1
|
Chien Y, Wu YR, Chen CY, Yang YP, Ching LJ, Wang BX, Chang WC, Chiang IH, Su P, Chen SY, Lin WC, Wang IC, Lin TC, Chen SJ, Chiou SH. Identifying Multiomic Signatures of X-Linked Retinoschisis-Derived Retinal Organoids and Mice Harboring Patient-Specific Mutation Using Spatiotemporal Single-Cell Transcriptomics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2405818. [PMID: 39503290 DOI: 10.1002/advs.202405818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/26/2024] [Indexed: 11/08/2024]
Abstract
X-linked retinoschisis (XLRS) is an inherited retinal disorder with severe retinoschisis and visual impairments. Multiomics approaches integrate single-cell RNA-sequencing (scRNA-seq) and spatiotemporal transcriptomics (ST) offering potential for dissecting transcriptional networks and revealing cell-cell interactions involved in biomolecular pathomechanisms. Herein, a multimodal approach is demonstrated combining high-throughput scRNA-seq and ST to elucidate XLRS-specific transcriptomic signatures in two XLRS-like models with retinal splitting phenotypes, including genetically engineered (Rs1emR209C) mice and patient-derived retinal organoids harboring the same patient-specific p.R209C mutation. Through multiomics transcriptomic analysis, the endoplasmic reticulum (ER) stress/eukryotic initiation factor 2 (eIF2) signaling, mTOR pathway, and the regulation of eIF4 and p70S6K pathways are identified as chronically enriched and highly conserved disease pathways between two XLRS-like models. Western blots and proteomics analysis validate the occurrence of unfolded protein responses, chronic eIF2α signaling activation, and chronic ER stress-induced apoptosis. Furthermore, therapeutic targeting of the chronic ER stress/eIF2α pathway activation synergistically enhances the efficacy of AAV-mediated RS1 gene delivery, ultimately improving bipolar cell integrity, postsynaptic transmission, disorganized retinal architecture, and electrophysiological responses. Collectively, the complex transcriptomic signatures obtained from Rs1emR209C mice and patient-derived retinal organoids using the multiomics approach provide opportunities to unravel potential therapeutic targets for incurable retinal diseases, such as XLRS.
Collapse
Affiliation(s)
- Yueh Chien
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, 11217, Taiwan
- Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
| | - You-Ren Wu
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, 11217, Taiwan
- Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
| | - Chih-Ying Chen
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, 11217, Taiwan
- Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
| | - Yi-Ping Yang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, 11217, Taiwan
- Institute of Food Safety and Health Risk Assessment, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
| | - Lo-Jei Ching
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, 11217, Taiwan
- Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
| | - Bo-Xuan Wang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, 11217, Taiwan
- Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
| | - Wei-Chao Chang
- Center for Molecular Medicine, China Medical University Hospital, Taichung, 40447, Taiwan
| | - I-Hsun Chiang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, 11217, Taiwan
| | - Pong Su
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, 11217, Taiwan
| | - Shih-Yu Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
- Genome and Systems Biology Degree Program, Academia Sinica and National Taiwan University, Taipei, 10617, Taiwan
| | - Wen-Chang Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
| | - I-Chieh Wang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, 11217, Taiwan
- Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
| | - Tai-Chi Lin
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, 11217, Taiwan
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei, 112201, Taiwan
| | - Shih-Jen Chen
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei, 112201, Taiwan
| | - Shih-Hwa Chiou
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, 11217, Taiwan
- Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei, 112201, Taiwan
- Genomics Research Center, Academia Sinica, Taipei, 11529, Taiwan
| |
Collapse
|
2
|
Hassan S, Hsu Y, Thompson JM, Kalmanek E, VandeLune JA, Stanley S, Drack AV. The dose-response relationship of subretinal gene therapy with rAAV2tYF-CB-h RS1 in a mouse model of X-linked retinoschisis. Front Med (Lausanne) 2024; 11:1304819. [PMID: 38414621 PMCID: PMC10898246 DOI: 10.3389/fmed.2024.1304819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 01/16/2024] [Indexed: 02/29/2024] Open
Abstract
Purpose X-linked retinoschisis (XLRS), due to loss-of-function mutations in the retinoschisin (RS1) gene, is characterized by a modest to severe decrease in visual acuity. Clinical trials for XLRS utilizing intravitreal (IVT) gene therapy showed ocular inflammation. We conducted a subretinal dose-response preclinical study using rAAV2tYF-CB-hRS1 utilizing the Rs1 knockout (Rs1-KO) mouse to investigate short- and long-term retinal rescue after subretinal gene delivery. Methods Rs1-KO mice were subretinally injected with 2 μL of rAAV2tYF-CB-hRS1 vector with 8E9 viral genomes (vg)/eye, 8E8 vg/eye, 8E7 vg/eye, or sham injection, and compared to untreated eyes. Reconstitution of human RS1 protein was detected using western blotting. Analysis of retinal function by electroretinography (ERG) and structural analysis by optical coherence tomography (OCT) were performed at 1, 2, 3, 5, 7, and 12 months post injection (MPI). Immunohistochemistry (IHC) was performed to evaluate cone rescue on the cellular level. Functional vision was evaluated using a visually guided swim assay (VGSA). Results Western blotting analysis showed human RS1 protein expression in a dose-dependent manner. Quantification of western blotting showed that the RS1 protein expression in mice treated with the 8E8 vg dose was near the wild-type (WT) expression levels. ERG demonstrated dose-dependent effects: At 1 MPI the 8E8 vg dose treated eyes had higher light-adapted (LA) ERG amplitudes in 3.0 flash and 5 Hz flicker compared to untreated (p < 0.0001) and sham-treated eyes (p < 0.0001) which persisted until the 12 MPI endpoint, consistent with improved cone function. ERG b-wave amplitudes were higher in response to dark-adapted (DA) 0.01 dim flash and 3.0 standard combined response (SCR) compared to sham-treated (p < 0.01) and untreated eyes (p < 0.001) which persisted until 3 MPI, suggesting short-term improvement of the rod photoreceptors. All injections, including sham-treated, resulted in a cyst severity score of 1 (no cavities), with significant reductions compared to untreated eyes up to 3 MPI (p < 0.05). The high and low dose groups showed inconsistent ERG improvements, despite reduced cyst severity, emphasizing the dose-dependent nature of gene augmentation's efficacy and the tenuous connection between cyst reduction and ERG improvement. IHC data showed a significant cone rescue in eyes treated with the 8E8 vg dose compared to sham-treated and untreated eyes. VGSA showed better functional vision in 8E8 vg dose treated mice. Eyes treated with the highest dose showed occasional localized degeneration in the outer nuclear layer. Conclusion Our data suggest that a dose of 8E8 vg/eye subretinally improves retinal function and structure in the Rs1-KO mouse. It improves cone function, rod function, and reduces cyst severity. Sham treatment resolves schisis cysts, but 8E8 vg/eye is needed for optimal retinal electrical function rescue. These findings offer a promising path for clinical translation to human trials.
Collapse
Affiliation(s)
- Salma Hassan
- Department of Ophthalmology and Visual Sciences, Institute for Vision Research, and Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- Biomedical Science-Cell and Developmental Biology Graduate Program, Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA, United States
| | - Ying Hsu
- Department of Ophthalmology and Visual Sciences, Institute for Vision Research, and Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Jacob M Thompson
- Department of Ophthalmology and Visual Sciences, Institute for Vision Research, and Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- Department of Epidemiology, College of Public Health, University of Iowa, Iowa City, IA, United States
| | - Emily Kalmanek
- Department of Ophthalmology and Visual Sciences, Institute for Vision Research, and Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Joel A VandeLune
- Department of Ophthalmology and Visual Sciences, Institute for Vision Research, and Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Sarah Stanley
- Department of Ophthalmology and Visual Sciences, Institute for Vision Research, and Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Arlene V Drack
- Department of Ophthalmology and Visual Sciences, Institute for Vision Research, and Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- Biomedical Science-Cell and Developmental Biology Graduate Program, Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA, United States
- Department of Pediatrics, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
3
|
van der Veen I, Heredero Berzal A, Koster C, ten Asbroek ALMA, Bergen AA, Boon CJF. The Road towards Gene Therapy for X-Linked Juvenile Retinoschisis: A Systematic Review of Preclinical Gene Therapy in Cell-Based and Rodent Models of XLRS. Int J Mol Sci 2024; 25:1267. [PMID: 38279267 PMCID: PMC10816913 DOI: 10.3390/ijms25021267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/12/2024] [Accepted: 01/17/2024] [Indexed: 01/28/2024] Open
Abstract
X-linked juvenile retinoschisis (XLRS) is an early-onset progressive inherited retinopathy affecting males. It is characterized by abnormalities in the macula, with formation of cystoid retinal cavities, frequently accompanied by splitting of the retinal layers, impaired synaptic transmission of visual signals, and associated loss of visual acuity. XLRS is caused by loss-of-function mutations in the retinoschisin gene located on the X chromosome (RS1, MIM 30083). While proof-of-concept studies for gene augmentation therapy have been promising in in vitro and rodent models, clinical trials in XLRS patients have not been successful thus far. We performed a systematic literature investigation using search strings related to XLRS and gene therapy in in vivo and in vitro models. Three rounds of screening (title/abstract, full text and qualitative) were performed by two independent reviewers until consensus was reached. Characteristics related to study design and intervention were extracted from all studies. Results were divided into studies using (1) viral and (2) non-viral therapies. All in vivo rodent studies that used viral vectors were assessed for quality and risk of bias using the SYRCLE's risk-of-bias tool. Studies using alternative and non-viral delivery techniques, either in vivo or in vitro, were extracted and reviewed qualitatively, given the diverse and dispersed nature of the information. For in-depth analysis of in vivo studies using viral vectors, outcome data for optical coherence tomography (OCT), immunohistopathology and electroretinography (ERG) were extracted. Meta-analyses were performed on the effect of recombinant adeno-associated viral vector (AAV)-mediated gene augmentation therapies on a- and b-wave amplitude as well as the ratio between b- and a-wave amplitudes (b/a-ratio) extracted from ERG data. Subgroup analyses and meta-regression were performed for model, dose, age at injection, follow-up time point and delivery method. Between-study heterogeneity was assessed with a Chi-square test of homogeneity (I2). We identified 25 studies that target RS1 and met our search string. A total of 19 of these studies reported rodent viral methods in vivo. Six of the 25 studies used non-viral or alternative delivery methods, either in vitro or in vivo. Of these, five studies described non-viral methods and one study described an alternative delivery method. The 19 aforementioned in vivo studies were assessed for risk of bias and quality assessments and showed inconsistency in reporting. This resulted in an unclear risk of bias in most included studies. All 19 studies used AAVs to deliver intact human or murine RS1 in rodent models for XLRS. Meta-analyses of a-wave amplitude, b-wave amplitude, and b/a-ratio showed that, overall, AAV-mediated gene augmentation therapy significantly ameliorated the disease phenotype on these parameters. Subgroup analyses and meta-regression showed significant correlations between b-wave amplitude effect size and dose, although between-study heterogeneity was high. This systematic review reiterates the high potential for gene therapy in XLRS, while highlighting the importance of careful preclinical study design and reporting. The establishment of a systematic approach in these studies is essential to effectively translate this knowledge into novel and improved treatment alternatives.
Collapse
Affiliation(s)
- Isa van der Veen
- Department of Ophthalmology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (I.v.d.V.); (A.H.B.); (C.K.); (A.A.B.)
- Department of Human Genetics, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands;
| | - Andrea Heredero Berzal
- Department of Ophthalmology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (I.v.d.V.); (A.H.B.); (C.K.); (A.A.B.)
- Department of Human Genetics, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands;
| | - Céline Koster
- Department of Ophthalmology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (I.v.d.V.); (A.H.B.); (C.K.); (A.A.B.)
- Department of Human Genetics, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands;
| | - Anneloor L. M. A. ten Asbroek
- Department of Human Genetics, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands;
| | - Arthur A. Bergen
- Department of Ophthalmology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (I.v.d.V.); (A.H.B.); (C.K.); (A.A.B.)
- Department of Human Genetics, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands;
| | - Camiel J. F. Boon
- Department of Ophthalmology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (I.v.d.V.); (A.H.B.); (C.K.); (A.A.B.)
- Department of Ophthalmology, Leiden University Medical Center, Leiden University, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
4
|
Ku CA, Wei LW, Sieving PA. X-Linked Retinoschisis. Cold Spring Harb Perspect Med 2023; 13:a041288. [PMID: 36690462 PMCID: PMC10513161 DOI: 10.1101/cshperspect.a041288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
X-linked retinoschisis (XLRS) is an inherited vitreoretinal dystrophy causing visual impairment in males starting at a young age with an estimated prevalence of 1:5000 to 1:25,000. The condition was first observed in two affected brothers by Josef Haas in 1898 and is clinically diagnosed by characteristic intraretinal cysts arranged in a petaloid "spoke-wheel" pattern centered in the macula. When clinical electroretinogram (ERG) testing began in the 1960s, XLRS was noted to have a characteristic reduction of the dark-adapted b-wave amplitude despite normal or usually nearly normal a-wave amplitudes, which became known as the "electronegative ERG response" of XLRS disease. The causative gene, RS1, was identified on the X-chromosome in 1997 and led to understanding the molecular and cellular basis of the condition, discerning the structure and function of the retinoschisin protein, and generating XLRS murine models. Along with parallel development of gene delivery vectors suitable for targeting retinal diseases, successful gene augmentation therapy was demonstrated by rescuing the XLRS phenotype in mouse. Two human phase I/II therapeutic XLRS gene augmentation studies were initiated; and although these did not yield definitive improvement in visual function, they gave significant new knowledge and experience, which positions the field for further near-term clinical testing with enhanced, next-generation gene therapy for XLRS patients.
Collapse
Affiliation(s)
- Cristy A Ku
- Department of Ophthalmology & Vision Science, University of California Davis, Sacramento, California 95817, USA
| | - Lisa W Wei
- National Institutes of Health, National Institute of Allergy and Infectious Diseases, NIH Office of Biodefense, Research Resources and Translational Research/Vaccine Section, Bethesda, Maryland 20892, USA
| | - Paul A Sieving
- Department of Ophthalmology & Vision Science, University of California Davis, Sacramento, California 95817, USA
| |
Collapse
|
5
|
Fenner BJ, Russell JF, Drack AV, Dumitrescu AV, Sohn EH, Russell SR, Boldt HC, Affatigato LM, Hoffmann JM, Andorf JL, Stone EM, Han IC. Long-term functional and structural outcomes in X-linked retinoschisis: implications for clinical trials. Front Med (Lausanne) 2023; 10:1204095. [PMID: 37396901 PMCID: PMC10310546 DOI: 10.3389/fmed.2023.1204095] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 05/26/2023] [Indexed: 07/04/2023] Open
Abstract
Introduction X-linked retinoschisis (XLRS) is an inherited retinal disease (IRD) caused by pathogenic mutations in the retinoschisin gene, RS1. Affected individuals develop retinal layer separation, leading to loss of visual acuity (VA). Several XLRS gene therapy trials have been attempted but none have met their primary endpoints. An improved understanding of XLRS natural history and clinical outcomes may better inform future trials. Here, we report the long-term functional and structural outcomes of XLRS and the relevance of RS1 genotypes to the visual prognosis of affected individuals. Methods A retrospective chart review of patients with molecularly confirmed X-linked retinoschisis was performed. Functional and structural outcomes, and RS1 genotype data, were included for analysis. Results Fifty-two patients with XLRS from 33 families were included in the study. Median age at symptom onset was 5 years (range 0-49) and median follow-up was 5.7 years (range 0.1-56.8). Macular retinoschisis occurred in 103 of 104 eyes (99.0%), while peripheral retinoschisis occurred in 48 of 104 eyes (46.2%), most often in the inferotemporal quadrant (40.4%). Initial and final VA were similar (logMAR 0.498 vs. 0.521; p = 0.203). Fifty of 54 eyes (92.6%) developed detectable outer retinal loss by age 20, and 29 of 66 eyes (43.9%) had focal or diffuse outer retinal atrophy (ORA) by age 40. ORA but not central subfield thickness (CST) was associated with reduced VA. Inter-eye correlation was modest for VA (r-squared = 0.03; p = 0.08) and CST (r-squared = 0.15; p = 0.001). Carbonic anhydrase inhibitors (CAIs) improved CST (p = 0.026), but not VA (p = 0.380). Eight of 104 eyes (7.7%) had XLRS-related retinal detachment (RD), which was associated with poorer outcomes compared to eyes without RD (median final VA 0.875 vs. 0.487; p <0.0001). RS1 null genotypes had greater odds of at least moderate visual impairment at final follow-up (OR 7.81; 95% CI 2.17, 28.10; p = 0.002) which was independent of age at onset, initial CST, initial ORA, or previous RD. Discussion Overall, long-term follow-up of XLRS patients demonstrated relatively stable VA, with presenting CST, development of ORA, and null RS1 mutations associated with poorer long-term visual outcomes, indicating a clinically relevant genotype-phenotype correlation in XLRS.
Collapse
Affiliation(s)
- Beau J. Fenner
- Institute for Vision Research, University of Iowa, Iowa City, IA, United States
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- Department of Medical Retina, Singapore National Eye Centre, Singapore, Singapore
- Singapore Eye Research Institute, Singapore, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Jonathan F. Russell
- Institute for Vision Research, University of Iowa, Iowa City, IA, United States
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Arlene V. Drack
- Institute for Vision Research, University of Iowa, Iowa City, IA, United States
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Alina V. Dumitrescu
- Institute for Vision Research, University of Iowa, Iowa City, IA, United States
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Elliott H. Sohn
- Institute for Vision Research, University of Iowa, Iowa City, IA, United States
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Stephen R. Russell
- Institute for Vision Research, University of Iowa, Iowa City, IA, United States
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - H. Culver Boldt
- Institute for Vision Research, University of Iowa, Iowa City, IA, United States
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | | | - Jeremy M. Hoffmann
- Institute for Vision Research, University of Iowa, Iowa City, IA, United States
| | - Jeaneen L. Andorf
- Institute for Vision Research, University of Iowa, Iowa City, IA, United States
| | - Edwin M. Stone
- Institute for Vision Research, University of Iowa, Iowa City, IA, United States
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Ian C. Han
- Institute for Vision Research, University of Iowa, Iowa City, IA, United States
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
6
|
Pennesi ME, Yang P, Birch DG, Weng CY, Moore AT, Iannaccone A, Comander JI, Jayasundera T, Chulay J. Intravitreal Delivery of rAAV2tYF-CB-hRS1 Vector for Gene Augmentation Therapy in Patients with X-Linked Retinoschisis: 1-Year Clinical Results. Ophthalmol Retina 2022; 6:1130-1144. [PMID: 35781068 DOI: 10.1016/j.oret.2022.06.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 01/06/2023]
Abstract
PURPOSE To evaluate the safety and efficacy of rAAV2tYF-CB-hRS1, a recombinant adeno-associated virus vector expressing retinoschisin (RS1), in individuals with retinal disease caused by mutations in the RS1 gene. DESIGN Open-label, phase I/II dose-escalation clinical trial. SUBJECTS Twenty-two adults and 5 children with X-linked retinoschisis (XLRS), aged 10 to 79 years, were enrolled. METHODS The participants received an intravitreal (IVT) injection of rAAV2tYF-CB-hRS1, at 1 of 3 dose levels, in the poorer-seeing eye and were followed up for a minimum of 1 year after treatment. MAIN OUTCOME MEASURES The primary safety measures were local (ocular) or systemic (nonocular) adverse events (AEs) during the 12-month period after study agent administration. Efficacy was assessed based on measures of best-corrected visual acuity (BCVA), schisis cavity volume, static perimetry visual field testing, and electroretinography (ERG). RESULTS The IVT administration of rAAV2tYF-CB-hRS1 was generally safe at each of the dose levels. There were no AEs resulting in early termination, and no dose-limiting toxicities were reported. The most common ocular AEs observed were related to ocular inflammation (blurred vision, visual impairment, and the presence of vitreous cells, keratic precipitates, vitreous floaters, anterior chamber cells, and vitreous haze). Ocular inflammation was generally either mild or moderate in severity and responsive to standard immunosuppressive therapy, except in 3 participants (all in the highest-dose group) who developed chronic uveitis, which required prolonged therapy. Two patients experienced retinal detachments. There was no overall improvement in BCVA, visual fields, or ERG in the study eye compared with that in the fellow eye for any dose group. Variable changes in the cystic cavity volume over time were similar in the study and fellow eyes. CONCLUSIONS Gene augmentation therapy with rAAV2tYF-CB-hRS1 for XLRS was generally safe and well tolerated but failed to demonstrate a measurable treatment effect. The clinical trial is ongoing through 5 years of follow-up to assess its long-term safety.
Collapse
Affiliation(s)
- Mark Edward Pennesi
- Casey Eye Institute, Oregon Health & Sciences University, Portland, Oregon; Retina Foundation of the Southwest, Dallas, Texas; Cullen Eye Institute, Baylor College of Medicine, Houston, Texas; University of California San Francisco, San Francisco, California; Duke Eye Center, Duke Medical Center, Durham, North Carolina; Massachusetts Eye and Ear Infirmary, Boston, Massachusetts; Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan; Applied Genetic Technologies Corporation, Alachua, Florida.
| | - Paul Yang
- Casey Eye Institute, Oregon Health & Sciences University, Portland, Oregon; Retina Foundation of the Southwest, Dallas, Texas; Cullen Eye Institute, Baylor College of Medicine, Houston, Texas; University of California San Francisco, San Francisco, California; Duke Eye Center, Duke Medical Center, Durham, North Carolina; Massachusetts Eye and Ear Infirmary, Boston, Massachusetts; Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan; Applied Genetic Technologies Corporation, Alachua, Florida
| | - David G Birch
- Casey Eye Institute, Oregon Health & Sciences University, Portland, Oregon; Retina Foundation of the Southwest, Dallas, Texas; Cullen Eye Institute, Baylor College of Medicine, Houston, Texas; University of California San Francisco, San Francisco, California; Duke Eye Center, Duke Medical Center, Durham, North Carolina; Massachusetts Eye and Ear Infirmary, Boston, Massachusetts; Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan; Applied Genetic Technologies Corporation, Alachua, Florida
| | - Christina Y Weng
- Casey Eye Institute, Oregon Health & Sciences University, Portland, Oregon; Retina Foundation of the Southwest, Dallas, Texas; Cullen Eye Institute, Baylor College of Medicine, Houston, Texas; University of California San Francisco, San Francisco, California; Duke Eye Center, Duke Medical Center, Durham, North Carolina; Massachusetts Eye and Ear Infirmary, Boston, Massachusetts; Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan; Applied Genetic Technologies Corporation, Alachua, Florida
| | - Anthony T Moore
- Casey Eye Institute, Oregon Health & Sciences University, Portland, Oregon; Retina Foundation of the Southwest, Dallas, Texas; Cullen Eye Institute, Baylor College of Medicine, Houston, Texas; University of California San Francisco, San Francisco, California; Duke Eye Center, Duke Medical Center, Durham, North Carolina; Massachusetts Eye and Ear Infirmary, Boston, Massachusetts; Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan; Applied Genetic Technologies Corporation, Alachua, Florida
| | - Alessandro Iannaccone
- Casey Eye Institute, Oregon Health & Sciences University, Portland, Oregon; Retina Foundation of the Southwest, Dallas, Texas; Cullen Eye Institute, Baylor College of Medicine, Houston, Texas; University of California San Francisco, San Francisco, California; Duke Eye Center, Duke Medical Center, Durham, North Carolina; Massachusetts Eye and Ear Infirmary, Boston, Massachusetts; Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan; Applied Genetic Technologies Corporation, Alachua, Florida
| | - Jason I Comander
- Casey Eye Institute, Oregon Health & Sciences University, Portland, Oregon; Retina Foundation of the Southwest, Dallas, Texas; Cullen Eye Institute, Baylor College of Medicine, Houston, Texas; University of California San Francisco, San Francisco, California; Duke Eye Center, Duke Medical Center, Durham, North Carolina; Massachusetts Eye and Ear Infirmary, Boston, Massachusetts; Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan; Applied Genetic Technologies Corporation, Alachua, Florida
| | - Thiran Jayasundera
- Casey Eye Institute, Oregon Health & Sciences University, Portland, Oregon; Retina Foundation of the Southwest, Dallas, Texas; Cullen Eye Institute, Baylor College of Medicine, Houston, Texas; University of California San Francisco, San Francisco, California; Duke Eye Center, Duke Medical Center, Durham, North Carolina; Massachusetts Eye and Ear Infirmary, Boston, Massachusetts; Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan; Applied Genetic Technologies Corporation, Alachua, Florida
| | - Jeffrey Chulay
- Casey Eye Institute, Oregon Health & Sciences University, Portland, Oregon; Retina Foundation of the Southwest, Dallas, Texas; Cullen Eye Institute, Baylor College of Medicine, Houston, Texas; University of California San Francisco, San Francisco, California; Duke Eye Center, Duke Medical Center, Durham, North Carolina; Massachusetts Eye and Ear Infirmary, Boston, Massachusetts; Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan; Applied Genetic Technologies Corporation, Alachua, Florida
| | -
- Casey Eye Institute, Oregon Health & Sciences University, Portland, Oregon; Retina Foundation of the Southwest, Dallas, Texas; Cullen Eye Institute, Baylor College of Medicine, Houston, Texas; University of California San Francisco, San Francisco, California; Duke Eye Center, Duke Medical Center, Durham, North Carolina; Massachusetts Eye and Ear Infirmary, Boston, Massachusetts; Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan; Applied Genetic Technologies Corporation, Alachua, Florida
| |
Collapse
|
7
|
Vijayasarathy C, Zeng Y, Marangoni D, Dong L, Pan ZH, Simpson EM, Fariss RN, Sieving PA. Targeted Expression of Retinoschisin by Retinal Bipolar Cells in XLRS Promotes Resolution of Retinoschisis Cysts Sans RS1 From Photoreceptors. Invest Ophthalmol Vis Sci 2022; 63:8. [PMID: 36227606 PMCID: PMC9583743 DOI: 10.1167/iovs.63.11.8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 09/18/2022] [Indexed: 01/14/2023] Open
Abstract
Purpose Loss of retinoschisin (RS1) function underlies X-linked retinoschisis (XLRS) pathology. In the retina, both photoreceptor inner segments and bipolar cells express RS1. However, the loss of RS1 function causes schisis primarily in the inner retina. To understand these cell type-specific phenotypes, we decoupled RS1 effects in bipolar cells from that in photoreceptors. Methods Bipolar cell transgene RS1 expression was achieved using two inner retina-specific promoters: (1) a minimal promoter engineered from glutamate receptor, metabotropic glutamate receptor 6 gene (mini-mGluR6/ Grm6) and (2) MiniPromoter (Ple155). Adeno-associated virus vectors encoding RS1 gene under either the mini-mGluR6 or Ple-155 promoter were delivered to the XLRS mouse retina through intravitreal or subretinal injection on postnatal day 14. Retinal structure and function were assessed 5 weeks later: immunohistochemistry for morphological characterization, optical coherence tomography and electroretinography (ERG) for structural and functional evaluation. Results Immunohistochemical analysis of RS1expression showed that expression with the MiniPromoter (Ple155) was heavily enriched in bipolar cells. Despite variations in vector penetrance and gene transfer efficiency across the injected retinas, those retinal areas with robust bipolar cell RS1 expression showed tightly packed bipolar cells with fewer cavities and marked improvement in inner retinal structure and synaptic function as judged by optical coherence tomography and electroretinography, respectively. Conclusions These results demonstrate that RS1 gene expression primarily in bipolar cells of the XLRS mouse retina, independent of photoreceptor expression, can ameliorate retinoschisis structural pathology and provide further evidence of RS1 role in cell adhesion.
Collapse
Affiliation(s)
- Camasamudram Vijayasarathy
- Section for Translational Research in Retinal and Macular Degeneration, National Institutes of Health, Bethesda, Maryland, United States
| | - Yong Zeng
- Section for Translational Research in Retinal and Macular Degeneration, National Institutes of Health, Bethesda, Maryland, United States
| | - Dario Marangoni
- Section for Translational Research in Retinal and Macular Degeneration, National Institutes of Health, Bethesda, Maryland, United States
| | - Lijin Dong
- Genetic Engineering Facility, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Zhuo-Hua Pan
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Elizabeth M. Simpson
- Centre for Molecular Medicine and Therapeutics at BC Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Robert N. Fariss
- Biological Imaging Core, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Paul A. Sieving
- Section for Translational Research in Retinal and Macular Degeneration, National Institutes of Health, Bethesda, Maryland, United States
- Center for Ocular Regenerative Therapy, Department of Ophthalmology, University of California Davis, United States
| |
Collapse
|
8
|
Mano F, Sugioka K, Kuniyoshi K, Kondo H, Kusaka S. Identification of Interphotoreceptor retinoid-binding protein in the Schisis cavity fluid of a patient with congenital X-linked Retinoschisis. BMC Ophthalmol 2022; 22:14. [PMID: 34991515 PMCID: PMC8740355 DOI: 10.1186/s12886-021-02234-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 12/23/2021] [Indexed: 11/10/2022] Open
Abstract
Background This case report describes the surgical outcome in a patient with congenital X-linked retinoschisis (CXLRS) and the results of proteomic analysis of surgically extracted samples from both vitreous and intraschisis cavities by mass spectrometry. Case presentation A 3-month-old boy presented with extensive retinoschisis involving macula and retinal periphery in both eyes. Genetic analysis confirmed retinoschisin 1 mutation (c.554C > T), and an electroretinogram showed significant reduction of b-wave and decreased cone and rod responses, which led to a diagnosis of CXLRS. By performing pars plana vitrectomy, including inner wall retinectomy, clear visual axes with stable retinal conditions and functional vision in both eyes were obtained during the 4 years of follow-up. Proteomic analysis of surgically retrieved fluid from the intraschisis cavity revealed a higher expression of interphotoreceptor retinoid-binding protein (IRBP) than that from the vitreous humor. However, both samples showed equal levels of albumin, transferrin, and pigment epithelium-derived factor. Conclusions Cellular adhesive imperfection in CXLRS may cause IRBP diffusion from the interphotoreceptor matrix, resulting in the strong expression of IRBP in the intraschisis cavity. An impaired retinoid cycle caused by an absence of IRBP in the retina may potentially underlie the pathology of CXLRS. Supplementary Information The online version contains supplementary material available at 10.1186/s12886-021-02234-5.
Collapse
Affiliation(s)
- Fukutaro Mano
- Department of Ophthalmology, Kindai University Faculty of Medicine, Osakasayama, Japan
| | - Koji Sugioka
- Department of Ophthalmology, Kindai University Faculty of Medicine, Osakasayama, Japan. .,Department of Ophthalmology, Kindai University Nara Hospital, 1248-1 Otodacho, Ikoma City, Nara, 630-0293, Japan.
| | - Kazuki Kuniyoshi
- Department of Ophthalmology, Kindai University Faculty of Medicine, Osakasayama, Japan
| | - Hiroyuki Kondo
- Department of Ophthalmology, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Shunji Kusaka
- Department of Ophthalmology, Kindai University Faculty of Medicine, Osakasayama, Japan
| |
Collapse
|
9
|
A Rare Case of Juvenile X-Linked Retinoschisis. ACTA MEDICA BULGARICA 2021. [DOI: 10.2478/amb-2021-0045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Aim: To present a rare clinical case of X-linked retinoschisis, confirmed clinically, electrophysiologically and genetically.
Material and methods: A 12-year-old boy underwent detailed ophthalmic examination including fundus photography, full-field, multifocal and pattern electroretinography, visual field testing, optical coherence tomography, which established the clinical diagnosis, confirmed also genetically.
Results: The clinical findings included a slight loss of vision, central and paracentral scotomas, a characteristic spoke-wheel pattern appearance of the macula in fundoscopy and the pathognomic appearance of splitting of the retinal layers in the macula with foveal schisis with cystic spaces on OCT. Reduced cone and rod ERG responds were detected with the characteristic decreasing of b-ware near the isoelectric line. The genetic analysis found that the patient was hemizygous for the missense mutation c.598G>A (p.Arg200Cys) of RS1 gene, coming from his asymptomatic mother.
Conclusion: The comprehensive clinical, electrophysiological and genetic testing of patients with rare hereditary retinal dystrophies is essential for the correct diagnosis and the choice of therapeutic approach.
Collapse
|
10
|
Amato A, Arrigo A, Aragona E, Manitto MP, Saladino A, Bandello F, Battaglia Parodi M. Gene Therapy in Inherited Retinal Diseases: An Update on Current State of the Art. Front Med (Lausanne) 2021; 8:750586. [PMID: 34722588 PMCID: PMC8553993 DOI: 10.3389/fmed.2021.750586] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/20/2021] [Indexed: 12/11/2022] Open
Abstract
Background: Gene therapy cannot be yet considered a far perspective, but a tangible therapeutic option in the field of retinal diseases. Although still confined in experimental settings, the preliminary results are promising and provide an overall scenario suggesting that we are not so far from the application of gene therapy in clinical settings. The main aim of this review is to provide a complete and updated overview of the current state of the art and of the future perspectives of gene therapy applied on retinal diseases. Methods: We carefully revised the entire literature to report all the relevant findings related to the experimental procedures and the future scenarios of gene therapy applied in retinal diseases. A clinical background and a detailed description of the genetic features of each retinal disease included are also reported. Results: The current literature strongly support the hope of gene therapy options developed for retinal diseases. Although being considered in advanced stages of investigation for some retinal diseases, such as choroideremia (CHM), retinitis pigmentosa (RP), and Leber's congenital amaurosis (LCA), gene therapy is still quite far from a tangible application in clinical practice for other retinal diseases. Conclusions: Gene therapy is an extremely promising therapeutic tool for retinal diseases. The experimental data reported in this review offer a strong hope that gene therapy will be effectively available in clinical practice in the next years.
Collapse
Affiliation(s)
- Alessia Amato
- Department of Ophthalmology, Scientific Institute San Raffaele Hospital, Milan, Italy
| | - Alessandro Arrigo
- Department of Ophthalmology, Scientific Institute San Raffaele Hospital, Milan, Italy
| | - Emanuela Aragona
- Department of Ophthalmology, Scientific Institute San Raffaele Hospital, Milan, Italy
| | - Maria Pia Manitto
- Department of Ophthalmology, Scientific Institute San Raffaele Hospital, Milan, Italy
| | - Andrea Saladino
- Department of Ophthalmology, Scientific Institute San Raffaele Hospital, Milan, Italy
| | - Francesco Bandello
- Department of Ophthalmology, Scientific Institute San Raffaele Hospital, Milan, Italy
| | | |
Collapse
|
11
|
Shughoury A, Ciulla TA, Bakall B, Pennesi ME, Kiss S, Cunningham ET. Genes and Gene Therapy in Inherited Retinal Disease. Int Ophthalmol Clin 2021; 61:3-45. [PMID: 34584043 DOI: 10.1097/iio.0000000000000377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
12
|
Zeng Y, Qian H, Campos MM, Li Y, Vijayasarathy C, Sieving PA. Rs1h -/y exon 3-del rat model of X-linked retinoschisis with early onset and rapid phenotype is rescued by RS1 supplementation. Gene Ther 2021; 29:431-440. [PMID: 34548657 PMCID: PMC8938309 DOI: 10.1038/s41434-021-00290-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/03/2021] [Accepted: 08/18/2021] [Indexed: 12/27/2022]
Abstract
Animal models of X-linked juvenile retinoschisis (XLRS) are valuable tools for understanding basic biochemical function of retinoschisin (RS1) protein and to investigate outcomes of preclinical efficacy and toxicity studies. In order to work with an eye larger than mouse, we generated and characterized an Rs1h−/y knockout rat model created by removing exon 3. This rat model expresses no normal RS1 protein. The model shares features of an early onset and more severe phenotype of human XLRS. The morphologic pathology includes schisis cavities at postnatal day 15 (p15), photoreceptors that are misplaced into the subretinal space and OPL, and a reduction of photoreceptor cell numbers by p21. By 6 mo age only 1–3 rows of photoreceptors nuclei remain, and the inner/outer segment layers and the OPL shows major changes. Electroretinogram recordings show functional loss with considerable reduction of both the a-wave and b-wave by p28, indicating early age loss and dysfunction of photoreceptors. The ratio of b-/a-wave amplitudes indicates impaired synaptic transmission to bipolar cells in addition. Supplementing the Rs1h−/y exon3-del retina with normal human RS1 protein using AAV8-RS1 delivery improved the retinal structure. This Rs1h−/y rat model provides a further tool to explore underlying mechanisms of XLRS pathology and to evaluate therapeutic intervention for the XLRS condition.
Collapse
Affiliation(s)
- Yong Zeng
- National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Haohua Qian
- National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Yichao Li
- National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Paul A Sieving
- National Eye Institute, National Institutes of Health, Bethesda, MD, USA. .,Department of Ophthalmology, University of California Davis, Sacramento, CA, USA. .,Center for Ocular Regenerative Therapy, Department of Ophthalmology and Vision Science, University of California Davis, Sacramento, CA, USA.
| |
Collapse
|
13
|
Vijaysarathy C, Babu Sardar Pasha SP, Sieving PA. Of men and mice: Human X-linked retinoschisis and fidelity in mouse modeling. Prog Retin Eye Res 2021; 87:100999. [PMID: 34390869 DOI: 10.1016/j.preteyeres.2021.100999] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 08/02/2021] [Accepted: 08/06/2021] [Indexed: 02/07/2023]
Abstract
X-linked Retinoschisis (XLRS) is an early-onset transretinal dystrophy, often with a prominent macular component, that affects males and generally spares heterozygous females because of X-linked recessive inheritance. It results from loss-of-function RS1 gene mutations on the X-chromosome. XLRS causes bilateral reduced acuities from young age, and on clinical exam and by ocular coherence tomography (OCT) the neurosensory retina shows foveo-macular cystic schisis cavities in the outer plexiform (OPL) and inner nuclear layers (INL). XLRS manifests between infancy and school-age with variable phenotypic presentation and without reliable genotype-phenotype correlations. INL disorganization disrupts synaptic signal transmission from photoreceptors to ON-bipolar cells, and this reduces the electroretinogram (ERG) bipolar b-wave disproportionately to photoreceptor a-wave changes. RS1 gene expression is localized mainly to photoreceptors and INL bipolar neurons, and RS1 protein is thought to play a critical cell adhesion role during normal retinal development and later for maintenance of retinal structure. Several independent XLRS mouse models with mutant RS1 were created that recapitulate features of human XLRS disease, with OPL-INL schisis cavities, early onset and variable phenotype across mutant models, and reduced ERG b-wave to a-wave amplitude ratio. The faithful phenotype of the XLRS mouse has assisted in delineating the disease pathophysiology. Delivery to XLRS mouse retina of an AAV8-RS1 construct under control of the RS1 promoter restores the retinal structure and synaptic function (with increase of b-wave amplitude). It also ameliorates the schisis-induced inflammatory microglia phenotype toward a state of immune quiescence. The results imply that XLRS gene therapy could yield therapeutic benefit to preserve morphological and functional retina particularly when intervention is conducted at earlier ages before retinal degeneration becomes irreversible. A phase I/IIa single-center, open-label, three-dose-escalation clinical trial reported a suitable safety and tolerability profile of intravitreally administered AAV8-RS1 gene replacement therapy for XLRS participants. Dose-related ocular inflammation occurred after dosing, but this resolved with topical and oral corticosteroids. Systemic antibodies against AAV8 increased in dose-dependent fashion, but no antibodies were observed against the RS1 protein. Retinal cavities closed transiently in one participant. Technological innovations in methods of gene delivery and strategies to further reduce immune responses are expected to enhance the therapeutic efficacy of the vector and ultimate success of a gene therapy approach.
Collapse
Affiliation(s)
| | | | - Paul A Sieving
- National Eye Institute, National Institutes of Health, Bethesda, Maryland, 20892, USA; Department of Ophthalmology, University of California Davis, 95817, USA.
| |
Collapse
|
14
|
Zhang N, Peng Y, Zhou N, Qi Y. A novel mutation in the RS1 gene in a Chinese family with X-linked congenital retinoschisis. Exp Ther Med 2020; 21:124. [PMID: 33335587 PMCID: PMC7739845 DOI: 10.3892/etm.2020.9556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 10/30/2020] [Indexed: 11/20/2022] Open
Abstract
The purpose of the present study was to assess the clinical characteristics of X-linked retinoschisis (XLRS) in a Chinese family over a 7-year period with the aim of identifying possible genetic mutations associated with this disease. A total of 2 male siblings from a family with XLRS were followed up for 7 years and the best-corrected visual acuity and data obtained using slit-lamp microscopy, indirect ophthalmoscopy, fundus photography, spectral domain-optical coherence tomography (OCT), fundus autofluorescence and fundus fluorescence (FFA) and multifocal electroretinograms (ERG) were examined. The coding regions of the retinoschisin 1 (RS1) gene were amplified by PCR and sequenced directly. The proband exhibited blurred vision at 12 years old and was indicated to exhibit a typical phenotype of XLRS at 30 years old. The elder brother exhibited blurred vision at 11 years old and was diagnosed with XLRS at 33 years old. There was no change in the best-corrected visual acuities in the two patients over the 7 years. The OCT results suggested that there were intraretinal cysts and macular atrophy in the eyes of the older sibling, whilst a ‘spoke-wheel’ pattern was present in the macula of the younger sibling. In addition, OCT examination revealed foveal schisis. FFA analysis indicated a hyperfluorescent signal in the central macula. Multifocal ERG recordings indicated that responses were markedly reduced in the central and outer rings bilaterally. The central retinal thickness of the younger sibling increased but the central retinal thickness of the older sibling was not changed during the 7 years. Sequencing analysis revealed that the mutation was c.366G>A (p.Trp122*) in exon 5 of Xp22.1. Gene mutation analysis indicated that the affected male siblings harbored a Trp122* (c.366G>A) mutation, while the patients' mother was demonstrated to be a heterozygous carrier of the pathogenic mutation. To conclude, the present study discovered a novel XLRS mutation in a Chinese family, where the Trp122* mutation caused a significant change in the function of the RS1 protein. Over the 7 years of observation, although the vision was not significantly impaired in the two patients examined, the central retinal thickness of the younger sibling increased but the central retinal thickness of the older sibling was not altered.
Collapse
Affiliation(s)
- Na Zhang
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Yao Peng
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Nan Zhou
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Yanhua Qi
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| |
Collapse
|
15
|
De Silva SR, Arno G, Robson AG, Fakin A, Pontikos N, Mohamed MD, Bird AC, Moore AT, Michaelides M, Webster AR, Mahroo OA. The X-linked retinopathies: Physiological insights, pathogenic mechanisms, phenotypic features and novel therapies. Prog Retin Eye Res 2020; 82:100898. [PMID: 32860923 DOI: 10.1016/j.preteyeres.2020.100898] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 08/07/2020] [Accepted: 08/21/2020] [Indexed: 02/08/2023]
Abstract
X-linked retinopathies represent a significant proportion of monogenic retinal disease. They include progressive and stationary conditions, with and without syndromic features. Many are X-linked recessive, but several exhibit a phenotype in female carriers, which can help establish diagnosis and yield insights into disease mechanisms. The presence of affected carriers can misleadingly suggest autosomal dominant inheritance. Some disorders (such as RPGR-associated retinopathy) show diverse phenotypes from variants in the same gene and also highlight limitations of current genetic sequencing methods. X-linked disease frequently arises from loss of function, implying potential for benefit from gene replacement strategies. We review X-inactivation and X-linked inheritance, and explore burden of disease attributable to X-linked genes in our clinically and genetically characterised retinal disease cohort, finding correlation between gene transcript length and numbers of families. We list relevant genes and discuss key clinical features, disease mechanisms, carrier phenotypes and novel experimental therapies. We consider in detail the following: RPGR (associated with retinitis pigmentosa, cone and cone-rod dystrophy), RP2 (retinitis pigmentosa), CHM (choroideremia), RS1 (X-linked retinoschisis), NYX (complete congenital stationary night blindness (CSNB)), CACNA1F (incomplete CSNB), OPN1LW/OPN1MW (blue cone monochromacy, Bornholm eye disease, cone dystrophy), GPR143 (ocular albinism), COL4A5 (Alport syndrome), and NDP (Norrie disease and X-linked familial exudative vitreoretinopathy (FEVR)). We use a recently published transcriptome analysis to explore expression by cell-type and discuss insights from electrophysiology. In the final section, we present an algorithm for genes to consider in diagnosing males with non-syndromic X-linked retinopathy, summarise current experimental therapeutic approaches, and consider questions for future research.
Collapse
Affiliation(s)
- Samantha R De Silva
- UCL Institute of Ophthalmology, University College London, UK; Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | - Gavin Arno
- UCL Institute of Ophthalmology, University College London, UK; Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | - Anthony G Robson
- UCL Institute of Ophthalmology, University College London, UK; Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | - Ana Fakin
- UCL Institute of Ophthalmology, University College London, UK; Moorfields Eye Hospital NHS Foundation Trust, London, UK; Ljubljana University Medical Centre, Ljubljana, Slovenia
| | - Nikolas Pontikos
- UCL Institute of Ophthalmology, University College London, UK; Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | - Moin D Mohamed
- Department of Ophthalmology, Guy's & St Thomas' NHS Foundation Trust, London, UK
| | - Alan C Bird
- UCL Institute of Ophthalmology, University College London, UK; Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | - Anthony T Moore
- UCL Institute of Ophthalmology, University College London, UK; Moorfields Eye Hospital NHS Foundation Trust, London, UK; Department of Ophthalmology, UCSF School of Medicine, San Francisco, CA, USA
| | - Michel Michaelides
- UCL Institute of Ophthalmology, University College London, UK; Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | - Andrew R Webster
- UCL Institute of Ophthalmology, University College London, UK; Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | - Omar A Mahroo
- UCL Institute of Ophthalmology, University College London, UK; Moorfields Eye Hospital NHS Foundation Trust, London, UK; Department of Ophthalmology, Guy's & St Thomas' NHS Foundation Trust, London, UK; Section of Ophthalmology, King's College London, UK; Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
| |
Collapse
|
16
|
Gene Therapy in Retinal Dystrophies. Int J Mol Sci 2019; 20:ijms20225722. [PMID: 31739639 PMCID: PMC6888000 DOI: 10.3390/ijms20225722] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/13/2019] [Accepted: 11/13/2019] [Indexed: 12/12/2022] Open
Abstract
Inherited retinal dystrophies (IRDs) are a group of clinically and genetically heterogeneous degenerative disorders. To date, mutations have been associated with IRDs in over 270 disease genes, but molecular diagnosis still remains elusive in about a third of cases. The methodologic developments in genome sequencing techniques that we have witnessed in this last decade have represented a turning point not only in diagnosis and prognosis but, above all, in the identification of new therapeutic perspectives. The discovery of new disease genes and pathogenetic mechanisms underlying IRDs has laid the groundwork for gene therapy approaches. Several clinical trials are ongoing, and the recent approval of Luxturna, the first gene therapy product for Leber congenital amaurosis, marks the beginning of a new era. Due to its anatomical and functional characteristics, the retina is the organ of choice for gene therapy, although there are quite a few difficulties in the translational approaches from preclinical models to humans. In the first part of this review, an overview of the current knowledge on methodological issues and future perspectives of gene therapy applied to IRDs is discussed; in the second part, the state of the art of clinical trials on the gene therapy approach in IRDs is illustrated.
Collapse
|
17
|
Mills EM, Barlow VL, Luk LYP, Tsai YH. Applying switchable Cas9 variants to in vivo gene editing for therapeutic applications. Cell Biol Toxicol 2019; 36:17-29. [PMID: 31418127 PMCID: PMC7051928 DOI: 10.1007/s10565-019-09488-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 07/29/2019] [Indexed: 12/20/2022]
Abstract
Progress in targeted gene editing by programmable endonucleases has paved the way for their use in gene therapy. Particularly, Cas9 is an endonuclease with high activity and flexibility, rendering it an attractive option for therapeutic applications in clinical settings. Many disease-causing mutations could potentially be corrected by this versatile new technology. In addition, recently developed switchable Cas9 variants, whose activity can be controlled by an external stimulus, provide an extra level of spatiotemporal control on gene editing and are particularly desirable for certain applications. Here, we discuss the considerations and difficulties for implementing Cas9 to in vivo gene therapy. We put particular emphasis on how switchable Cas9 variants may resolve some of these barriers and advance gene therapy in the clinical setting.
Collapse
Affiliation(s)
- Emily M Mills
- School of Chemistry, Cardiff University, Cardiff, CF10 3AT, UK
| | | | - Louis Y P Luk
- School of Chemistry, Cardiff University, Cardiff, CF10 3AT, UK
| | - Yu-Hsuan Tsai
- School of Chemistry, Cardiff University, Cardiff, CF10 3AT, UK.
| |
Collapse
|
18
|
Pennesi ME, Birch DG, Jayasundera KT, Parker M, Tan O, Gurses-Ozden R, Reichley C, Beasley KN, Yang P, Weleber RG, Bennett LD, Heckenlively JR, Kothapalli K, Chulay JD, For The Xlrs-Study Group. Prospective Evaluation of Patients With X-Linked Retinoschisis During 18 Months. Invest Ophthalmol Vis Sci 2019; 59:5941-5956. [PMID: 30551202 PMCID: PMC6295939 DOI: 10.1167/iovs.18-24565] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Prospective evaluation of patients with X-linked retinoschisis (XLRS). Methods Fifty-six males XLRS patients, age ≥7 years, had retinal structure and function tests performed every 6 months during an 18-month period. Results Best corrected visual acuity (BCVA) was abnormal (mean ± SD logMAR 0.57 ± 0.32 OD and 0.50 ± 0.27 OS), with weak correlation between visual acuity and age (R = -0.24, P = 0.0095). Mean cyst cavity volume (CCV) determined on optical coherence tomography showed weak correlation with age (R = -0.33, P = 0.0009) and no correlation with visual acuity. Subjects had modest reduction in mean kinetic and static perimetry results, reduced b-wave amplitude on electroretinography, abnormal reading speed results, and decreased visual function quality of life scores. Contrast sensitivity results were normal in 85 of 99 eyes tested. Most subjects had no meaningful change in BCVA during follow-up. Subjects who started carbonic anhydrase inhibitor (CAI) treatment at enrollment had improved BCVA (mean ± SD change 3.15 ± 7.8 ETDRS letters, with increase of ≥15 ETDRS letters at 8 of 110 visits [in 3 subjects]). There were no significant changes in other parameters tested. Conclusions Structural and functional results were stable during the 18-month follow-up period. Some patients starting CAI treatment at the baseline visit showed improvement in BCVA that was not correlated with changes in CCV. Natural history data such as these will be important for comparisons to the changes in measures of retinal structure and function following gene replacement therapy in patients with XLRS.
Collapse
Affiliation(s)
- Mark E Pennesi
- Casey Eye Institute, Oregon Health & Sciences University, Portland, Oregon, United States
| | - David G Birch
- Retina Foundation of the Southwest, Dallas, Texas, United States
| | | | - Maria Parker
- Casey Eye Institute, Oregon Health & Sciences University, Portland, Oregon, United States
| | - Ou Tan
- Casey Eye Institute, Oregon Health & Sciences University, Portland, Oregon, United States
| | - Rabia Gurses-Ozden
- Applied Genetic Technologies Corporation, Alachua, Florida, United States
| | - Carrie Reichley
- Applied Genetic Technologies Corporation, Alachua, Florida, United States
| | - Kathleen N Beasley
- Applied Genetic Technologies Corporation, Alachua, Florida, United States
| | - Paul Yang
- Casey Eye Institute, Oregon Health & Sciences University, Portland, Oregon, United States
| | - Richard G Weleber
- Casey Eye Institute, Oregon Health & Sciences University, Portland, Oregon, United States
| | - Lea D Bennett
- Retina Foundation of the Southwest, Dallas, Texas, United States
| | - John R Heckenlively
- Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, United States
| | | | - Jeffrey D Chulay
- Applied Genetic Technologies Corporation, Alachua, Florida, United States
| | | |
Collapse
|
19
|
Lee JH, Wang JH, Chen J, Li F, Edwards TL, Hewitt AW, Liu GS. Gene therapy for visual loss: Opportunities and concerns. Prog Retin Eye Res 2019; 68:31-53. [DOI: 10.1016/j.preteyeres.2018.08.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 08/23/2018] [Accepted: 08/26/2018] [Indexed: 12/17/2022]
|
20
|
Bakall B, Klein KA, Hariprasad SM. Emerging Gene Therapy Treatments for Inherited Retinal Diseases. Ophthalmic Surg Lasers Imaging Retina 2018; 49:472-478. [DOI: 10.3928/23258160-20180628-02] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
21
|
Fu X, Huu VAN, Duan Y, Kermany DS, Valentim CCS, Zhang R, Zhu J, Zhang CL, Sun X, Zhang K. Clinical applications of retinal gene therapies. PRECISION CLINICAL MEDICINE 2018; 1:5-20. [PMID: 35694125 PMCID: PMC8982485 DOI: 10.1093/pcmedi/pby004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 03/27/2018] [Accepted: 04/03/2018] [Indexed: 02/05/2023] Open
Abstract
Retinal degenerative diseases are a major cause of blindness. Retinal gene therapy is a
trail-blazer in the human gene therapy field, leading to the first FDA approved gene
therapy product for a human genetic disease. The application of Clustered Regularly
Interspaced Short Palindromic Repeat/Cas9 (CRISPR/Cas9)-mediated gene editing technology
is transforming the delivery of gene therapy. We review the history, present, and future
prospects of retinal gene therapy.
Collapse
Affiliation(s)
- Xin Fu
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
- Shiley Eye Institute, Institute for Engineering in Medicine, Institute for Genomic Medicine, University of California, San Diego, La Jolla, California, USA
| | - Viet Anh Nguyen Huu
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
- Shiley Eye Institute, Institute for Engineering in Medicine, Institute for Genomic Medicine, University of California, San Diego, La Jolla, California, USA
| | - Yaou Duan
- Shiley Eye Institute, Institute for Engineering in Medicine, Institute for Genomic Medicine, University of California, San Diego, La Jolla, California, USA
| | - Daniel S Kermany
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
- Shiley Eye Institute, Institute for Engineering in Medicine, Institute for Genomic Medicine, University of California, San Diego, La Jolla, California, USA
| | - Carolina C S Valentim
- Shiley Eye Institute, Institute for Engineering in Medicine, Institute for Genomic Medicine, University of California, San Diego, La Jolla, California, USA
| | - Runze Zhang
- Shiley Eye Institute, Institute for Engineering in Medicine, Institute for Genomic Medicine, University of California, San Diego, La Jolla, California, USA
| | - Jie Zhu
- Shiley Eye Institute, Institute for Engineering in Medicine, Institute for Genomic Medicine, University of California, San Diego, La Jolla, California, USA
| | - Charlotte L Zhang
- Shiley Eye Institute, Institute for Engineering in Medicine, Institute for Genomic Medicine, University of California, San Diego, La Jolla, California, USA
| | - Xiaodong Sun
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai General Hospital, Shanghai Jiaodong University, Shanghai, China
| | - Kang Zhang
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
- Shiley Eye Institute, Institute for Engineering in Medicine, Institute for Genomic Medicine, University of California, San Diego, La Jolla, California, USA
- Molecular Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
22
|
Rao P, Dedania VS, Drenser KA. Congenital X-Linked Retinoschisis: An Updated Clinical Review. Asia Pac J Ophthalmol (Phila) 2018; 7:169-175. [PMID: 29633586 DOI: 10.22608/apo.201803] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
We present an updated clinical review of the pathophysiology, progression, and current treatments in pediatric patients with congenital X-linked retinoschisis (CXLRS). CXLRS is an X-linked inherited retinal degeneration characterized by splitting of the superficial layers of the retina. Most recent classification divides CXLRS into 4 distinct clinical phenotypes: type 1, foveal; type 2, foveolamellar; type 3, complex; and type 4, foveoperipheral. The majority of retinoschisis cavities remain stable throughout life and may spontaneously collapse. However, a select number of patients progress to macula-involving peripheral retinoschisis, rhegmatogenous, and combined tractional-rhegmatogenous detachments that require further intervention. Although several advances have been made over the past several decades, medical therapy remains limited to case series‒based carbonic anhydrase therapy and prophylactic laser retinopexy. Recent advances in genetic-based clinical trials with the retinoschisis gene are promising. Vitreoretinal surgical approaches remain complex, case-based, and require careful planning depending on the configuration and location of the retinoschisis cavity.
Collapse
Affiliation(s)
- Prethy Rao
- Associated Retinal Consultants, Royal Oak, Michigan
| | - Vaidehi S Dedania
- Associated Retinal Consultants, Royal Oak, Michigan
- New York University, Department of Ophthalmology, New York, New York
| | - Kimberly A Drenser
- Associated Retinal Consultants, Royal Oak, Michigan
- Oakland University William Beaumont School of Medicine, Rochester, Michigan
| |
Collapse
|
23
|
CLINICAL PROGRESS IN INHERITED RETINAL DEGENERATIONS: GENE THERAPY CLINICAL TRIALS AND ADVANCES IN GENETIC SEQUENCING. Retina 2017; 37:417-423. [PMID: 27753762 DOI: 10.1097/iae.0000000000001341] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
PURPOSE Inherited retinal dystrophies are a significant cause of vision loss and are characterized by the loss of photoreceptors and the retinal pigment epithelium (RPE). Mutations in approximately 250 genes cause inherited retinal degenerations with a high degree of genetic heterogeneity. New techniques in next-generation sequencing are allowing the comprehensive analysis of all retinal disease genes thus changing the approach to the molecular diagnosis of inherited retinal dystrophies. This review serves to analyze clinical progress in genetic diagnostic testing and implications for retinal gene therapy. METHODS A literature search of PubMed and OMIM was conducted to relevant articles in inherited retinal dystrophies. RESULTS Next-generation genetic sequencing allows the simultaneous analysis of all the approximately 250 genes that cause inherited retinal dystrophies. Reported diagnostic rates range are high and range from 51% to 57%. These new sequencing tools are highly accurate with sensitivities of 97.9% and specificities of 100%. Retinal gene therapy clinical trials are underway for multiple genes including RPE65, ABCA4, CHM, RS1, MYO7A, CNGA3, CNGB3, ND4, and MERTK for which a molecular diagnosis may be beneficial for patients. CONCLUSION Comprehensive next-generation genetic sequencing of all retinal dystrophy genes is changing the paradigm for how retinal specialists perform genetic testing for inherited retinal degenerations. Not only are high diagnostic yields obtained, but mutations in genes with novel clinical phenotypes are also identified. In the era of retinal gene therapy clinical trials, identifying specific genetic defects will increasingly be of use to identify patients who may enroll in clinical studies and benefit from novel therapies.
Collapse
|
24
|
Zeng Y, Petralia RS, Vijayasarathy C, Wu Z, Hiriyanna S, Song H, Wang YX, Sieving PA, Bush RA. Retinal Structure and Gene Therapy Outcome in Retinoschisin-Deficient Mice Assessed by Spectral-Domain Optical Coherence Tomography. Invest Ophthalmol Vis Sci 2017; 57:OCT277-87. [PMID: 27409484 PMCID: PMC4968785 DOI: 10.1167/iovs.15-18920] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Purpose Spectral-domain optical coherence tomography (SD-OCT) was used to characterize the retinal phenotype, natural history, and treatment responses in a mouse model of X-linked retinoschisis (Rs1-KO) and to identify new structural markers of AAV8-mediated gene therapy outcome. Methods Optical coherence tomography scans were performed on wild-type and Rs1-KO mouse retinas between 1 and 12 months of age and on Rs1-KO mice after intravitreal injection of AAV8-scRS/IRBPhRS (AAV8-RS1). Cavities and photoreceptor outer nuclear layer (ONL) thickness were measured, and outer retina reflective band (ORRB) morphology was examined with age and after AAV8-RS1 treatment. Outer retina reflective band morphology was compared to immunohistochemical staining of the outer limiting membrane (OLM) and photoreceptor inner segment (IS) mitochondria and to electron microscopy (EM) images of IS. Results Retinal cavity size in Rs1-KO mice increased between 1 and 4 months and decreased thereafter, while ONL thickness declined steadily, comparable to previous histologic studies. Wild-type retina had four ORRBs. In Rs1-KO, ORRB1was fragmented from 1 month, but was normal after 8 months; ORRB2 and ORRB3 were merged at all ages. Outer retina reflective band morphology returned to normal after AAV-RS1 therapy, paralleling the recovery of the OLM and IS mitochondria as indicated by anti–β-catenin and anti-COX4 labeling, respectively, and EM. Conclusions Spectral-domain OCT is a sensitive, noninvasive tool to monitor subtle changes in retinal morphology, disease progression, and effects of therapies in mouse models. The ORRBs may be useful to assess the outcome of gene therapy in the treatment of X-linked retinoschisis patients.
Collapse
Affiliation(s)
- Yong Zeng
- Section on Translational Research for Retinal and Macular Degeneration National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland, United States
| | - Ronald S Petralia
- Advanced Imaging Core, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland, United States
| | - Camasamudram Vijayasarathy
- Section on Translational Research for Retinal and Macular Degeneration National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland, United States
| | - Zhijian Wu
- Ocular Gene Therapy Core, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Suja Hiriyanna
- Ocular Gene Therapy Core, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Hongman Song
- Section on Translational Research for Retinal and Macular Degeneration National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland, United States
| | - Ya-Xian Wang
- Advanced Imaging Core, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland, United States
| | - Paul A Sieving
- Section on Translational Research for Retinal and Macular Degeneration National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland, United States 4National Eye Institute, National Institutes of Healt
| | - Ronald A Bush
- Section on Translational Research for Retinal and Macular Degeneration National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland, United States
| |
Collapse
|
25
|
Ramsay EP, Collins RF, Owens TW, Siebert CA, Jones RPO, Wang T, Roseman AM, Baldock C. Structural analysis of X-linked retinoschisis mutations reveals distinct classes which differentially effect retinoschisin function. Hum Mol Genet 2017; 25:5311-5320. [PMID: 27798099 PMCID: PMC5418834 DOI: 10.1093/hmg/ddw345] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 09/30/2016] [Indexed: 01/09/2023] Open
Abstract
Retinoschisin, an octameric retinal-specific protein, is essential for retinal architecture with mutations causing X-linked retinoschisis (XLRS), a monogenic form of macular degeneration. Most XLRS-associated mutations cause intracellular retention, however a subset are secreted as octamers and the cause of their pathology is ill-defined. Therefore, here we investigated the solution structure of the retinoschisin monomer and the impact of two XLRS-causing mutants using a combinatorial approach of biophysics and cryo-EM. The retinoschisin monomer has an elongated structure which persists in the octameric assembly. Retinoschisin forms a dimer of octamers with each octameric ring adopting a planar propeller structure. Comparison of the octamer with the hexadecamer structure indicated little conformational change in the retinoschisin octamer upon dimerization, suggesting that the octamer provides a stable interface for the construction of the hexadecamer. The H207Q XLRS-associated mutation was found in the interface between octamers and destabilized both monomeric and octameric retinoschisin. Octamer dimerization is consistent with the adhesive function of retinoschisin supporting interactions between retinal cell layers, so disassembly would prevent structural coupling between opposing membranes. In contrast, cryo-EM structural analysis of the R141H mutation at ∼4.2Å resolution was found to only cause a subtle conformational change in the propeller tips, potentially perturbing an interaction site. Together, these findings support distinct mechanisms of pathology for two classes of XLRS-associated mutations in the retinoschisin assembly.
Collapse
Affiliation(s)
- Ewan P Ramsay
- Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.,School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Richard F Collins
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Thomas W Owens
- Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.,School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - C Alistair Siebert
- Electron Bio-Imaging Centre, Diamond Light Source, Harwell Science and Innovation Research Campus, UK
| | - Richard P O Jones
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Tao Wang
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Alan M Roseman
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Clair Baldock
- Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.,School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|
26
|
Murro V, Caputo R, Bacci GM, Sodi A, Mucciolo DP, Bargiacchi S, Giglio SR, Virgili G, Rizzo S. Case report of an atypical early onset X-linked retinoschisis in monozygotic twins. BMC Ophthalmol 2017; 17:19. [PMID: 28235399 PMCID: PMC5324242 DOI: 10.1186/s12886-017-0406-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 01/25/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND X-linked Retinoschisis (XLRS) is one of the most common macular degenerations in young males, with a worldwide prevalence ranging from 1:5000 to 1:20000. Clinical diagnosis of XLRS can be challenging due to the highly variable phenotypic presentation and limited correlation has been identified between mutation type and disease severity or progression. CASE PRESENTATION We report the atypical early onset of XLRS in 3-month-old monozygotic twins. Fundus examination was characterized by severe bullous retinal schisis with pre-retinal and intraretinal haemorrhages. Molecular genetic analysis of the RS1 was performed and the c.288G > A (p. Trp96Ter) mutation was detected in both patients. CONCLUSIONS Early onset XLRS is associated with a more progressive form of the disease, characterized by large bullous peripheral schisis involving the posterior pole, vascular abnormalities and haemorrhages. The availability of specific technology permitted detailed imaging of the clinical picture of unusual cases of XLRS. The possible relevance of modifying genes should be taken into consideration for the future development of XLRS gene therapy.
Collapse
Affiliation(s)
- Vittoria Murro
- Department of Translational Surgery and Medicine, Eye Clinic, University of Florence, Largo Brambilla, Florence, 3-50134, Italy
| | - Roberto Caputo
- Ophthalmology Unit, Department of Pediatrics, Anna Meyer Children's University Hospital, Florence, Italy
| | - Giacomo Maria Bacci
- Ophthalmology Unit, Department of Pediatrics, Anna Meyer Children's University Hospital, Florence, Italy
| | - Andrea Sodi
- Department of Translational Surgery and Medicine, Eye Clinic, University of Florence, Largo Brambilla, Florence, 3-50134, Italy
| | - Dario Pasquale Mucciolo
- Department of Translational Surgery and Medicine, Eye Clinic, University of Florence, Largo Brambilla, Florence, 3-50134, Italy.
| | - Sara Bargiacchi
- Genetics and Molecular Medicine Unit, Department of Pediatrics, Anna Meyer Children's University Hospital, Florence, Italy
| | - Sabrina Rita Giglio
- Genetics and Molecular Medicine Unit, Department of Pediatrics, Anna Meyer Children's University Hospital, Florence, Italy
| | - Gianni Virgili
- Department of Translational Surgery and Medicine, Eye Clinic, University of Florence, Largo Brambilla, Florence, 3-50134, Italy
| | - Stanislao Rizzo
- Department of Translational Surgery and Medicine, Eye Clinic, University of Florence, Largo Brambilla, Florence, 3-50134, Italy
| |
Collapse
|
27
|
Bush RA, Zeng Y, Colosi P, Kjellstrom S, Hiriyanna S, Vijayasarathy C, Santos M, Li J, Wu Z, Sieving PA. Preclinical Dose-Escalation Study of Intravitreal AAV-RS1 Gene Therapy in a Mouse Model of X-linked Retinoschisis: Dose-Dependent Expression and Improved Retinal Structure and Function. Hum Gene Ther 2016; 27:376-89. [PMID: 27036983 DOI: 10.1089/hum.2015.142] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Gene therapy for inherited retinal diseases has been shown to ameliorate functional and structural defects in both animal models and in human clinical trials. X-linked retinoschisis (XLRS) is an early-age onset macular dystrophy resulting from loss of an extracellular matrix protein (RS1). In preparation for a human clinical gene therapy trial, we conducted a dose-range efficacy study of the clinical vector, a self-complementary AAV delivering a human retinoschisin (RS1) gene under control of the RS1 promoter and an interphotoreceptor binding protein enhancer (AAV8-scRS/IRBPhRS), in the retinoschisin knockout (Rs1-KO) mouse. The therapeutic vector at 1 × 10(6) to 2.5 × 10(9) (1E6-2.5E9) vector genomes (vg)/eye or vehicle was administered to one eye of 229 male Rs1-KO mice by intravitreal injection at 22 ± 3 days postnatal age (PN). Analysis of retinal function (dark-adapted electroretinogram, ERG), structure (cavities and outer nuclear layer thickness) by in vivo retinal imaging using optical coherence tomography, and retinal immunohistochemistry (IHC) for RS1 was done 3-4 months and/or 6-9 months postinjection (PI). RS1 IHC staining was dose dependent across doses ≥1E7 vg/eye, and the threshold for significant improvement in all measures of retinal structure and function was 1E8 vg/eye. Higher doses, however, did not produce additional improvement. At all doses showing efficacy, RS1 staining in Rs1-KO mouse was less than that in wild-type mice. Improvement in the ERG and RS1 staining was unchanged or greater at 6-9 months than at 3-4 months PI. This study demonstrates that vitreal administration of AAV8 scRS/IRBPhRS produces significant improvement in retinal structure and function in the mouse model of XLRS over a vector dose range that can be extended to a human trial. It indicates that a fully normal level of RS1 expression is not necessary for a therapeutic effect.
Collapse
Affiliation(s)
- Ronald A Bush
- 1 National Institute on Deafness and Other Communication Disorders, National Institutes of Health , Bethesda, Maryland
| | - Yong Zeng
- 1 National Institute on Deafness and Other Communication Disorders, National Institutes of Health , Bethesda, Maryland
| | - Peter Colosi
- 2 National Eye Institute, National Institutes of Health , Bethesda, Maryland
| | - Sten Kjellstrom
- 1 National Institute on Deafness and Other Communication Disorders, National Institutes of Health , Bethesda, Maryland.,3 Department of Ophthalmology, Lund University , Lund, Sweden
| | - Suja Hiriyanna
- 2 National Eye Institute, National Institutes of Health , Bethesda, Maryland
| | - Camasamudram Vijayasarathy
- 1 National Institute on Deafness and Other Communication Disorders, National Institutes of Health , Bethesda, Maryland
| | - Maria Santos
- 2 National Eye Institute, National Institutes of Health , Bethesda, Maryland
| | - Jinbo Li
- 1 National Institute on Deafness and Other Communication Disorders, National Institutes of Health , Bethesda, Maryland
| | - Zhijian Wu
- 2 National Eye Institute, National Institutes of Health , Bethesda, Maryland
| | - Paul A Sieving
- 1 National Institute on Deafness and Other Communication Disorders, National Institutes of Health , Bethesda, Maryland.,2 National Eye Institute, National Institutes of Health , Bethesda, Maryland
| |
Collapse
|
28
|
Abstract
BACKGROUND Gene therapy for inherited retinal diseases (IRDs) is currently being validated in several clinical trials and is becoming a promising therapeutic option for these previously incurable diseases. OBJECTIVES The aim of this review is to give an overview of the concept, the application and the challenges associated with gene therapy. In particular, the pertinence of gene therapy for IRDs will be highlighted along with ongoing clinical trials in the field. MATERIAL AND METHODS A systematic review of relevant entries on gene therapy and on gene therapy for IRDs, in particular in PubMed and ClinicalTrials.gov. RESULTS Gene therapy is emerging not only as a therapy for monogenetic retinal diseases but also for complex genetic diseases, such as neovascular age-related macular degeneration. The discovery of adeno-associated viral vectors (AAVs) has marked a great improvement for IRD gene therapy. All clinical studies since 2006 demonstrated the safety and initial efficacy; however, not all expectations based on very successful preclinical studies were met. CONCLUSION In future we can expect gene therapy to continue to become more clinically relevant. More than ever, it is now essential to generate precise characterizations of the natural disease progression of IRDs through observational or retrospective studies in order to guarantee a most effective study design.
Collapse
Affiliation(s)
- J-S Bellingrath
- Universitäts-Augenklinik, Department für Augenheilkunde, Universitätsklinikum Tübingen, Schleichstr. 12-16, 72076, Tübingen, Deutschland
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Headley Way, Oxford, OX3 9DU,, England
| | - M D Fischer
- Universitäts-Augenklinik, Department für Augenheilkunde, Universitätsklinikum Tübingen, Schleichstr. 12-16, 72076, Tübingen, Deutschland.
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Headley Way, Oxford, OX3 9DU,, England.
| |
Collapse
|
29
|
Sengillo JD, Justus S, Tsai YT, Cabral T, Tsang SH. Gene and cell-based therapies for inherited retinal disorders: An update. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2016; 172:349-366. [PMID: 27862925 DOI: 10.1002/ajmg.c.31534] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Retinal degenerations present a unique challenge as disease progression is irreversible and the retina has little regenerative potential. No current treatments for inherited retinal disease have the ability to reverse blindness, and current dietary supplement recommendations only delay disease progression with varied results. However, the retina is anatomically accessible and capable of being monitored at high resolution in vivo. This, in addition to the immune-privileged status of the eye, has put ocular disease at the forefront of advances in gene- and cell-based therapies. This review provides an update on gene therapies and randomized control trials for inherited retinal disease, including Leber congenital amaurosis, choroideremia, retinitis pigmentosa, Usher syndrome, X-linked retinoschisis, Leber hereditary optic neuropathy, and achromatopsia. New gene-modifying and cell-based strategies are also discussed. © 2016 Wiley Periodicals, Inc.
Collapse
|
30
|
Grob SR, Finn A, Papakostas TD, Eliott D. Clinical Trials in Retinal Dystrophies. Middle East Afr J Ophthalmol 2016; 23:49-59. [PMID: 26957839 PMCID: PMC4759904 DOI: 10.4103/0974-9233.173135] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Research development is burgeoning for genetic and cellular therapy for retinal dystrophies. These dystrophies are the focus of many research efforts due to the unique biology and accessibility of the eye, the transformative advances in ocular imaging technology that allows for in vivo monitoring, and the potential benefit people would gain from success in the field – the gift of renewed sight. Progress in the field has revealed the immense complexity of retinal dystrophies and the challenges faced by researchers in the development of this technology. This study reviews the current trials and advancements in genetic and cellular therapy in the treatment of retinal dystrophies and also discusses the current and potential future challenges.
Collapse
Affiliation(s)
- Seanna R Grob
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA; Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA
| | - Avni Finn
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA; Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA
| | - Thanos D Papakostas
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA; Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA; Retina, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA
| | - Dean Eliott
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA; Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA; Retina, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA
| |
Collapse
|
31
|
Ye GJ, Budzynski E, Sonnentag P, Miller PE, Sharma AK, Ver Hoeve JN, Howard K, Knop DR, Neuringer M, McGill T, Stoddard J, Chulay JD. Safety and Biodistribution Evaluation in Cynomolgus Macaques of rAAV2tYF-CB-hRS1, a Recombinant Adeno-Associated Virus Vector Expressing Retinoschisin. HUM GENE THER CL DEV 2016; 26:165-76. [PMID: 26390090 DOI: 10.1089/humc.2015.076] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Applied Genetic Technologies Corporation is developing rAAV2tYF-CB-hRS1, a recombinant adeno-associated virus (rAAV) vector for treatment of X-linked retinoschisis (XLRS), an inherited retinal disease characterized by splitting (schisis) of retinal layers causing poor vision. We report here results of a study evaluating the safety and biodistribution of rAAV2tYF-CB-hRS1 in normal cynomolgus macaques. Three groups of male animals (n = 6 per group) received an intravitreal injection in one eye of either vehicle, or rAAV2tYF-CB-hRS1 at one of two dose levels (4 × 10(10) or 4 × 10(11) vg/eye). Half the animals were sacrificed after 14 days and the others after 91 or 115 days. The intravitreal injection procedure was well tolerated in all groups. Serial ophthalmic examinations demonstrated a dose-related anterior and posterior segment inflammatory response that improved over time. There were no test article-related effects on intraocular pressure, electroretinography, visual evoked potential, hematology, coagulation, clinical chemistry, or gross necropsy observations. Histopathological examination demonstrated minimal or moderate mononuclear infiltrates in 6 of 12 vector-injected eyes. Immunohistochemical staining showed RS1 labeling of the ganglion cell layer at the foveal slope in vector-injected eyes at both dose levels. Serum anti-AAV antibodies were detected in 4 of 6 vector-injected animals at the day 15 sacrifice and all vector-injected animals at later time points. No animals developed antibodies to RS1. Biodistribution studies demonstrated high levels of vector DNA in the injected eye but minimal or no vector DNA in any other tissue. These results support the use of rAAV2tYF-CB-hRS1 in clinical studies in patients with XLRS.
Collapse
Affiliation(s)
- Guo-Jie Ye
- 1 Applied Genetic Technologies Corporation , Alachua, Florida
| | | | | | | | | | | | - Kellie Howard
- 4 Laboratory Corporation of America® Holdings , Seattle, Washington
| | - David R Knop
- 1 Applied Genetic Technologies Corporation , Alachua, Florida
| | | | | | | | | |
Collapse
|
32
|
Abstract
Over the last few years, huge progress has been made with regard to the understanding of molecular mechanisms underlying the pathogenesis of neurodegenerative diseases of the eye. Such knowledge has led to the development of gene therapy approaches to treat these devastating disorders. Challenges regarding the efficacy and efficiency of therapeutic gene delivery have driven the development of novel therapeutic approaches, which continue to evolve the field of ocular gene therapy. In this review article, we will discuss the evolution of preclinical and clinical strategies that have improved gene therapy in the eye, showing that treatment of vision loss has a bright future.
Collapse
Affiliation(s)
- Lolita Petit
- 1 Department of Ophthalmology and Gene Therapy Center, University of Massachusetts Medical School , Worcester, Massachusetts
| | - Hemant Khanna
- 1 Department of Ophthalmology and Gene Therapy Center, University of Massachusetts Medical School , Worcester, Massachusetts.,2 Department of Neurobiology, University of Massachusetts Medical School , Worcester, Massachusetts
| | - Claudio Punzo
- 1 Department of Ophthalmology and Gene Therapy Center, University of Massachusetts Medical School , Worcester, Massachusetts.,2 Department of Neurobiology, University of Massachusetts Medical School , Worcester, Massachusetts
| |
Collapse
|
33
|
Greenwald SH, Charette JR, Staniszewska M, Shi LY, Brown SDM, Stone L, Liu Q, Hicks WL, Collin GB, Bowl MR, Krebs MP, Nishina PM, Pierce EA. Mouse Models of NMNAT1-Leber Congenital Amaurosis (LCA9) Recapitulate Key Features of the Human Disease. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:1925-1938. [PMID: 27207593 DOI: 10.1016/j.ajpath.2016.03.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 03/08/2016] [Accepted: 03/16/2016] [Indexed: 12/20/2022]
Abstract
The nicotinamide nucleotide adenylyltransferase 1 (NMNAT1) enzyme is essential for regenerating the nuclear pool of NAD(+) in all nucleated cells in the body, and mounting evidence also suggests that it has a separate role in neuroprotection. Recently, mutations in the NMNAT1 gene were associated with Leber congenital amaurosis, a severe retinal degenerative disease that causes blindness during infancy. Availability of a reliable mammalian model of NMNAT1-Leber congenital amaurosis would assist in determining the mechanisms through which disruptions in NMNAT1 lead to retinal cell degeneration and would provide a resource for testing treatment options. To this end, we identified two separate N-ethyl-N-nitrosourea-generated mouse lines that harbor either a p.V9M or a p.D243G mutation. Both mouse models recapitulate key aspects of the human disease and confirm the pathogenicity of mutant NMNAT1. Homozygous Nmnat1 mutant mice develop a rapidly progressing chorioretinal disease that begins with photoreceptor degeneration and includes attenuation of the retinal vasculature, optic atrophy, and retinal pigment epithelium loss. Retinal function deteriorates in both mouse lines, and, in the more rapidly progressing homozygous Nmnat1(V9M) mutant mice, the electroretinogram becomes undetectable and the pupillary light response weakens. These mouse models offer an opportunity for investigating the cellular mechanisms underlying disease pathogenesis, evaluating potential therapies for NMNAT1-Leber congenital amaurosis, and conducting in situ studies on NMNAT1 function and NAD(+) metabolism.
Collapse
Affiliation(s)
- Scott H Greenwald
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye & Ear Infirmary, Harvard Medical School, Boston, Massachusetts
| | | | - Magdalena Staniszewska
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye & Ear Infirmary, Harvard Medical School, Boston, Massachusetts
| | | | - Steve D M Brown
- Mammalian Genetics Unit, Medical Research Council (MRC), Harwell Campus, Oxfordshire, United Kingdom
| | - Lisa Stone
- The Jackson Laboratory, Bar Harbor, Maine
| | - Qin Liu
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye & Ear Infirmary, Harvard Medical School, Boston, Massachusetts
| | | | | | - Michael R Bowl
- Mammalian Genetics Unit, Medical Research Council (MRC), Harwell Campus, Oxfordshire, United Kingdom
| | | | | | - Eric A Pierce
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye & Ear Infirmary, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
34
|
Update on ocular gene therapy and advances in treatment of inherited retinal diseases and exudative macular degeneration. Curr Opin Ophthalmol 2016; 27:268-73. [DOI: 10.1097/icu.0000000000000256] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
35
|
Marangoni D, Bush RA, Zeng Y, Wei LL, Ziccardi L, Vijayasarathy C, Bartoe JT, Palyada K, Santos M, Hiriyanna S, Wu Z, Colosi P, Sieving PA. Ocular and systemic safety of a recombinant AAV8 vector for X-linked retinoschisis gene therapy: GLP studies in rabbits and Rs1-KO mice. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2016; 5:16011. [PMID: 27626041 PMCID: PMC5008245 DOI: 10.1038/mtm.2016.11] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Revised: 01/15/2016] [Accepted: 01/18/2016] [Indexed: 01/10/2023]
Abstract
X-linked retinoschisis (XLRS) is a retinal disease caused by mutations in the gene encoding the protein retinoschisin (RS1) and is one of the most common causes of macular degeneration in young men. Our therapeutic approach for XLRS is based on the administration of AAV8-scRS/IRBPhRS, an adeno-associated viral vector coding the human RS1 protein, via the intravitreal (IVT) route. Two Good Laboratory Practice studies, a 9-month study in New Zealand White rabbits (n = 124) injected with AAV8-scRS/IRBPhRS at doses of 2E9, 2E10, 2E11, and 1.5E12 vector genomes/eye (vg/eye), and a 6-month study in Rs1-KO mice (n = 162) dosed with 2E9 and 2E10 vg/eye of the same vector were conducted to assess ocular and systemic safety. A self-resolving, dose-dependent vitreal inflammation was the main ocular finding, and except for a single rabbit dosed with 1.5E12 vg/eye, which showed a retinal detachment, no other ocular adverse event was reported. Systemic toxicity was not identified in either species. Biodistribution analysis in Rs1-KO mice detected spread of vector genome in extraocular tissues, but no evidence of organ or tissues damage was found. These studies indicate that IVT administration of AAV8-scRS/IRBPhRS is safe and well tolerated and support its advancement into a phase 1/2a clinical trial for XLRS.
Collapse
Affiliation(s)
- Dario Marangoni
- National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland, USA; Department of Biotechnology and Applied Clinical Science, University of L'Aquila, L'Aquila, Italy
| | - Ronald A Bush
- National Institute on Deafness and Other Communication Disorders, National Institutes of Health , Bethesda, Maryland, USA
| | - Yong Zeng
- National Institute on Deafness and Other Communication Disorders, National Institutes of Health , Bethesda, Maryland, USA
| | - Lisa L Wei
- National Eye Institute, National Institutes of Health , Bethesda, Maryland, USA
| | - Lucia Ziccardi
- National Institute on Deafness and Other Communication Disorders, National Institutes of Health , Bethesda, Maryland, USA
| | - Camasamudram Vijayasarathy
- National Institute on Deafness and Other Communication Disorders, National Institutes of Health , Bethesda, Maryland, USA
| | | | | | - Maria Santos
- National Institute on Deafness and Other Communication Disorders, National Institutes of Health , Bethesda, Maryland, USA
| | - Suja Hiriyanna
- National Eye Institute, National Institutes of Health , Bethesda, Maryland, USA
| | - Zhijian Wu
- National Eye Institute, National Institutes of Health , Bethesda, Maryland, USA
| | - Peter Colosi
- National Eye Institute, National Institutes of Health , Bethesda, Maryland, USA
| | - Paul A Sieving
- National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland, USA; National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
36
|
Apaolaza PS, Del Pozo-Rodríguez A, Solinís MA, Rodríguez JM, Friedrich U, Torrecilla J, Weber BHF, Rodríguez-Gascón A. Structural recovery of the retina in a retinoschisin-deficient mouse after gene replacement therapy by solid lipid nanoparticles. Biomaterials 2016; 90:40-9. [PMID: 26986855 DOI: 10.1016/j.biomaterials.2016.03.004] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 02/29/2016] [Accepted: 03/02/2016] [Indexed: 11/26/2022]
Abstract
X-linked juvenile retinoschisis (XLRS) is a retinal degenerative disorder caused by mutations in the RS1 gene encoding a protein termed retinoschisin. The disease is an excellent candidate for gene replacement therapy as the majority of mutations have been shown to lead to a complete deficiency of the secreted protein in the retinal structures. In this work, we have studied the ability of non-viral vectors based on solid lipid nanoparticles (SLN) to induce the expression of retinoschisin in photoreceptors (PR) after intravitreal administration to Rs1h-deficient mice. We designed two vectors prepared with SLN, protamine, and dextran (DX) or hyaluronic acid (HA), bearing a plasmid containing the human RS1 gene under the control of the murin opsin promoter (mOPS). In vitro, the nanocarriers were able to induce the expression of retinoschisin in a PR cell line. After injection into the murine vitreous, the formulation prepared with HA induced a higher transfection level in PR than the formulation prepared with DX. Moreover, the level of retinoschisin in the inner nuclear layer (INL), where bipolar cells are located, was also higher. Two weeks after vitreal administration into Rs1h-deficient mice, both formulations showed significant improvement of the retinal structure by inducing a decrease of cavities and PR loss, and an increase of retinal and outer nuclear layer (ONL) thickness. HA-SLN resulted in a significant higher increase in the thickness of both retina and ONL, which can be explained by the higher transfection level of PR. In conclusion, we have shown the structural improvement of the retina of Rs1h-deficient mice with PR specific expression of the RS1 gene driven by the specific promoter mOPS, after successful delivery via SLN-based non-viral vectors.
Collapse
Affiliation(s)
- P S Apaolaza
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de investigación Lascaray ikergunea, University of the Basque Country UPV/EHU, Paseo de la Universidad, 7, 01006 Vitoria-Gasteiz, Spain
| | - A Del Pozo-Rodríguez
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de investigación Lascaray ikergunea, University of the Basque Country UPV/EHU, Paseo de la Universidad, 7, 01006 Vitoria-Gasteiz, Spain
| | - M A Solinís
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de investigación Lascaray ikergunea, University of the Basque Country UPV/EHU, Paseo de la Universidad, 7, 01006 Vitoria-Gasteiz, Spain
| | - J M Rodríguez
- Physiology Laboratory, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad, 7, 01006 Vitoria-Gasteiz, Spain
| | - U Friedrich
- Institute of Human Genetics, University of Regensburg, Franz-Josef-Strauß-Allee 11, D-93053 Regensburg, Germany
| | - J Torrecilla
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de investigación Lascaray ikergunea, University of the Basque Country UPV/EHU, Paseo de la Universidad, 7, 01006 Vitoria-Gasteiz, Spain
| | - B H F Weber
- Institute of Human Genetics, University of Regensburg, Franz-Josef-Strauß-Allee 11, D-93053 Regensburg, Germany
| | - A Rodríguez-Gascón
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de investigación Lascaray ikergunea, University of the Basque Country UPV/EHU, Paseo de la Universidad, 7, 01006 Vitoria-Gasteiz, Spain.
| |
Collapse
|
37
|
Apaolaza P, del Pozo-Rodríguez A, Torrecilla J, Rodríguez-Gascón A, Rodríguez J, Friedrich U, Weber B, Solinís M. Solid lipid nanoparticle-based vectors intended for the treatment of X-linked juvenile retinoschisis by gene therapy: In vivo approaches in Rs1h-deficient mouse model. J Control Release 2015; 217:273-83. [DOI: 10.1016/j.jconrel.2015.09.033] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 09/16/2015] [Accepted: 09/18/2015] [Indexed: 11/25/2022]
|
38
|
Successful arrest of photoreceptor and vision loss expands the therapeutic window of retinal gene therapy to later stages of disease. Proc Natl Acad Sci U S A 2015; 112:E5844-53. [PMID: 26460017 DOI: 10.1073/pnas.1509914112] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Inherited retinal degenerations cause progressive loss of photoreceptor neurons with eventual blindness. Corrective or neuroprotective gene therapies under development could be delivered at a predegeneration stage to prevent the onset of disease, as well as at intermediate-degeneration stages to slow the rate of progression. Most preclinical gene therapy successes to date have been as predegeneration interventions. In many animal models, as well as in human studies, to date, retinal gene therapy administered well after the onset of degeneration was not able to modify the rate of progression even when successfully reversing dysfunction. We evaluated consequences of gene therapy delivered at intermediate stages of disease in a canine model of X-linked retinitis pigmentosa (XLRP) caused by a mutation in the Retinitis Pigmentosa GTPase Regulator (RPGR) gene. Spatiotemporal natural history of disease was defined and therapeutic dose selected based on predegeneration results. Then interventions were timed at earlier and later phases of intermediate-stage disease, and photoreceptor degeneration monitored with noninvasive imaging, electrophysiological function, and visual behavior for more than 2 y. All parameters showed substantial and significant arrest of the progressive time course of disease with treatment, which resulted in long-term improved retinal function and visual behavior compared with control eyes. Histology confirmed that the human RPGR transgene was stably expressed in photoreceptors and associated with improved structural preservation of rods, cones, and ON bipolar cells together with correction of opsin mislocalization. These findings in a clinically relevant large animal model demonstrate the long-term efficacy of RPGR gene augmentation and substantially broaden the therapeutic window for intervention in patients with RPGR-XLRP.
Collapse
|
39
|
Veleri S, Lazar CH, Chang B, Sieving PA, Banin E, Swaroop A. Biology and therapy of inherited retinal degenerative disease: insights from mouse models. Dis Model Mech 2015; 8:109-29. [PMID: 25650393 PMCID: PMC4314777 DOI: 10.1242/dmm.017913] [Citation(s) in RCA: 179] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Retinal neurodegeneration associated with the dysfunction or death of photoreceptors is a major cause of incurable vision loss. Tremendous progress has been made over the last two decades in discovering genes and genetic defects that lead to retinal diseases. The primary focus has now shifted to uncovering disease mechanisms and designing treatment strategies, especially inspired by the successful application of gene therapy in some forms of congenital blindness in humans. Both spontaneous and laboratory-generated mouse mutants have been valuable for providing fundamental insights into normal retinal development and for deciphering disease pathology. Here, we provide a review of mouse models of human retinal degeneration, with a primary focus on diseases affecting photoreceptor function. We also describe models associated with retinal pigment epithelium dysfunction or synaptic abnormalities. Furthermore, we highlight the crucial role of mouse models in elucidating retinal and photoreceptor biology in health and disease, and in the assessment of novel therapeutic modalities, including gene- and stem-cell-based therapies, for retinal degenerative diseases.
Collapse
Affiliation(s)
- Shobi Veleri
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Csilla H Lazar
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA. Molecular Biology Center, Interdisciplinary Research Institute on Bio-Nano Sciences, Babes-Bolyai-University, Cluj-Napoca, 400271, Romania
| | - Bo Chang
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - Paul A Sieving
- National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Eyal Banin
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA. Center for Retinal and Macular Degenerations, Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Anand Swaroop
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
40
|
Ye GJ, Conlon T, Erger K, Sonnentag P, Sharma AK, Howard K, Knop DR, Chulay JD. Safety and Biodistribution Evaluation of rAAV2tYF-CB-hRS1, a Recombinant Adeno-Associated Virus Vector Expressing Retinoschisin, in RS1-Deficient Mice. HUM GENE THER CL DEV 2015; 26:177-84. [DOI: 10.1089/humc.2015.077] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Guo-Jie Ye
- Applied Genetic Technologies Corporation, Alachua, Florida
| | - Thomas Conlon
- Department of Pediatrics, University of Florida Powell Gene Therapy Center, Gainesville, Florida
| | - Kirsten Erger
- Department of Pediatrics, University of Florida Powell Gene Therapy Center, Gainesville, Florida
| | | | | | - Kellie Howard
- Laboratory Corporation of America® Holdings, Seattle, Washington
| | - David R. Knop
- Applied Genetic Technologies Corporation, Alachua, Florida
| | | |
Collapse
|
41
|
Bush RA, Wei LL, Sieving PA. Convergence of Human Genetics and Animal Studies: Gene Therapy for X-Linked Retinoschisis. Cold Spring Harb Perspect Med 2015; 5:a017368. [PMID: 26101206 DOI: 10.1101/cshperspect.a017368] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Retinoschisis is an X-linked recessive genetic disease that leads to vision loss in males. X-linked retinoschisis (XLRS) typically affects young males; however, progressive vision loss continues throughout life. Although discovered in 1898 by Haas in two brothers, the underlying biology leading to blindness has become apparent only in the last 15 years with the advancement of human genetic analyses, generation of XLRS animal models, and the development of ocular monitoring methods such as the electroretinogram and optical coherence tomography. It is now recognized that retinoschisis results from cyst formations within the retinal layers that interrupt normal visual neurosignaling and compromise structural integrity. Mutations in the human retinoschisin gene have been correlated with disease severity of the human XLRS phenotype. Introduction of a normal human retinoschisin cDNA into retinoschisin knockout mice restores retinal structure and improves neural function, providing proof-of-concept that gene replacement therapy is a plausible treatment for XLRS.
Collapse
Affiliation(s)
- Ronald A Bush
- National Institute on Deafness and Other Communication Disorders, Bethesda, Maryland 20892
| | - Lisa L Wei
- National Eye Institute, Bethesda, Maryland 20892
| | | |
Collapse
|
42
|
Schubert T, Wissinger B. Restoration of synaptic function in sight for degenerative retinal disease. J Clin Invest 2015; 125:2572-5. [PMID: 26098210 DOI: 10.1172/jci82577] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Synaptic disorganization is a prominent feature of many neurological diseases of the CNS, including Parkinson's disease, intellectual development disorders, and autism. Although synaptic plasticity is critical for learning and memory, it is unclear whether this innate property helps restore synaptic function in disease once the primary cause of disease is abrogated. An answer to this question may come from a recent investigation in X-linked retinoschisis, a currently untreatable retinopathy. In this issue of the JCI, Ou, Vijayasarathy, and colleagues showed progressive disorganization of key functional elements of the synapse between photoreceptors and ON-bipolar cells in a retinoschisin-deficient mouse model. Moreover, they demonstrated that adeno-associated virus-mediated (AAV-mediated) delivery of the retinoschisin gene restores structure and function to the photoreceptor to ON-bipolar cell synapse in mouse models, even in adults at advanced stages of the disease. The results of this study hold promise that AAV-based supplemental gene therapy will benefit patients with X-linked retinoschisis in a forthcoming clinical trial.
Collapse
|
43
|
Ou J, Vijayasarathy C, Ziccardi L, Chen S, Zeng Y, Marangoni D, Pope JG, Bush RA, Wu Z, Li W, Sieving PA. Synaptic pathology and therapeutic repair in adult retinoschisis mouse by AAV-RS1 transfer. J Clin Invest 2015; 125:2891-903. [PMID: 26098217 DOI: 10.1172/jci81380] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 04/30/2015] [Indexed: 01/24/2023] Open
Abstract
Strategies aimed at invoking synaptic plasticity have therapeutic potential for several neurological conditions. The human retinal synaptic disease X-linked retinoschisis (XLRS) is characterized by impaired visual signal transmission through the retina and progressive visual acuity loss, and mice lacking retinoschisin (RS1) recapitulate human disease. Here, we demonstrate that restoration of RS1 via retina-specific delivery of adeno-associated virus type 8-RS1 (AAV8-RS1) vector rescues molecular pathology at the photoreceptor-depolarizing bipolar cell (photoreceptor-DBC) synapse and restores function in adult Rs1-KO animals. Initial development of the photoreceptor-DBC synapse was normal in the Rs1-KO retina; however, the metabotropic glutamate receptor 6/transient receptor potential melastatin subfamily M member 1-signaling (mGluR6/TRPM1-signaling) cascade was not properly maintained. Specifically, the TRPM1 channel and G proteins Gαo, Gβ5, and RGS11 were progressively lost from postsynaptic DBC dendritic tips, whereas the mGluR6 receptor and RGS7 maintained proper synaptic position. This postsynaptic disruption differed from other murine night-blindness models with an electronegative electroretinogram response, which is also characteristic of murine and human XLRS disease. Upon AAV8-RS1 gene transfer to the retina of adult XLRS mice, TRPM1 and the signaling molecules returned to their proper dendritic tip location, and the DBC resting membrane potential was restored. These findings provide insight into the molecular plasticity of a critical synapse in the visual system and demonstrate potential therapeutic avenues for some diseases involving synaptic pathology.
Collapse
|
44
|
Elevation of intraocular pressure in rodents using viral vectors targeting the trabecular meshwork. Exp Eye Res 2015; 141:33-41. [PMID: 26025608 DOI: 10.1016/j.exer.2015.04.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 03/20/2015] [Accepted: 04/05/2015] [Indexed: 01/30/2023]
Abstract
Rodents are increasingly being used as glaucoma models to study ocular hypertension, optic neuropathy, and retinopathy. A number of different techniques are used to elevate intraocular pressure in rodent eyes by artificially obstructing the aqueous outflow pathway. Another successful technique to induce ocular hypertension is to transduce the trabecular meshwork of rodent eyes with viral vectors expressing glaucoma associated transgenes to provide more relevant models of glaucomatous damage to the trabecular meshwork. This technique has been used to validate newly discovered glaucoma pathogenesis pathways as well as to develop rodent models of primary open angle glaucoma. Ocular hypertension has successfully been induced by adenovirus 5 mediated delivery of mutant MYOC, bioactivated TGFβ2, SFRP1, DKK1, GREM1, and CD44. Advantages of this approach are: selective tropism for the trabecular meshwork, the ability to use numerous mouse strains, and the relatively rapid onset of IOP elevation. Disadvantages include mild-to-moderate ocular inflammation induced by the Ad5 vector and sometimes transient transgene expression. Current efforts are focused at discovering less immunogenic viral vectors that have tropism for the trabecular meshwork and drive sufficient transgene expression to induce ocular hypertension. This viral vector approach allows rapid proof of concept studies to study glaucomatous damage to the trabecular meshwork without the expensive and time-consuming generation of transgenic mouse lines.
Collapse
|
45
|
Hauswirth WW. Retinal gene therapy using adeno-associated viral vectors: multiple applications for a small virus. Hum Gene Ther 2015; 25:671-8. [PMID: 25136913 DOI: 10.1089/hum.2014.2530] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- William W Hauswirth
- Department of Ophthalmology, College of Medicine, University of Florida , Gainesville, FL 32610-0284
| |
Collapse
|
46
|
Thompson DA, Ali RR, Banin E, Branham KE, Flannery JG, Gamm DM, Hauswirth WW, Heckenlively JR, Iannaccone A, Jayasundera KT, Khan NW, Molday RS, Pennesi ME, Reh TA, Weleber RG, Zacks DN. Advancing therapeutic strategies for inherited retinal degeneration: recommendations from the Monaciano Symposium. Invest Ophthalmol Vis Sci 2015; 56:918-31. [PMID: 25667399 DOI: 10.1167/iovs.14-16049] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Although rare in the general population, retinal dystrophies occupy a central position in current efforts to develop innovative therapies for blinding diseases. This status derives, in part, from the unique biology, accessibility, and function of the retina, as well as from the synergy between molecular discoveries and transformative advances in functional assessment and retinal imaging. The combination of these factors has fueled remarkable progress in the field, while at the same time creating complex challenges for organizing collective efforts aimed at advancing translational research. The present position paper outlines recent progress in gene therapy and cell therapy for this group of disorders, and presents a set of recommendations for addressing the challenges remaining for the coming decade. It is hoped that the formulation of these recommendations will stimulate discussions among researchers, funding agencies, industry, and policy makers that will accelerate the development of safe and effective treatments for retinal dystrophies and related diseases.
Collapse
Affiliation(s)
- Debra A Thompson
- Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, Ann Arbor, Michigan, United States
| | - Robin R Ali
- Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, Ann Arbor, Michigan, United States Division of Molecular Therapy, University College London Institute of Ophthalmology, London, England, United Kingdom
| | - Eyal Banin
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Kari E Branham
- Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, Ann Arbor, Michigan, United States
| | - John G Flannery
- Helen Wills Neuroscience Institute, University of California-Berkeley, Berkeley, California, United States
| | - David M Gamm
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - William W Hauswirth
- Department of Ophthalmology, University of Florida College of Medicine, Gainesville, Florida, United States
| | - John R Heckenlively
- Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, Ann Arbor, Michigan, United States
| | - Alessandro Iannaccone
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - K Thiran Jayasundera
- Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, Ann Arbor, Michigan, United States
| | - Naheed W Khan
- Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, Ann Arbor, Michigan, United States
| | - Robert S Molday
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Mark E Pennesi
- Casey Eye Institute and the Department of Ophthalmology, Oregon Health and Science University, Portland, Oregon, United States
| | - Thomas A Reh
- Department of Biological Structure, University of Washington, Seattle, Washington, United States
| | - Richard G Weleber
- Casey Eye Institute and the Department of Ophthalmology, Oregon Health and Science University, Portland, Oregon, United States Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, Oregon, United States
| | - David N Zacks
- Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, Ann Arbor, Michigan, United States
| | | |
Collapse
|
47
|
|
48
|
Pierce EA, Bennett J. The Status of RPE65 Gene Therapy Trials: Safety and Efficacy. Cold Spring Harb Perspect Med 2015; 5:a017285. [PMID: 25635059 DOI: 10.1101/cshperspect.a017285] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Several groups have reported the results of clinical trials of gene augmentation therapy for Leber congenital amaurosis (LCA) because of mutations in the RPE65 gene. These studies have used subretinal injection of adeno-associated virus (AAV) vectors to deliver the human RPE65 cDNA to the retinal pigment epithelial (RPE) cells of the treated eyes. In all of the studies reported to date, this approach has been shown to be both safe and effective. The successful clinical trials of gene augmentation therapy for retinal degeneration caused by mutations in the RPE65 gene sets the stage for broad application of gene therapy to treat retinal degenerative disorders.
Collapse
Affiliation(s)
- Eric A Pierce
- Department of Ophthalmology, Ocular Genomics Institute, Massachusetts Eye and Ear Infirmary and Harvard Medical School, Boston, Massachusetts 02114
| | - Jean Bennett
- Department of Ophthalmology, Center for Advanced Retinal and Ophthalmic Therapeutics, F.M. Kirby Center for Molecular Ophthalmology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
| |
Collapse
|
49
|
Treatment of ocular disorders by gene therapy. Eur J Pharm Biopharm 2014; 95:331-42. [PMID: 25536112 DOI: 10.1016/j.ejpb.2014.12.022] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 12/08/2014] [Accepted: 12/15/2014] [Indexed: 12/27/2022]
Abstract
Gene therapy to treat ocular disorders is still starting, and current therapies are primarily experimental, with most human clinical trials still in research state, although beginning to show encouraging results. Currently 33 clinical trials have been approved, are in progress, or have been completed. The most promising results have been obtained in clinical trials of ocular gene therapy for Leber Congenital Amaurosis, which have prompted the study of several ocular diseases that are good candidates to be treated with gene therapy: glaucoma, age-related macular degeneration, retinitis pigmentosa, or choroideremia. The success of gene therapy relies on the efficient delivery of the genetic material to target cells, achieving optimum long-term gene expression. Although viral vectors have been widely used, their potential risk associated mainly with immunogenicity and mutagenesis has promoted the design of non-viral vectors. In this review, the main administration routes and the most studied delivery systems, viral and non-viral, for ocular gene therapy are presented. The primary ocular disease candidates to be treated with gene therapy have been also reviewed, including the genetic basis and the most relevant preclinical and clinical studies.
Collapse
|
50
|
|