included 12 afrothere species, of which two are golden moles (Amblysomus hottentotus, Chrysochloris asiatica), and 28 marsupial species including two individuals of the southern marsupial mole (Notoryctes typhlops). Most of the sequences were mined from databases, but we also provide new genome data for A. hottentotus and one of the two N. typhlops individuals. Even though the eyes of golden moles are less degenerate than the eyes of marsupial moles, there are more inactivating mutations (e.g., frameshift indels, premature stop codons) in their cone phototransduction and lens/cornea genes than in orthologous genes of the marsupial mole. We estimate that cone phototransduction recovery genes were inactivated first in each group, followed by lens/cornea genes and then cone phototransduction activation genes. All three groups of genes were inactivated earlier in golden moles than in marsupial moles. For the latter, we estimate that lens/cornea genes were inactivated ~17.8 million years ago (MYA) when stem notoryctids were burrowing in the soft soils of Australian rainforests. Selection on phototransduction activation genes was relaxed much later (5.38 MYA), during the early stages of Australia's aridification that produced coastal sand plains and eventually sand dunes. Unlike cone phototransduction activation genes, rod phototransduction activation genes are intact in both golden moles and one of the two individuals of N. typhlops. A second marsupial mole individual has just a single inactivating mutation in one of the rod phototransduction activation genes (PDE6B). One explanation for this result is that some rod phototransduction activation genes are pleiotropic and are expressed in extraocular tissues, possibly in conjunction with sperm thermotaxis.
Collapse
Affiliation(s)
- Mark S. Springer
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 92521, USA
| | | | - John Gatesy
- Division of Vertebrate Zoology, American Museum of Natural History, New York, NY 10024, USA;
| |
Collapse
|
8
|
Magpali L, Bielawski JP. Why are whales big? Genes behind ocean giants. Trends Genet 2023; 39:436-438. [PMID: 36997429 DOI: 10.1016/j.tig.2023.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023]
Abstract
Gigantism is prevalent in animals, but it has never reached more extreme levels than in aquatic mammals such as whales, dolphins, and porpoises. A new study by Silva et al. has uncovered five genes underlying this gigantism, a phenotype with important connections to aging and cancer suppression in long-lived animals.
Collapse
|
9
|
Marx FG, Hocking DP, Park T, Pollock TI, Parker WMG, Rule JP, Fitzgerald EMG, Evans AR. Suction causes novel tooth wear in marine mammals, with implications for feeding evolution in baleen whales. J MAMM EVOL 2023. [DOI: 10.1007/s10914-022-09645-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
10
|
Liang T, Wang SK, Smith C, Zhang H, Hu Y, Seymen F, Koruyucu M, Kasimoglu Y, Kim JW, Zhang C, Saunders TL, Simmer JP, Hu JCC. Enamel defects in Acp4 R110C/R110C mice and human ACP4 mutations. Sci Rep 2022; 12:16477. [PMID: 36183038 PMCID: PMC9526733 DOI: 10.1038/s41598-022-20684-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/16/2022] [Indexed: 11/13/2022] Open
Abstract
Human ACP4 (OMIM*606362) encodes a transmembrane protein that belongs to histidine acid phosphatase (ACP) family. Recessive mutations in ACP4 cause non-syndromic hypoplastic amelogenesis imperfecta (AI1J, OMIM#617297). While ACP activity has long been detected in developing teeth, its functions during tooth development and the pathogenesis of ACP4-associated AI remain largely unknown. Here, we characterized 2 AI1J families and identified a novel ACP4 disease-causing mutation: c.774_775del, p.Gly260Aspfs*29. To investigate the role of ACP4 during amelogenesis, we generated and characterized Acp4R110C mice that carry the p.(Arg110Cys) loss-of-function mutation. Mouse Acp4 expression was the strongest at secretory stage ameloblasts, and the protein localized primarily at Tomes' processes. While Acp4 heterozygous (Acp4+/R110C) mice showed no phenotypes, incisors and molars of homozygous (Acp4R110C/R110C) mice exhibited a thin layer of aplastic enamel with numerous ectopic mineralized nodules. Acp4R110C/R110C ameloblasts appeared normal initially but underwent pathology at mid-way of secretory stage. Ultrastructurally, sporadic enamel ribbons grew on mineralized dentin but failed to elongate, and aberrant needle-like crystals formed instead. Globs of organic matrix accumulated by the distal membranes of defective Tomes' processes. These results demonstrated a critical role for ACP4 in appositional growth of dental enamel probably by processing and regulating enamel matrix proteins around mineralization front apparatus.
Collapse
Affiliation(s)
- Tian Liang
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1011 N University Ave, Ann Arbor, MI, 48109, USA
| | - Shih-Kai Wang
- Department of Dentistry, National Taiwan University School of Dentistry, No. 1, Changde St., Zhongzheng Dist., Taipei City, 100, Taiwan
- Department of Pediatric Dentistry, National Taiwan University Children's Hospital, No. 8, Zhongshan S. Rd., Zhongzheng Dist., Taipei City, 100, Taiwan
| | - Charles Smith
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1011 N University Ave, Ann Arbor, MI, 48109, USA
- Department of Anatomy & Cell Biology, Faculty of Medicine & Health Sciences, McGill University, Montreal, QC, Canada
| | - Hong Zhang
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1011 N University Ave, Ann Arbor, MI, 48109, USA
| | - Yuanyuan Hu
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1011 N University Ave, Ann Arbor, MI, 48109, USA
| | - Figen Seymen
- Department of Pedodontics, Faculty of Dentistry, Altinbas University, 34147, Istanbul, Turkey
| | - Mine Koruyucu
- Department of Pedodontics, Faculty of Dentistry, Istanbul University, 34116, Istanbul, Turkey
| | - Yelda Kasimoglu
- Department of Pedodontics, Faculty of Dentistry, Istanbul University, 34116, Istanbul, Turkey
| | - Jung-Wook Kim
- Department of Molecular Genetics & Dental Research Institute, School of Dentistry, Seoul National University, Seoul, 03080, Republic of Korea
- Department of Pediatric Dentistry & Dental Research Institute, School of Dentistry, Seoul National University, Seoul, 03080, Republic of Korea
| | - Chuhua Zhang
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1011 N University Ave, Ann Arbor, MI, 48109, USA
| | - Thomas L Saunders
- Division of Molecular, Medicine and Genetics, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - James P Simmer
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1011 N University Ave, Ann Arbor, MI, 48109, USA.
| | - Jan C-C Hu
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1011 N University Ave, Ann Arbor, MI, 48109, USA
| |
Collapse
|