1
|
Tseng YH, Kuo LY, Borokini I, Fawcett S. The role of deep hybridization in fern speciation: Examples from the Thelypteridaceae. AMERICAN JOURNAL OF BOTANY 2024; 111:e16388. [PMID: 39135339 DOI: 10.1002/ajb2.16388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 07/15/2024] [Accepted: 07/15/2024] [Indexed: 08/24/2024]
Abstract
PREMISE Hybridization is recognized as an important mechanism in fern speciation, with many allopolyploids known among congeners, as well as evidence of ancient genome duplications. Several contemporary instances of deep (intergeneric) hybridization have been noted, invariably resulting in sterile progeny. We chose the christelloid lineage of the family Thelypteridaceae, recognized for its high frequency of both intra- and intergeneric hybrids, to investigate recent hybrid speciation between deeply diverged lineages. We also seek to understand the ecological and evolutionary outcomes of resulting lineages across the landscape. METHODS By phasing captured reads within a phylogenomic data set of GoFlag 408 nuclear loci using HybPhaser, we investigated candidate hybrids to identify parental lineages. We estimated divergence ages by inferring a dated phylogeny using fossil calibrations with treePL. We investigated ecological niche conservatism between one confirmed intergeneric allotetraploid and its diploid progenitors using the centroid, overlap, unfilling, and expansion (COUE) framework. RESULTS We provide evidence for at least six instances of intergeneric hybrid speciation within the christelloid clade and estimate up to 45 million years of divergence between progenitors. The niche quantification analysis showed moderate niche overlap between an allopolyploid species and its progenitors, with significant divergence from the niche of one progenitor and conservatism to the other. CONCLUSIONS The examples provided here highlight the overlooked role that allopolyploidization following intergeneric hybridization may play in fern diversification and range and niche expansions. Applying this approach to other fern taxa may reveal a similar pattern of deep hybridization resulting in highly successful novel lineages.
Collapse
Affiliation(s)
- Yu-Hsin Tseng
- Department of Life Sciences, National Chung Hsing University, no. 145 Xingda Rd., South District, 40227, Taichung, Taiwan
| | - Li-Yaung Kuo
- College of Life Science, National Tsing Hua University, No. 101, Section 2, Kuang Fu Road, Hsinchu, 30044, Taiwan
| | - Israel Borokini
- Department of Ecology, Montana State University, 310 Lewis Hall, Bozeman, 59717, MT, USA
- University and Jepson Herbaria, University of California, Berkeley, 1001 Valley Life Sciences Building, Berkeley, 94720-2465, CA, USA
| | - Susan Fawcett
- University and Jepson Herbaria, University of California, Berkeley, 1001 Valley Life Sciences Building, Berkeley, 94720-2465, CA, USA
- National Tropical Botanical Garden, 3530 Papālina Road, Kalāheo, 96741, HI, USA
| |
Collapse
|
2
|
Almeida TE, Santos Leal BS. Recurrent allopolyploidy and its implications for conservation in vascular plants: a commentary on 'Population genomics of the Isoetes appalachiana (Isoetaceae) complex supports a "diploids-first" approach to conservation'. ANNALS OF BOTANY 2024; 133:i-ii. [PMID: 38183619 PMCID: PMC11005762 DOI: 10.1093/aob/mcad201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2024]
Abstract
This article comments on:
David Wickell, Jacob Landis, Elizabeth Zimmer and Fay-Wei Li, Population genomics of the Isoetes appalachiana (Isoetaceae) complex supports a ‘diploids-first’ approach to conservation, Annals of Botany, Volume 133, Issue 2, 01 February 2024, Pages 261–272, https://doi.org/10.1093/aob/mcad180
Collapse
Affiliation(s)
- Thaís Elias Almeida
- Universidade Federal de Pernambuco, Centro de Biociências, Departamento de Botânica, Avenida Professor Moraes Rego – 1235, 50.670-420, Recife, PE, Brazil
| | - Bárbara Simões Santos Leal
- Instituto Tecnológico Vale Desenvolvimento Sustentável, Grupo de Biodiversidade e Serviços Ecossistêmicos, Rua Boaventura da Silva – 955, 66.055-090, Belém, PA, Brazil
| |
Collapse
|
3
|
Tukhbatullin A, Ermakov O, Kapustina S, Starikov V, Tambovtseva V, Titov S, Brandler O. Surrounded by Kindred: Spermophilus major Hybridization with Other Spermophilus Species in Space and Time. BIOLOGY 2023; 12:880. [PMID: 37372163 DOI: 10.3390/biology12060880] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/05/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023]
Abstract
Among the numerous described cases of hybridization in mammals, the most intriguing are (a) cases of introgressive hybridization deeply affecting the evolutionary history of species, and (b) models involving not a pair of species but a multi-species complex. Therefore, the hybridization history of the russet ground squirrel Spermophilus major, whose range has repeatedly changed due to climatic fluctuations and now borders the ranges of four related species, is of great interest. The main aims of this study were to determine the direction and intensity of gene introgression, the spatial depth of the infiltration of extraneous genes into the S. major range, and to refine the hypothesis of the hybridogenic replacement of mitochondrial genomes in the studied group. Using phylogenetic analysis of the variability of mitochondrial (CR, cytb) and nuclear (SmcY, BGN, PRKCI, c-myc, i6p53) markers, we determined the contribution of neighboring species to the S. major genome. We showed that 36% of S. major individuals had extraneous alleles. All peripheral species that were in contact with S. major contributed towards its genetic variability. We also proposed a hypothesis for the sequence and localization of serial hybridization events. Our assessment of the S. major genome implications of introgression highlights the importance of implementing conservation measures to protect this species.
Collapse
Affiliation(s)
- Andrey Tukhbatullin
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Vavilova Str. 26, Moscow 119334, Russia
| | - Oleg Ermakov
- Faculty of Physics, Mathematics and Natural Sciences, Belinsky Institute of Teacher Education, Penza State University, Lermontov Str. 37, Penza 440026, Russia
| | - Svetlana Kapustina
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Vavilova Str. 26, Moscow 119334, Russia
| | - Vladimir Starikov
- Department of Biology and Biotechnology, Institute of Natural and Technical Sciences, Surgut State University, Lenin Avenue 1, Surgut 628412, Russia
| | - Valentina Tambovtseva
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Vavilova Str. 26, Moscow 119334, Russia
| | - Sergey Titov
- Faculty of Physics, Mathematics and Natural Sciences, Belinsky Institute of Teacher Education, Penza State University, Lermontov Str. 37, Penza 440026, Russia
| | - Oleg Brandler
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Vavilova Str. 26, Moscow 119334, Russia
| |
Collapse
|
4
|
Vieira Lima L, Salino A, Kessler M, Rouhan G, Testo WL, Suzart Argolo C, Consortium G, Elias Almeida T. Phylogenomic evolutionary insights in the fern family Gleicheniaceae. Mol Phylogenet Evol 2023; 184:107782. [PMID: 37044191 DOI: 10.1016/j.ympev.2023.107782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 03/16/2023] [Accepted: 04/06/2023] [Indexed: 04/14/2023]
Abstract
The pantropical fern family Gleicheniaceae comprises approximately 157 species. Seven genera are currently recognized in the family, although their monophyly is still uncertain due to low sampling in phylogenetic studies. We examined the monophyly of the genera through extended sampling, using the first phylogenomic inference of the family including data from both nuclear and plastid genomes. Seventy-six samples were sequenced (70 Gleicheniaceae species and six outgroups) using high throughput sequencing, including all seven currently recognized genera. Plastid and nuclear data were recovered and assembled; the nuclear data was phased to reduce paralogy as well as hybrid noise in the final recovered topology. Maximum likelihood trees were built for each locus, and a concatenated dataset was built for both datasets. A species tree based on a multispecies coalescent model was generated, and divergence time analyses performed. We here present the first genomic phylogenetic inferences concerning Gleicheniaceae, confirming the monophyly of most genera except Sticherus, which we recovered as paraphyletic. Although most of the extant genera of Gleicheniaceae originated during the Mesozoic, several genera show Neogene and even Quaternary diversifications, and our results suggest that reticulation and polyploidy may have played significant roles during this diversification. However, some genera, such as Rouxopteris and Stromatopteris, appear to represent evolutionary relicts.
Collapse
Affiliation(s)
- Lucas Vieira Lima
- Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Botânica, Laboratório de Sistemática Vegetal, Belo Horizonte, Minas Gerais, Brazil.
| | - Alexandre Salino
- Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Botânica, Laboratório de Sistemática Vegetal, Belo Horizonte, Minas Gerais, Brazil.
| | - Michael Kessler
- Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland.
| | - Germinal Rouhan
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, UA, Paris, France.
| | - Weston L Testo
- Department of Science and Education, Negaunee Integrative Research Center, The Field Museum, Chicago, IL, USA.
| | - Caio Suzart Argolo
- Universidade Estadual de Santa Cruz, Departamento de Ciências Biológicas, Centro de Biotecnologia e Genética, Rodovia Ilhéus-Itabuna, km 16, Ilhéus-BA, Brasil.
| | - GoFlag Consortium
- GoFlag is an NSF-funded project (DEB 1541506) based at the University of Florida, Field Museum, and the University of Arizona. Project personnel include (at UF), J. Gordon Burleigh, Emily Sessa, Stuart McDaniel, Christine Davis, Pavlo Antonenko, Sarah Carey, Lorena Endara, Weston Testo; (at Field), Matt von Konrat, Eve Gaus; (at UA): Hong Cui
| | - Thaís Elias Almeida
- Universidade Federal de Pernambuco, Centro de Biociências, Departamento de Botânica, Avenida Professor Morais Rego 1235, CEP 50.670-420, Recife, PE, Brazil.
| |
Collapse
|
5
|
Iakovou E, Kourti M. A Comprehensive Overview of the Complex Role of Oxidative Stress in Aging, The Contributing Environmental Stressors and Emerging Antioxidant Therapeutic Interventions. Front Aging Neurosci 2022; 14:827900. [PMID: 35769600 PMCID: PMC9234325 DOI: 10.3389/fnagi.2022.827900] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 05/10/2022] [Indexed: 12/15/2022] Open
Abstract
Introduction Aging is a normal, inevitable, irreversible, and progressive process which is driven by internal and external factors. Oxidative stress, that is the imbalance between prooxidant and antioxidant molecules favoring the first, plays a key role in the pathophysiology of aging and comprises one of the molecular mechanisms underlying age-related diseases. However, the oxidative stress theory of aging has not been successfully proven in all animal models studying lifespan, meaning that altering oxidative stress/antioxidant defense systems did not always lead to a prolonged lifespan, as expected. On the other hand, animal models of age-related pathological phenotypes showed a well-correlated relationship with the levels of prooxidant molecules. Therefore, it seems that oxidative stress plays a more complicated role than the one once believed and this role might be affected by the environment of each organism. Environmental factors such as UV radiation, air pollution, and an unbalanced diet, have also been implicated in the pathophysiology of aging and seem to initiate this process more rapidly and even at younger ages. Aim The purpose of this review is to elucidate the role of oxidative stress in the physiology of aging and the effect of certain environmental factors in initiating and sustaining this process. Understanding the pathophysiology of aging will contribute to the development of strategies to postpone this phenomenon. In addition, recent studies investigating ways to alter the antioxidant defense mechanisms in order to prevent aging will be presented. Conclusions Careful exposure to harmful environmental factors and the use of antioxidant supplements could potentially affect the biological processes driving aging and slow down the development of age-related diseases. Maybe a prolonged lifespan could not be achieved by this strategy alone, but a longer healthspan could also be a favorable target.
Collapse
Affiliation(s)
- Evripides Iakovou
- Department of Life Sciences, European University Cyprus, Nicosia, Cyprus
| | - Malamati Kourti
- Department of Life Sciences, European University Cyprus, Nicosia, Cyprus
- Angiogenesis and Cancer Drug Discovery Group, Basic and Translational Cancer Research Center, Department of Life Sciences, European University Cyprus, Nicosia, Cyprus
- *Correspondence: Malamati Kourti
| |
Collapse
|