1
|
Altamirano DE, Mihaly E, Emmens JD, Grayson WL. Adipogenic-Myogenic Signaling in Engineered Human Muscle Grafts used to Treat Volumetric Muscle Loss. Adv Biol (Weinh) 2024:e2400113. [PMID: 39294862 DOI: 10.1002/adbi.202400113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 08/12/2024] [Indexed: 09/21/2024]
Abstract
Tissue-engineered muscle grafts (TEMGs) are a promising treatment for volumetric muscle loss (VML). In this study, human myogenic progenitors (hMPs) cultured on electrospun fibrin microfiber bundles and evaluated the therapeutic potential of engineered hMP TEMGs in the treatment of murine tibialis anterior (TA) VML injuries is employed. In vitro, the hMP TEMGs express mature muscle markers by 21 days. Upon implantation into VML injuries, the hMP TEMGs enable remarkable regeneration. To further promote wound healing and myogenesis, human adipose-derived stem/stromal cells (hASCs) as fibroadipogenic progenitor (FAP)-like cells with the potential to secrete pro-regenerative cytokines are incorporated. The impact of dose and timing of seeding the hASCs on in vitro myogenesis and VML recovery using hMP-hASC TEMGs are investigated. The hASCs increase myogenesis of hMPs when co-cultured at 5% hASCs: 95% hMPs and with delayed seeding. Upon implantation into immunocompromised mice, hMP-hASC TEMGs increase cell survival, collagen IV deposition, and pro-regenerative macrophage recruitment, but result in excessive adipose tissue growth after 28 days. These data demonstrate the interactions of hASCs and hMPs enhance myogenesis in vitro but there remains a need to optimize treatments to minimize adipogenesis and promote full therapeutic recovery following VML treatment.
Collapse
Affiliation(s)
- Dallas E Altamirano
- Translational Tissue Engineering Center, School of Medicine, Johns Hopkins University, Baltimore, MD, 21231, USA
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Eszter Mihaly
- Translational Tissue Engineering Center, School of Medicine, Johns Hopkins University, Baltimore, MD, 21231, USA
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Jalissa D Emmens
- Department of Biology, School of Computer, Mathematical & Natural Sciences, Morgan State University, Baltimore, MD, 21251, USA
| | - Warren L Grayson
- Translational Tissue Engineering Center, School of Medicine, Johns Hopkins University, Baltimore, MD, 21231, USA
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA
- Department of Materials Science & Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
- Department of Chemical & Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
- Institute for Nanobiotechnology (INBT), Johns Hopkins University School of Engineering, Baltimore, MD, 21218, USA
| |
Collapse
|
2
|
Nurul Alam AMM, Kim CJ, Kim SH, Kumari S, Lee EY, Hwang YH, Joo ST. Scaffolding fundamentals and recent advances in sustainable scaffolding techniques for cultured meat development. Food Res Int 2024; 189:114549. [PMID: 38876607 DOI: 10.1016/j.foodres.2024.114549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/26/2024] [Accepted: 05/25/2024] [Indexed: 06/16/2024]
Abstract
In cultured meat (CM) production, Scaffolding plays an important role by aiding cell adhesion, growth, differentiation, and alignment. The existence of fibrous microstructure in connective and muscle tissues has attracted considerable interest in the realm of tissue engineering and triggered the interest of researchers to implement scaffolding techniques. A wide array of research efforts is ongoing in scaffolding technologies for achieving the real meat structure on the principality of biomedical research and to replace serum free CM production. Scaffolds made of animal-derived biomaterials are found efficient in replicating the extracellular matrix (ECM), thus focus should be paid to utilize animal byproducts for this purpose. Proper identification and utilization of plant-derived scaffolding biomaterial could be helpful to add diversified options in addition to animal derived sources and reduce in cost of CM production through scaffolds. Furthermore, techniques like electrospinning, modified electrospinning and 3D bioprinting should be focused on to create 3D porous scaffolds to mimic the ECM of the muscle tissue and form real meat-like structures. This review discusses recent advances in cutting edge scaffolding techniques and edible biomaterials related to structured CM production.
Collapse
Affiliation(s)
- A M M Nurul Alam
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52852, Republic of Korea.
| | - Chan-Jin Kim
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52852, Republic of Korea.
| | - So-Hee Kim
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52852, Republic of Korea
| | - Swati Kumari
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52852, Republic of Korea
| | - Eun-Yeong Lee
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52852, Republic of Korea
| | - Young-Hwa Hwang
- Institute of Agriculture & Life Science, Gyeongsang National University, Jinju 52852, Republic of Korea.
| | - Seon-Tea Joo
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52852, Republic of Korea; Institute of Agriculture & Life Science, Gyeongsang National University, Jinju 52852, Republic of Korea.
| |
Collapse
|
3
|
Pereira M, Pinto J, Arteaga B, Guerra A, Jorge RN, Monteiro FJ, Salgado CL. A Comprehensive Look at In Vitro Angiogenesis Image Analysis Software. Int J Mol Sci 2023; 24:17625. [PMID: 38139453 PMCID: PMC10743557 DOI: 10.3390/ijms242417625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
One of the complex challenges faced presently by tissue engineering (TE) is the development of vascularized constructs that accurately mimic the extracellular matrix (ECM) of native tissue in which they are inserted to promote vessel growth and, consequently, wound healing and tissue regeneration. TE technique is characterized by several stages, starting from the choice of cell culture and the more appropriate scaffold material that can adequately support and supply them with the necessary biological cues for microvessel development. The next step is to analyze the attained microvasculature, which is reliant on the available labeling and microscopy techniques to visualize the network, as well as metrics employed to characterize it. These are usually attained with the use of software, which has been cited in several works, although no clear standard procedure has been observed to promote the reproduction of the cell response analysis. The present review analyzes not only the various steps previously described in terms of the current standards for evaluation, but also surveys some of the available metrics and software used to quantify networks, along with the detection of analysis limitations and future improvements that could lead to considerable progress for angiogenesis evaluation and application in TE research.
Collapse
Affiliation(s)
- Mariana Pereira
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (M.P.); (J.P.); (B.A.); (F.J.M.)
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
| | - Jéssica Pinto
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (M.P.); (J.P.); (B.A.); (F.J.M.)
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
| | - Belén Arteaga
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (M.P.); (J.P.); (B.A.); (F.J.M.)
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
- Faculty of Medicine, University of Granada, Parque Tecnológico de la Salud, Av. de la Investigación 11, 18016 Granada, Spain
| | - Ana Guerra
- INEGI—Instituto de Ciência e Inovação em Engenharia Mecânica e Engenharia Industrial, 4200-465 Porto, Portugal; (A.G.); (R.N.J.)
| | - Renato Natal Jorge
- INEGI—Instituto de Ciência e Inovação em Engenharia Mecânica e Engenharia Industrial, 4200-465 Porto, Portugal; (A.G.); (R.N.J.)
- LAETA—Laboratório Associado de Energia, Transportes e Aeronáutica, Universidade do Porto, 4200-165 Porto, Portugal
- FEUP—Faculdade de Engenharia, Departamento de Engenharia Metalúrgica e de Materiais, Universidade do Porto, 4200-165 Porto, Portugal
| | - Fernando Jorge Monteiro
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (M.P.); (J.P.); (B.A.); (F.J.M.)
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
- FEUP—Faculdade de Engenharia, Departamento de Engenharia Metalúrgica e de Materiais, Universidade do Porto, 4200-165 Porto, Portugal
- PCCC—Porto Comprehensive Cancer Center, 4200-072 Porto, Portugal
| | - Christiane Laranjo Salgado
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (M.P.); (J.P.); (B.A.); (F.J.M.)
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
| |
Collapse
|
4
|
Farooqi M, Kang CU, Choi KH. Organ-on-Chip: Advancing Nutraceutical Testing for Improved Health Outcomes. ACS OMEGA 2023; 8:31632-31647. [PMID: 37692213 PMCID: PMC10483668 DOI: 10.1021/acsomega.3c03155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 08/08/2023] [Indexed: 09/12/2023]
Abstract
The recent global wave of organic food consumption and the vitality of nutraceuticals for human health benefits has driven the need for applying scientific methods for phytochemical testing. Advanced in vitro models with greater physiological relevance than conventional in vitro models are required to evaluate the potential benefits and toxicity of nutraceuticals. Organ-on-chip (OOC) models have emerged as a promising alternative to traditional in vitro models and animal testing due to their ability to mimic organ pathophysiology. Numerous studies have demonstrated the effectiveness of OOC models in identifying pharmaceutically relevant compounds and accurately assessing compound-induced toxicity. This review examines the utility of traditional in vitro nutraceutical testing models and discusses the potential of OOC technology as a preclinical testing tool to examine the biomedical potential of nutraceuticals by reducing the need for animal testing. Exploring the capabilities of OOC models in carrying out plant-based bioactive compounds can significantly contribute to the authentication of nutraceuticals and drug discovery and validate phytochemicals medicinal characteristics. Overall, OOC models can facilitate a more systematic and efficient assessment of nutraceutical compounds while overcoming the limitations of current traditional in vitro models.
Collapse
Affiliation(s)
- Muhammad
Awais Farooqi
- Department of Mechatronics
Engineering, Jeju National University, Jeju, Jeju-do 690756, Republic
of Korea
| | - Chul-Ung Kang
- Department of Mechatronics
Engineering, Jeju National University, Jeju, Jeju-do 690756, Republic
of Korea
| | - Kyung Hyun Choi
- Department of Mechatronics
Engineering, Jeju National University, Jeju, Jeju-do 690756, Republic
of Korea
| |
Collapse
|
5
|
Yuen JS, Barrick BM, DiCindio H, Pietropinto JA, Kaplan DL. Optimization of Culture Media and Cell Ratios for 3D In Vitro Skeletal Muscle Tissues with Endothelial Cells. ACS Biomater Sci Eng 2023; 9:4558-4566. [PMID: 37326372 DOI: 10.1021/acsbiomaterials.3c00358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
A major challenge of engineering larger macroscale tissues in vitro is the limited diffusion of nutrients and oxygen to the interior. For skeletal muscle, this limitation results in millimeter scale outcomes to avoid necrosis. One method to address this constraint may be to vascularize in vitro-grown muscle tissue, to support nutrient (culture media) flow into the interior of the structure. In this exploratory study, we examine culture conditions that enable myogenic development and endothelial cell survival within tissue engineered 3D muscles. Myoblasts (C2C12s), endothelial cells (HUVECs), and endothelial support cells (C3H 10T1/2s) were seeded into Matrigel-fibrin hydrogels and cast into 3D printed frames to form 3D in vitro skeletal muscle tissues. Our preliminary results suggest that the simultaneous optimization of culture media formulation and cell concentrations is necessary for 3D cultured muscles to exhibit robust myosin heavy chain expression and GFP expression from GFP-transfected endothelial cells. The ability to form differentiated 3D muscles containing endothelial cells is a key step toward achieving vascularized 3D muscle tissues, which have potential use as tissue for implantation in a medical setting, as well as for future foods such as cultivated meats.
Collapse
Affiliation(s)
- John Sk Yuen
- David Kaplan Laboratory, Biomedical Engineering Department, Tufts University, 4 Colby Street, Medford, Massachusetts 02215, United States
| | - Brigid M Barrick
- David Kaplan Laboratory, Biomedical Engineering Department, Tufts University, 4 Colby Street, Medford, Massachusetts 02215, United States
| | - Hailey DiCindio
- David Kaplan Laboratory, Biomedical Engineering Department, Tufts University, 4 Colby Street, Medford, Massachusetts 02215, United States
| | - Jaymie A Pietropinto
- David Kaplan Laboratory, Biomedical Engineering Department, Tufts University, 4 Colby Street, Medford, Massachusetts 02215, United States
| | - David L Kaplan
- David Kaplan Laboratory, Biomedical Engineering Department, Tufts University, 4 Colby Street, Medford, Massachusetts 02215, United States
| |
Collapse
|
6
|
Sanchez MM, Bagdasarian IA, Darch W, Morgan JT. Organotypic cultures as aging associated disease models. Aging (Albany NY) 2022; 14:9338-9383. [PMID: 36435511 PMCID: PMC9740367 DOI: 10.18632/aging.204361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 10/21/2022] [Indexed: 11/24/2022]
Abstract
Aging remains a primary risk factor for a host of diseases, including leading causes of death. Aging and associated diseases are inherently multifactorial, with numerous contributing factors and phenotypes at the molecular, cellular, tissue, and organismal scales. Despite the complexity of aging phenomena, models currently used in aging research possess limitations. Frequently used in vivo models often have important physiological differences, age at different rates, or are genetically engineered to match late disease phenotypes rather than early causes. Conversely, routinely used in vitro models lack the complex tissue-scale and systemic cues that are disrupted in aging. To fill in gaps between in vivo and traditional in vitro models, researchers have increasingly been turning to organotypic models, which provide increased physiological relevance with the accessibility and control of in vitro context. While powerful tools, the development of these models is a field of its own, and many aging researchers may be unaware of recent progress in organotypic models, or hesitant to include these models in their own work. In this review, we describe recent progress in tissue engineering applied to organotypic models, highlighting examples explicitly linked to aging and associated disease, as well as examples of models that are relevant to aging. We specifically highlight progress made in skin, gut, and skeletal muscle, and describe how recently demonstrated models have been used for aging studies or similar phenotypes. Throughout, this review emphasizes the accessibility of these models and aims to provide a resource for researchers seeking to leverage these powerful tools.
Collapse
Affiliation(s)
- Martina M. Sanchez
- Department of Bioengineering, University of California, Riverside, CA 92521, USA
| | | | - William Darch
- Department of Bioengineering, University of California, Riverside, CA 92521, USA
| | - Joshua T. Morgan
- Department of Bioengineering, University of California, Riverside, CA 92521, USA
| |
Collapse
|
7
|
Khodabukus A, Guyer T, Moore AC, Stevens MM, Guldberg RE, Bursac N. Translating musculoskeletal bioengineering into tissue regeneration therapies. Sci Transl Med 2022; 14:eabn9074. [PMID: 36223445 PMCID: PMC7614064 DOI: 10.1126/scitranslmed.abn9074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Musculoskeletal injuries and disorders are the leading cause of physical disability worldwide and a considerable socioeconomic burden. The lack of effective therapies has driven the development of novel bioengineering approaches that have recently started to gain clinical approvals. In this review, we first discuss the self-repair capacity of the musculoskeletal tissues and describe causes of musculoskeletal dysfunction. We then review the development of novel biomaterial, immunomodulatory, cellular, and gene therapies to treat musculoskeletal disorders. Last, we consider the recent regulatory changes and future areas of technological progress that can accelerate translation of these therapies to clinical practice.
Collapse
Affiliation(s)
- Alastair Khodabukus
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Tyler Guyer
- Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR 97403, USA
| | - Axel C Moore
- Departments of Materials and Bioengineering and Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, UK.,Department of Biomedical Engineering, University of Delaware, Newark, DE 19716, USA
| | - Molly M Stevens
- Departments of Materials and Bioengineering and Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, UK.,Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm 17177, Sweden
| | - Robert E Guldberg
- Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR 97403, USA
| | - Nenad Bursac
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| |
Collapse
|
8
|
Modulation of the Immune System Promotes Tissue Regeneration. Mol Biotechnol 2022; 64:599-610. [PMID: 35022994 DOI: 10.1007/s12033-021-00430-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 11/22/2021] [Indexed: 10/19/2022]
Abstract
The immune system plays an essential role in the angiogenesis, repair, and regeneration of damaged tissues. Therefore, the design of scaffolds that manipulate immune cells and factors in such a way that could accelerate the repair of damaged tissues, following implantation, is one of the main goals of regenerative medicine. However, before manipulating the immune system, the function of the various components of the immune system during the repair process should be well understood and the fabrication conditions of the manipulated scaffolds should be brought closer to the physiological state of the body. In this article, we first review the studies aimed at the role of distinct immune cell populations in angiogenesis and support of damaged tissue repair. In the second part, we discuss the use of strategies that promote tissue regeneration by modulating the immune system. Given that various studies have shown an increase in tissue repair rate with the addition of stem cells and growth factors to the scaffolds, and regarding the limited resources of stem cells, we suggest the design of scaffolds that are capable to develop repair of damaged tissue by manipulating the immune system and create an alternative for repair strategies that use stem cells or growth factors.
Collapse
|
9
|
Romagnoli C, Iantomasi T, Brandi ML. Available In Vitro Models for Human Satellite Cells from Skeletal Muscle. Int J Mol Sci 2021; 22:ijms222413221. [PMID: 34948017 PMCID: PMC8706222 DOI: 10.3390/ijms222413221] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/01/2021] [Accepted: 12/06/2021] [Indexed: 12/11/2022] Open
Abstract
Skeletal muscle accounts for almost 40% of the total adult human body mass. This tissue is essential for structural and mechanical functions such as posture, locomotion, and breathing, and it is endowed with an extraordinary ability to adapt to physiological changes associated with growth and physical exercise, as well as tissue damage. Moreover, skeletal muscle is the most age-sensitive tissue in mammals. Due to aging, but also to several diseases, muscle wasting occurs with a loss of muscle mass and functionality, resulting from disuse atrophy and defective muscle regeneration, associated with dysfunction of satellite cells, which are the cells responsible for maintaining and repairing adult muscle. The most established cell lines commonly used to study muscle homeostasis come from rodents, but there is a need to study skeletal muscle using human models, which, due to ethical implications, consist primarily of in vitro culture, which is the only alternative way to vertebrate model organisms. This review will survey in vitro 2D/3D models of human satellite cells to assess skeletal muscle biology for pre-clinical investigations and future directions.
Collapse
Affiliation(s)
- Cecilia Romagnoli
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (C.R.); (T.I.)
| | - Teresa Iantomasi
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (C.R.); (T.I.)
| | - Maria Luisa Brandi
- F.I.R.M.O. Italian Foundation for the Research on Bone Diseases, Via Reginaldo Giuliani 195/A, 50141 Florence, Italy
- Correspondence:
| |
Collapse
|
10
|
Chen L, Guttieres D, Koenigsberg A, Barone PW, Sinskey AJ, Springs SL. Large-scale cultured meat production: Trends, challenges and promising biomanufacturing technologies. Biomaterials 2021; 280:121274. [PMID: 34871881 DOI: 10.1016/j.biomaterials.2021.121274] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 11/17/2021] [Accepted: 11/23/2021] [Indexed: 02/07/2023]
Abstract
Food systems of the future will need to face an increasingly clear reality - that a protein-rich diet is essential for good health, but traditional meat products will not suffice to ensure safety, sustainability, and equity of food supply chains at a global scale. This paper provides an in-depth analysis of bioprocess technologies needed for cell-based meat production and challenges in reaching commercial scale. Specifically, it reviews state-of-the-art bioprocess technologies, current limitations, and opportunities for research across four domains: cell line development, cell culture media, scaffolding, and bioreactors. This also includes exploring innovations to make cultured meat a viable protein alternative across numerous key performance indicators and for specific applications where traditional livestock is not an option (e.g., local production, space exploration). The paper explores tradeoffs between production scale, product quality, production cost, and footprint over different time horizons. Finally, a discussion explores various factors that may impact the ability to successfully scale and market cultured meat products: social acceptance, environmental tradeoffs, regulatory guidance, and public health benefits. While the exact nature of the transition from traditional livestock to alternative protein products is uncertain, it has already started and will likely continue to build momentum in the next decade.
Collapse
Affiliation(s)
- Lu Chen
- Massachusetts Institute of Technology, Center for Biomedical Innovation, Cambridge, MA, United States
| | - Donovan Guttieres
- Massachusetts Institute of Technology, Center for Biomedical Innovation, Cambridge, MA, United States
| | - Andrea Koenigsberg
- Massachusetts Institute of Technology, Center for Biomedical Innovation, Cambridge, MA, United States
| | - Paul W Barone
- Massachusetts Institute of Technology, Center for Biomedical Innovation, Cambridge, MA, United States
| | - Anthony J Sinskey
- Massachusetts Institute of Technology, Center for Biomedical Innovation, Cambridge, MA, United States
| | - Stacy L Springs
- Massachusetts Institute of Technology, Center for Biomedical Innovation, Cambridge, MA, United States.
| |
Collapse
|
11
|
Debbi L, Zohar B, Shuhmaher M, Shandalov Y, Goldfracht I, Levenberg S. Integrating engineered macro vessels with self-assembled capillaries in 3D implantable tissue for promoting vascular integration in-vivo. Biomaterials 2021; 280:121286. [PMID: 34871879 DOI: 10.1016/j.biomaterials.2021.121286] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 11/18/2021] [Accepted: 11/25/2021] [Indexed: 12/12/2022]
Abstract
A functional multi-scale vascular network can promote 3D engineered tissue growth and improve transplantation outcome. In this work, by using a combination of living cells, biological hydrogel, and biodegradable synthetic polymer we fabricated a biocompatible, multi-scale vascular network (MSVT) within thick, implantable engineered tissues. Using a templating technique, macro-vessels were patterned in a 3D biodegradable polymeric scaffold seeded with endothelial and support cells within a collagen gel. The lumen of the macro-vessel was lined with endothelial cells, which further sprouted and anastomosed with the surrounding self-assembled capillaries. Anastomoses between the two-scaled vascular systems displayed tightly bonded cell junctions, as indicated by vascular endothelial cadherin expression. Moreover, MSVT functionality and patency were demonstrated by dextran passage through the interconnected multi-scale vasculature. Additionally, physiological flow conditions were applied with home-designed flow bioreactors, to achieve a MSVT with a natural endothelium structure. Finally, implantation of a multi-scale-vascularized graft in a mouse model resulted in extensive host vessel penetration into the graft and a significant increase in blood perfusion via the engineered vessels compared to control micro-scale-vascularized graft. Designing and fabricating such multi-scale vascular architectures within 3D engineered tissues may benefit both in vitro models and therapeutic translation research.
Collapse
Affiliation(s)
- Lior Debbi
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Israel
| | - Barak Zohar
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Israel
| | - Margarita Shuhmaher
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Israel
| | - Yulia Shandalov
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Israel
| | - Idit Goldfracht
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Israel
| | - Shulamit Levenberg
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Israel.
| |
Collapse
|
12
|
Wang Y, Kankala RK, Cai YY, Tang HX, Zhu K, Zhang JT, Yang DY, Wang SB, Zhang YS, Chen AZ. Minimally invasive co-injection of modular micro-muscular and micro-vascular tissues improves in situ skeletal muscle regeneration. Biomaterials 2021; 277:121072. [PMID: 34454373 DOI: 10.1016/j.biomaterials.2021.121072] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 08/04/2021] [Accepted: 08/15/2021] [Indexed: 12/13/2022]
Abstract
Various conventional treatment strategies for volumetric muscle loss (VML) are often hampered by the extreme donor site morbidity, the limited availability of quality muscle flaps, and complicated, as well as invasive surgical procedures. The conventional biomaterial-based scaffolding systems carrying myoblasts have been extensively investigated towards improving the regeneration of the injured muscle tissues, as well as their injectable forms. However, the applicability of such designed systems has been restricted due to the lack of available vascular networks. Considering these facts, here we present the development of a unique set of two minimally invasively injectable modular microtissues, consisting of mouse myoblast (C2C12)-laden poly(lactic-co-glycolic acid) porous microspheres (PLGA PMs), or the micro-muscles, and human umbilical vein endothelial cell (HUVEC)-laden poly(ethylene glycol) hollow microrods (PEG HMs), or the microvessels. Besides systematic in vitro investigations, the myogenic performance of these modular composite microtissues, when co-injected, was explored in vivo using a mouse VML model, which confirmed improved in situ muscle regeneration and remolding. Together, we believe that the construction of these injectable modular microtissues and their combination for minimally invasive therapy provides a promising method for in situ tissue healing.
Collapse
Affiliation(s)
- Ying Wang
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, 361021, PR China
| | - Ranjith Kumar Kankala
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, 361021, PR China; Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen, 361021, PR China
| | - Yuan-Yuan Cai
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, 361021, PR China
| | - Han-Xiao Tang
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, 361021, PR China
| | - Kai Zhu
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, PR China
| | - Jian-Ting Zhang
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, 361021, PR China; Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen, 361021, PR China
| | - Da-Yun Yang
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350108, PR China
| | - Shi-Bin Wang
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, 361021, PR China; Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen, 361021, PR China
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA.
| | - Ai-Zheng Chen
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, 361021, PR China; Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen, 361021, PR China.
| |
Collapse
|
13
|
Mihaly E, Altamirano DE, Tuffaha S, Grayson W. Engineering skeletal muscle: Building complexity to achieve functionality. Semin Cell Dev Biol 2021; 119:61-69. [PMID: 33994095 DOI: 10.1016/j.semcdb.2021.04.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 04/19/2021] [Indexed: 12/12/2022]
Abstract
Volumetric muscle loss (VML) VML is defined as the loss of a critical mass of skeletal muscle that overwhelms the muscle's natural healing mechanisms, leaving patients with permanent functional deficits and deformity. The treatment of these defects is complex, as skeletal muscle is a composite structure that relies closely on the action of supporting tissues such as tendons, vasculature, nerves, and bone. The gold standard of treatment for VML injuries, an autologous muscle flap transfer, suffers from many shortcomings but nevertheless remains the best clinically available avenue to restore function. This review will consider the use of composite tissue engineered constructs, with multiple components that act together to replicate the function of an intact muscle, as an alternative to autologous muscle flaps. We will discuss recent advances in the field of tissue engineering that enable skeletal muscle constructs to more closely reproduce the functionality of an autologous muscle flap by incorporating vasculature, promoting innervation, and reconstructing the muscle-tendon boundary. Additionally, our understanding of the cellular composition of skeletal muscle has evolved to recognize the importance of a diverse variety of cell types in muscle regeneration, including fibro/adipogenic progenitors and immune cells like macrophages and regulatory T cells. We will address recent advances in our understanding of how these cell types interact with, and can be incorporated into, implanted tissue engineered constructs.
Collapse
Affiliation(s)
- Eszter Mihaly
- Translational Tissue Engineering Center, School of Medicine, Johns Hopkins University, Baltimore, MD 21231, USA; Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Dallas E Altamirano
- Translational Tissue Engineering Center, School of Medicine, Johns Hopkins University, Baltimore, MD 21231, USA; Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Sami Tuffaha
- Department of Plastic and Reconstructive Surgery, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; Curtis National Hand Center, MedStar Union Memorial Hospital, Baltimore, MD 21218, USA
| | - Warren Grayson
- Translational Tissue Engineering Center, School of Medicine, Johns Hopkins University, Baltimore, MD 21231, USA; Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Materials Science & Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21218, USA; Department of Chemical & Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21218, USA; Institute for NanoBioTechnology (INBT), Johns Hopkins University School of Engineering, Baltimore, MD 21218, USA.
| |
Collapse
|
14
|
Khodabukus A. Tissue-Engineered Skeletal Muscle Models to Study Muscle Function, Plasticity, and Disease. Front Physiol 2021; 12:619710. [PMID: 33716768 PMCID: PMC7952620 DOI: 10.3389/fphys.2021.619710] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/25/2021] [Indexed: 12/20/2022] Open
Abstract
Skeletal muscle possesses remarkable plasticity that permits functional adaptations to a wide range of signals such as motor input, exercise, and disease. Small animal models have been pivotal in elucidating the molecular mechanisms regulating skeletal muscle adaptation and plasticity. However, these small animal models fail to accurately model human muscle disease resulting in poor clinical success of therapies. Here, we review the potential of in vitro three-dimensional tissue-engineered skeletal muscle models to study muscle function, plasticity, and disease. First, we discuss the generation and function of in vitro skeletal muscle models. We then discuss the genetic, neural, and hormonal factors regulating skeletal muscle fiber-type in vivo and the ability of current in vitro models to study muscle fiber-type regulation. We also evaluate the potential of these systems to be utilized in a patient-specific manner to accurately model and gain novel insights into diseases such as Duchenne muscular dystrophy (DMD) and volumetric muscle loss. We conclude with a discussion on future developments required for tissue-engineered skeletal muscle models to become more mature, biomimetic, and widely utilized for studying muscle physiology, disease, and clinical use.
Collapse
Affiliation(s)
- Alastair Khodabukus
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| |
Collapse
|
15
|
Moyle LA, Jacques E, Gilbert PM. Engineering the next generation of human skeletal muscle models: From cellular complexity to disease modeling. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2020. [DOI: 10.1016/j.cobme.2020.05.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
16
|
Modelling Neuromuscular Diseases in the Age of Precision Medicine. J Pers Med 2020; 10:jpm10040178. [PMID: 33080928 PMCID: PMC7712305 DOI: 10.3390/jpm10040178] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 12/20/2022] Open
Abstract
Advances in knowledge resulting from the sequencing of the human genome, coupled with technological developments and a deeper understanding of disease mechanisms of pathogenesis are paving the way for a growing role of precision medicine in the treatment of a number of human conditions. The goal of precision medicine is to identify and deliver effective therapeutic approaches based on patients’ genetic, environmental, and lifestyle factors. With the exception of cancer, neurological diseases provide the most promising opportunity to achieve treatment personalisation, mainly because of accelerated progress in gene discovery, deep clinical phenotyping, and biomarker availability. Developing reproducible, predictable and reliable disease models will be key to the rapid delivery of the anticipated benefits of precision medicine. Here we summarize the current state of the art of preclinical models for neuromuscular diseases, with particular focus on their use and limitations to predict safety and efficacy treatment outcomes in clinical trials.
Collapse
|
17
|
Han JH, Ko UH, Kim HJ, Kim S, Jeon JS, Shin JH. Electrospun Microvasculature for Rapid Vascular Network Restoration. Tissue Eng Regen Med 2020; 18:89-97. [PMID: 32914287 DOI: 10.1007/s13770-020-00292-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 07/31/2020] [Accepted: 08/02/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Sufficient blood supply through neo-vasculature is a major challenge in cell therapy and tissue engineering in order to support the growth, function, and viability of implanted cells. However, depending on the implant size and cell types, the natural process of angiogenesis may not provide enough blood supply for long term survival of the implants, requiring supplementary strategy to prevent local ischemia. Many researchers have reported the methodologies to form pre-vasculatures that mimic in vivo microvessels for implantation to promote angiogenesis. These approaches successfully showed significant enhancement in long-term survival and regenerative functions of implanted cells, yet there remains room for improvement. METHODS This paper suggests a proof-of-concept strategy to utilize novel scaffolds of dimpled/hollow electrospun fibers that enable the formation of highly mature pre-vasculatures with adequate dimensions and fast degrading in the tissue. RESULT Higher surface roughness improved the maturity of endothelial cells mediated by increased cell-scaffold affinity. The degradation of scaffold material for functional restoration of the neo-vasculatures was also expedited by employing the hollow scaffold design based on co-axial electrospinning techniques. CONCLUSION This unique scaffold-based pre-vasculature can hold implanted cells and tissue constructs for a prolonged time while minimizing the cellular loss, manifesting as a gold standard design for transplantable scaffolds.
Collapse
Affiliation(s)
- Je-Hyun Han
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Ung Hyun Ko
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Hyo Jun Kim
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Seunggyu Kim
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jessie S Jeon
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jennifer H Shin
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
18
|
Post MJ, Levenberg S, Kaplan DL, Genovese N, Fu J, Bryant CJ, Negowetti N, Verzijden K, Moutsatsou P. Scientific, sustainability and regulatory challenges of cultured meat. ACTA ACUST UNITED AC 2020. [DOI: 10.1038/s43016-020-0112-z] [Citation(s) in RCA: 140] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
19
|
Tan SY, Leung Z, Wu AR. Recreating Physiological Environments In Vitro: Design Rules for Microfluidic-Based Vascularized Tissue Constructs. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1905055. [PMID: 31913580 DOI: 10.1002/smll.201905055] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/15/2019] [Indexed: 06/10/2023]
Abstract
Vascularization of engineered tissue constructs remains one of the greatest unmet challenges to mimicking the native tissue microenvironment in vitro. The main obstacle is recapitulating the complexity of the physiological environment while providing simplicity in operation and manipulation of the model. Microfluidic technology has emerged as a promising tool that enables perfusion of the tissue constructs through engineered vasculatures and precise control of the vascular microenvironment cues in vitro. The tunable microenvironment includes i) biochemical cues such as coculture, supporting matrix, and growth factors and ii) engineering aspects such as vasculature engineering methods, fluid flow, and shear stress. In this systematic review, the design considerations of the microfluidic-based in vitro model are discussed, with an emphasis on microenvironment control to enhance the development of next-generation vascularized engineered tissues.
Collapse
Affiliation(s)
- Sin Yen Tan
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Ziuwin Leung
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Angela Ruohao Wu
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| |
Collapse
|
20
|
Von Willebrand Disease: From In Vivo to In Vitro Disease Models. Hemasphere 2020; 3:e297. [PMID: 31942548 PMCID: PMC6919471 DOI: 10.1097/hs9.0000000000000297] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 09/04/2019] [Indexed: 01/28/2023] Open
Abstract
Von Willebrand factor (VWF) plays an essential role in primary hemostasis and is exclusively synthesized and stored in endothelial cells and megakaryocytes. Upon vascular injury, VWF is released into the circulation where this multimeric protein is required for platelet adhesion. Defects of VWF lead to the most common inherited bleeding disorder von Willebrand disease (VWD). Three different types of VWD exist, presenting with varying degrees of bleeding tendencies. The pathophysiology of VWD can be investigated by examining the synthesis, storage and secretion in VWF producing cells. These cells can either be primary VWF producing cells or transfected heterologous cell models. For many years transfected heterologous cells have been used successfully to elucidate many aspects of VWF synthesis. However, those cells do not fully reflect the characteristics of primary cells. Obtaining primary endothelial cells or megakaryocytes with a VWD phenotype, requires invasive procedures, such as vessel collection or a bone marrow biopsy. A more recent and promising development is the isolation of endothelial colony forming cells (ECFCs) from peripheral blood as a true-to-nature cell model. Alternatively, various animal models are available but limiting, therefore, new approaches are needed to study VWD and other bleeding disorders. A potential versatile source of endothelial cells and megakaryocytes could be induced pluripotent stem cells (iPSCs). This review gives an overview of models that are available to study VWD and VWF and will discuss novel approaches that can be considered to improve the understanding of the structural and functional mechanisms underlying this disease.
Collapse
|
21
|
Gilbert-Honick J, Grayson W. Vascularized and Innervated Skeletal Muscle Tissue Engineering. Adv Healthc Mater 2020; 9:e1900626. [PMID: 31622051 PMCID: PMC6986325 DOI: 10.1002/adhm.201900626] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 09/27/2019] [Indexed: 12/12/2022]
Abstract
Volumetric muscle loss (VML) is a devastating loss of muscle tissue that overwhelms the native regenerative properties of skeletal muscle and results in lifelong functional deficits. There are currently no treatments for VML that fully recover the lost muscle tissue and function. Tissue engineering presents a promising solution for VML treatment and significant research has been performed using tissue engineered muscle constructs in preclinical models of VML with a broad range of defect locations and sizes, tissue engineered construct characteristics, and outcome measures. Due to the complex vascular and neural anatomy within skeletal muscle, regeneration of functional vasculature and nerves is vital for muscle recovery following VML injuries. This review aims to summarize the current state of the field of skeletal muscle tissue engineering using 3D constructs for VML treatment with a focus on studies that have promoted vascular and neural regeneration within the muscle tissue post-VML.
Collapse
Affiliation(s)
- Jordana Gilbert-Honick
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Warren Grayson
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Material Sciences & Engineering, Johns Hopkins University, School of Engineering, Baltimore, MD 21218, USA
- Institute for NanoBioTechnology (INBT), Johns Hopkins University School of Engineering, Baltimore, MD 21218, USA
| |
Collapse
|
22
|
Sharma P, Kumar P, Sharma R, Bhatt VD, Dhot PS. Tissue Engineering; Current Status & Futuristic Scope. J Med Life 2019; 12:225-229. [PMID: 31666821 PMCID: PMC6814873 DOI: 10.25122/jml-2019-0032] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Almost 30 years have passed since the term ‘tissue engineering’ was created to represent a new concept that focuses on the regeneration of neotissues from cells with the support of biomaterials and growth factors. This interdisciplinary engineering has attracted much attention as a new therapeutic means that may overcome the drawbacks involved in the current artificial organs and organ transplantation that have also been aiming at replacing lost or severely damaged tissues or organs. However, the tissues regenerated by tissue engineering and widely applied to patients are still minimal, including skin, bone, cartilage, capillary, and periodontal tissues. What are the reasons for such slow advances in clinical applications of tissue engineering? This article gives a brief overview of the current state of tissue engineering, covering the fundamentals and applications. The fundamentals of tissue engineering involve cell sources, scaffolds for cell expansion and differentiation, as well as carriers for growth factors. Animal and human trials are a major part of the applications. Based on these results, some critical problems to be resolved for the advances of tissue engineering are addressed from the engineering point of view, emphasizing the close collaboration between medical doctors and biomaterials scientists.
Collapse
Affiliation(s)
- Preeti Sharma
- Department of Biochemistry, Santosh Medical College and Hospital (Santosh University), Ghaziabad, UP, India
| | - Pradeep Kumar
- Department of Biochemistry, Santosh Medical College and Hospital (Santosh University), Ghaziabad, UP, India
| | - Rachna Sharma
- Department of Biochemistry, TSM Medical College and Hospital, Lucknow, UP, India
| | - Vijaya Dhar Bhatt
- Department of Conservative Dentistry and Endodontics, Santosh Dental College and Hospital, Ghaziabad, UP, India
| | - P S Dhot
- Department of Pathology, Santosh Medical College and Hospital, Ghaziabad, UP, India
| |
Collapse
|
23
|
Gholobova D, Terrie L, Gerard M, Declercq H, Thorrez L. Vascularization of tissue-engineered skeletal muscle constructs. Biomaterials 2019; 235:119708. [PMID: 31999964 DOI: 10.1016/j.biomaterials.2019.119708] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 12/10/2019] [Accepted: 12/18/2019] [Indexed: 12/26/2022]
Abstract
Skeletal muscle tissue can be created in vitro by tissue engineering approaches, based on differentiation of muscle stem cells. Several approaches exist and generally result in three dimensional constructs composed of multinucleated myofibers to which we refer as myooids. Engineering methods date back to 3 decades ago and meanwhile a wide range of cell types and scaffold types have been evaluated. Nevertheless, in most approaches, myooids remain very small to allow for diffusion-mediated nutrient supply and waste product removal, typically less than 1 mm thick. One of the shortcomings of current in vitro skeletal muscle organoid development is the lack of a functional vascular structure, thus limiting the size of myooids. This is a challenge which is nowadays applicable to almost all organoid systems. Several approaches to obtain a vascular structure within myooids have been proposed. The purpose of this review is to give a concise overview of these approaches.
Collapse
Affiliation(s)
- D Gholobova
- Tissue Engineering Lab, Department of Development and Regeneration, KU Leuven, E. Sabbelaan 53, 8500, Kortrijk, Belgium
| | - L Terrie
- Tissue Engineering Lab, Department of Development and Regeneration, KU Leuven, E. Sabbelaan 53, 8500, Kortrijk, Belgium
| | - M Gerard
- Tissue Engineering Lab, Department of Development and Regeneration, KU Leuven, E. Sabbelaan 53, 8500, Kortrijk, Belgium
| | - H Declercq
- Tissue Engineering Lab, Department of Development and Regeneration, KU Leuven, E. Sabbelaan 53, 8500, Kortrijk, Belgium
| | - L Thorrez
- Tissue Engineering Lab, Department of Development and Regeneration, KU Leuven, E. Sabbelaan 53, 8500, Kortrijk, Belgium.
| |
Collapse
|
24
|
Enhanced Host Neovascularization of Prevascularized Engineered Muscle Following Transplantation into Immunocompetent versus Immunocompromised Mice. Cells 2019; 8:cells8121472. [PMID: 31757007 PMCID: PMC6953003 DOI: 10.3390/cells8121472] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 11/10/2019] [Accepted: 11/18/2019] [Indexed: 01/03/2023] Open
Abstract
: Engineering of functional tissue, by combining either autologous or allogeneic cells with biomaterials, holds promise for the treatment of various diseases and injuries. Prevascularization of the engineered tissue was shown to enhance and improve graft integration and neovascularization post-implantation in immunocompromised mice. However, the neovascularization and integration processes of transplanted engineered tissues have not been widely studied in immunocompetent models. Here, we fabricated a three-dimensional (3D) vascularized murine muscle construct that was transplanted into immunocompetent and immunocompromised mice. Intravital imaging demonstrated enhanced neovascularization in immunocompetent mice compared to immunocompromised mice, 18 days post-implantation, indicating the advantageous effect of an intact immune system on neovascularization. Moreover, construct prevascularization enhanced neovascularization, integration, and myogenesis in both animal models. These findings demonstrate the superiority of implantation into immunocompetent over immunocompromised mice and, therefore, suggest that using autologous cells might be beneficial compared to allogeneic cells and subsequent immunosuppression. Taken together, these observations have the potential to advance the field of regenerative medicine and tissue engineering, ultimately reducing the need for donor organs and tissues.
Collapse
|
25
|
Maffioletti SM, Sarcar S, Henderson ABH, Mannhardt I, Pinton L, Moyle LA, Steele-Stallard H, Cappellari O, Wells KE, Ferrari G, Mitchell JS, Tyzack GE, Kotiadis VN, Khedr M, Ragazzi M, Wang W, Duchen MR, Patani R, Zammit PS, Wells DJ, Eschenhagen T, Tedesco FS. Three-Dimensional Human iPSC-Derived Artificial Skeletal Muscles Model Muscular Dystrophies and Enable Multilineage Tissue Engineering. Cell Rep 2019; 23:899-908. [PMID: 29669293 PMCID: PMC5917451 DOI: 10.1016/j.celrep.2018.03.091] [Citation(s) in RCA: 196] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 02/21/2018] [Accepted: 03/20/2018] [Indexed: 01/07/2023] Open
Abstract
Generating human skeletal muscle models is instrumental for investigating muscle pathology and therapy. Here, we report the generation of three-dimensional (3D) artificial skeletal muscle tissue from human pluripotent stem cells, including induced pluripotent stem cells (iPSCs) from patients with Duchenne, limb-girdle, and congenital muscular dystrophies. 3D skeletal myogenic differentiation of pluripotent cells was induced within hydrogels under tension to provide myofiber alignment. Artificial muscles recapitulated characteristics of human skeletal muscle tissue and could be implanted into immunodeficient mice. Pathological cellular hallmarks of incurable forms of severe muscular dystrophy could be modeled with high fidelity using this 3D platform. Finally, we show generation of fully human iPSC-derived, complex, multilineage muscle models containing key isogenic cellular constituents of skeletal muscle, including vascular endothelial cells, pericytes, and motor neurons. These results lay the foundation for a human skeletal muscle organoid-like platform for disease modeling, regenerative medicine, and therapy development. Human iPSC-derived 3D artificial muscles show features of normal skeletal muscle Multiple muscular dystrophy iPSC lines can be differentiated in 3D artificial muscles Artificial muscle constructs model severe, incurable forms of muscular dystrophy Isogenic vascular-like networks and motor neurons develop within artificial muscles
Collapse
Affiliation(s)
| | - Shilpita Sarcar
- Department of Cell and Developmental Biology, University College London, London WC1E 6DE, UK
| | - Alexander B H Henderson
- Department of Cell and Developmental Biology, University College London, London WC1E 6DE, UK
| | - Ingra Mannhardt
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg Eppendorf (UKE), 20246 Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Germany
| | - Luca Pinton
- Department of Cell and Developmental Biology, University College London, London WC1E 6DE, UK; Randall Centre for Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK
| | - Louise Anne Moyle
- Department of Cell and Developmental Biology, University College London, London WC1E 6DE, UK
| | - Heather Steele-Stallard
- Department of Cell and Developmental Biology, University College London, London WC1E 6DE, UK; Randall Centre for Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK
| | - Ornella Cappellari
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London NW1 0TU, UK
| | - Kim E Wells
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London NW1 0TU, UK
| | - Giulia Ferrari
- Department of Cell and Developmental Biology, University College London, London WC1E 6DE, UK
| | - Jamie S Mitchell
- Institute of Neurology, University College London, London WC1N 3BG, UK; The Francis Crick Institute, London NW1 1AT, UK
| | - Giulia E Tyzack
- Institute of Neurology, University College London, London WC1N 3BG, UK; The Francis Crick Institute, London NW1 1AT, UK
| | - Vassilios N Kotiadis
- Department of Cell and Developmental Biology, University College London, London WC1E 6DE, UK
| | - Moustafa Khedr
- Department of Cell and Developmental Biology, University College London, London WC1E 6DE, UK
| | - Martina Ragazzi
- Department of Cell and Developmental Biology, University College London, London WC1E 6DE, UK
| | - Weixin Wang
- Department of Cell and Developmental Biology, University College London, London WC1E 6DE, UK
| | - Michael R Duchen
- Department of Cell and Developmental Biology, University College London, London WC1E 6DE, UK
| | - Rickie Patani
- Institute of Neurology, University College London, London WC1N 3BG, UK; The Francis Crick Institute, London NW1 1AT, UK
| | - Peter S Zammit
- Randall Centre for Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK
| | - Dominic J Wells
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London NW1 0TU, UK
| | - Thomas Eschenhagen
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg Eppendorf (UKE), 20246 Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Germany
| | | |
Collapse
|
26
|
Puluca N, Lee S, Doppler S, Münsterer A, Dreßen M, Krane M, Wu SM. Bioprinting Approaches to Engineering Vascularized 3D Cardiac Tissues. Curr Cardiol Rep 2019; 21:90. [PMID: 31352612 PMCID: PMC7340624 DOI: 10.1007/s11886-019-1179-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW 3D bioprinting technologies hold significant promise for the generation of engineered cardiac tissue and translational applications in medicine. To generate a clinically relevant sized tissue, the provisioning of a perfusable vascular network that provides nutrients to cells in the tissue is a major challenge. This review summarizes the recent vascularization strategies for engineering 3D cardiac tissues. RECENT FINDINGS Considerable steps towards the generation of macroscopic sizes for engineered cardiac tissue with efficient vascular networks have been made within the past few years. Achieving a compact tissue with enough cardiomyocytes to provide functionality remains a challenging task. Achieving perfusion in engineered constructs with media that contain oxygen and nutrients at a clinically relevant tissue sizes remains the next frontier in tissue engineering. The provisioning of a functional vasculature is necessary for maintaining a high cell viability and functionality in engineered cardiac tissues. Several recent studies have shown the ability to generate tissues up to a centimeter scale with a perfusable vascular network. Future challenges include improving cell density and tissue size. This requires the close collaboration of a multidisciplinary teams of investigators to overcome complex challenges in order to achieve success.
Collapse
Affiliation(s)
- Nazan Puluca
- Division of Cardiovascular Medicine, Department of Medicine; Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Room G1120A, Lokey Stem Cell Building, 265 Campus Drive, Stanford, CA, 94305, USA
- Department of Cardiovascular Surgery, German Heart Center Munich, Technische Universität München, Munich, Germany
- Insure (Institute for Translational Cardiac Surgery) Department of Cardiovascular Surgery, German Heart Center Munich, Technische Universität München, Munich, Germany
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Soah Lee
- Division of Cardiovascular Medicine, Department of Medicine; Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Room G1120A, Lokey Stem Cell Building, 265 Campus Drive, Stanford, CA, 94305, USA
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Stefanie Doppler
- Department of Cardiovascular Surgery, German Heart Center Munich, Technische Universität München, Munich, Germany
- Insure (Institute for Translational Cardiac Surgery) Department of Cardiovascular Surgery, German Heart Center Munich, Technische Universität München, Munich, Germany
| | - Andrea Münsterer
- Department of Cardiovascular Surgery, German Heart Center Munich, Technische Universität München, Munich, Germany
- Insure (Institute for Translational Cardiac Surgery) Department of Cardiovascular Surgery, German Heart Center Munich, Technische Universität München, Munich, Germany
| | - Martina Dreßen
- Department of Cardiovascular Surgery, German Heart Center Munich, Technische Universität München, Munich, Germany
- Insure (Institute for Translational Cardiac Surgery) Department of Cardiovascular Surgery, German Heart Center Munich, Technische Universität München, Munich, Germany
| | - Markus Krane
- Department of Cardiovascular Surgery, German Heart Center Munich, Technische Universität München, Munich, Germany
- Insure (Institute for Translational Cardiac Surgery) Department of Cardiovascular Surgery, German Heart Center Munich, Technische Universität München, Munich, Germany
- German Heart Center Munich-DZHK Partner Site Munich Heart Alliance, Munich, Germany
| | - Sean M Wu
- Division of Cardiovascular Medicine, Department of Medicine; Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Room G1120A, Lokey Stem Cell Building, 265 Campus Drive, Stanford, CA, 94305, USA.
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
27
|
Ben-Arye T, Levenberg S. Tissue Engineering for Clean Meat Production. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2019. [DOI: 10.3389/fsufs.2019.00046] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
28
|
Arrigoni C, Petta D, Bersini S, Mironov V, Candrian C, Moretti M. Engineering complex muscle-tissue interfaces through microfabrication. Biofabrication 2019; 11:032004. [PMID: 31042682 DOI: 10.1088/1758-5090/ab1e7c] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Skeletal muscle is a tissue with a complex and hierarchical architecture that influences its functional properties. In order to exert its contractile function, muscle tissue is connected to neural, vascular and connective compartments, comprising finely structured interfaces which are orchestrated by multiple signalling pathways. Pathological conditions such as dystrophies and trauma, or physiological situations such as exercise and aging, modify the architectural organization of these structures, hence affecting muscle functionality. To overcome current limitations of in vivo and standard in vitro models, microfluidics and biofabrication techniques have been applied to better reproduce the microarchitecture and physicochemical environment of human skeletal muscle tissue. In the present review, we aim to critically discuss the role of those techniques, taken individually or in combination, in the generation of models that mimic the complex interfaces between muscle tissue and neural/vascular/tendon compartments. The exploitation of either microfluidics or biofabrication to model different muscle interfaces has led to the development of constructs with an improved spatial organization, thus presenting a better functionality as compared to standard models. However, the achievement of models replicating muscle-tissue interfaces with adequate architecture, presence of fundamental proteins and recapitulation of signalling pathways is still far from being achieved. Increased integration between microfluidics and biofabrication, providing the possibility to pattern cells in predetermined structures with higher resolution, will help to reproduce the hierarchical and heterogeneous structure of skeletal muscle interfaces. Such strategies will further improve the functionality of these techniques, providing a key contribution towards the study of skeletal muscle functions in physiology and pathology.
Collapse
Affiliation(s)
- Chiara Arrigoni
- Regenerative Medicine Technologies Lab, Ente Ospedaliero Cantonale (EOC), Via Tesserete 46, 6900 Lugano, Switzerland
| | | | | | | | | | | |
Collapse
|
29
|
Qiu YL, Chen X, Hou YL, Hou YJ, Tian SB, Chen YH, Yu L, Nie MH, Liu XQ. Characterization of different biodegradable scaffolds in tissue engineering. Mol Med Rep 2019; 19:4043-4056. [PMID: 30896809 PMCID: PMC6471812 DOI: 10.3892/mmr.2019.10066] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 12/19/2018] [Indexed: 12/15/2022] Open
Abstract
The aim of the present study was to compare the characteristics of acellular dermal matrix (ADM), small intestinal submucosa (SIS) and Bio‑Gide scaffolds with acellular vascular matrix (ACVM)‑0.25% human‑like collagen I (HLC‑I) scaffold in tissue engineering blood vessels. The ACVM‑0.25% HLC‑I scaffold was prepared and compared with ADM, SIS and Bio‑Gide scaffolds via hematoxylin and eosin (H&E) staining, Masson staining and scanning electron microscope (SEM) observations. Primary human gingival fibroblasts (HGFs) were cultured and identified. Then, the experiment was established via the seeding of HGFs on different scaffolds for 1, 4 and 7 days. The compatibility of four different scaffolds with HGFs was evaluated by H&E staining, SEM observation and Cell Counting Kit‑8 assay. Then, a series of experiments were conducted to evaluate water absorption capacities, mechanical abilities, the ultra‑microstructure and the cytotoxicity of the four scaffolds. The ACVM‑0.25% HLC‑I scaffold was revealed to exhibit the best cell proliferation and good cell architecture. ADM and Bio‑Gide scaffolds exhibited good mechanical stability but cell proliferation was reduced when compared with the ACVM‑0.25% HLC‑I scaffold. In addition, SIS scaffolds exhibited the worst cell proliferation. The ACVM‑0.25% HLC‑I scaffold exhibited the best water absorption, followed by the SIS and Bio‑Gide scaffolds, and then the ADM scaffold. In conclusion, the ACVM‑0.25% HLC‑I scaffold has good mechanical properties as a tissue engineering scaffold and the present results suggest that it has better biological characterization when compared with other scaffold types.
Collapse
Affiliation(s)
- Yan-Ling Qiu
- Department of Periodontics and Oral Mucosa, Affiliated Stomatology Hospital, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Xiao Chen
- Department of Orthodontics, Mianyang Stomatological Hospital, Mianyang, Sichuan 621000, P.R. China
| | - Ya-Li Hou
- Department of Oral Pathology, College and Hospital of Stomatology, Hebei Medical University and The Key Laboratory of Stomatology, Shijiazhuang, Hebei 050000, P.R. China
| | - Yan-Juan Hou
- Department of Nephrology, Second Hospital, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Song-Bo Tian
- Department of Oral Medicine, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Yu-He Chen
- Department of Periodontics and Oral Mucosa, Affiliated Stomatology Hospital, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Li Yu
- Department of Periodontics and Oral Mucosa, Affiliated Stomatology Hospital, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Min-Hai Nie
- Department of Periodontics and Oral Mucosa, Affiliated Stomatology Hospital, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Xu-Qian Liu
- Department of Periodontics and Oral Mucosa, Affiliated Stomatology Hospital, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| |
Collapse
|
30
|
Ben-Shaul S, Landau S, Merdler U, Levenberg S. Mature vessel networks in engineered tissue promote graft-host anastomosis and prevent graft thrombosis. Proc Natl Acad Sci U S A 2019; 116:2955-2960. [PMID: 30718418 PMCID: PMC6386696 DOI: 10.1073/pnas.1814238116] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Graft vascularization remains one of the most critical challenges facing tissue-engineering experts in their attempt to create thick transplantable tissues and organs. In vitro prevascularization of engineered tissues has been suggested to promote rapid anastomosis between the graft and host vasculatures; however, thrombotic events have been reported upon graft implantation. Here, we aimed to determine whether in vitro vessel maturation in transplantable grafts can accelerate vascular integration and graft perfusion and prevent thrombotic events in the grafts. To this end, endothelial cells and fibroblasts were cocultured on 3D scaffolds for 1, 7, or 14 d to form vasculature with different maturation degrees. Monitoring graft-host interactions postimplantation demonstrated that the 14-d in vitro-cultured grafts, bearing more mature and complex vessel networks as indicated by elongated and branched vessel structures, had increased graft-host vessel anastomosis; host vessel penetration into the graft increased approximately eightfold, and graft perfusion increased sixfold. The presence of developed vessel networks prevented clot accumulation in the grafts. Conversely, short-term cultured constructs demonstrated poor vascularization and increased thrombus formation. Elevated expression levels of coagulation factors, von Willebrand factor (vWF), and tissue factor (TF), were demonstrated in constructs bearing less mature vasculature. To conclude, these findings demonstrate the importance of establishing mature and complex vessel networks in engineered tissues before implantation to promote anastomosis with the host and accelerate graft perfusion.
Collapse
Affiliation(s)
- Shahar Ben-Shaul
- Department of Biomedical Engineering, Technion-Israel Institute of Technology, 32000 Haifa, Israel
- The Interdepartmental Program for Biotechnology, Technion-Israel Institute of Technology, 32000 Haifa, Israel
| | - Shira Landau
- Department of Biomedical Engineering, Technion-Israel Institute of Technology, 32000 Haifa, Israel
| | - Uri Merdler
- Department of Biomedical Engineering, Technion-Israel Institute of Technology, 32000 Haifa, Israel
| | - Shulamit Levenberg
- Department of Biomedical Engineering, Technion-Israel Institute of Technology, 32000 Haifa, Israel;
| |
Collapse
|
31
|
Engineering an Environment for the Study of Fibrosis: A 3D Human Muscle Model with Endothelium Specificity and Endomysium. Cell Rep 2018; 25:3858-3868.e4. [DOI: 10.1016/j.celrep.2018.11.092] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 10/16/2018] [Accepted: 11/27/2018] [Indexed: 02/06/2023] Open
|
32
|
Genetically engineered human muscle transplant enhances murine host neovascularization and myogenesis. Commun Biol 2018; 1:161. [PMID: 30320229 PMCID: PMC6172230 DOI: 10.1038/s42003-018-0161-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 08/24/2018] [Indexed: 11/30/2022] Open
Abstract
Engineered tissues are a promising tool for addressing the growing need for tissues and organs in surgical reconstructions. Prevascularization of implanted tissues is expected to enhance survival prospects post transplantation and minimize deficiencies and/or hypoxia deeper in the tissue. Here, we fabricate a three-dimensional, prevascularized engineered muscle containing human myoblasts, genetically modified endothelial cells secreting angiopoietin 1 (ANGPT1) and genetically modified smooth muscle cells secreting vascular endothelial growth factor (VEGF). The genetically engineered human muscle shows enhanced host neovascularization and myogenesis following transplantation into a mouse host, compared to the non-secreting control. The vascular, genetically modified cells have been cleared for clinical trials and can be used to construct autologous vascularized tissues. Therefore, the described genetically engineered vascularized muscle has the potential to be fully translated to the clinical setting to overcome autologous tissue shortage and to accelerate host neovascularization and integration of engineered grafts following transplantation. Luba Perry et al. report transplantation of engineered prevascularized human muscle into mice to repair an abdominal muscle defect. They show that genetically engineering smooth muscle cells to secrete VEGF and endothelial cells to secrete ANGPT1 significantly improves host neovascularization and myogenesis.
Collapse
|
33
|
Osaki T, Sivathanu V, Kamm RD. Vascularized microfluidic organ-chips for drug screening, disease models and tissue engineering. Curr Opin Biotechnol 2018; 52:116-123. [PMID: 29656237 DOI: 10.1016/j.copbio.2018.03.011] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 03/28/2018] [Accepted: 03/30/2018] [Indexed: 12/17/2022]
Abstract
Vascularization of micro-tissues in vitro has enabled formation of tissues larger than those limited by diffusion with appropriate nutrient/gas exchange as well as waste elimination. Furthermore, angiocrine signaling from the vasculature may be essential in mimicking organ-level functions in these micro-tissues. In drug screening applications, the presence of an appropriate blood-organ barrier in the form of a vasculature and its supporting cells (pericytes, appropriate stromal cells) may be essential to reproducing organ-scale drug delivery pharmacokinetics. Cutting-edge techniques including 3D bioprinting and in vitro angiogenesis and vasculogenesis could be applied to vascularize a range of tissues and organoids. Herein, we describe the latest developments in vascularization and prevascularization of micro-tissues and provide an outlook on potential future strategies.
Collapse
Affiliation(s)
- Tatsuya Osaki
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Vivek Sivathanu
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Roger D Kamm
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; BioSystems and Micromechanics (BioSyM), Singapore-MIT Alliance for Research and Technology, Singapore, Singapore.
| |
Collapse
|
34
|
Tzchori I, Falah M, Shteynberg D, Levin Ashkenazi D, Loberman Z, Perry L, Flugelman MY. Improved Patency of ePTFE Grafts as a Hemodialysis Access Site by Seeding Autologous Endothelial Cells Expressing Fibulin-5 and VEGF. Mol Ther 2018; 26:1660-1668. [PMID: 29703700 DOI: 10.1016/j.ymthe.2018.04.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 04/01/2018] [Accepted: 04/01/2018] [Indexed: 11/28/2022] Open
Abstract
Small caliber synthetic vascular grafts used for dialysis access sites have high failure rates due to neointima formation and thrombosis. Seeding synthetic grafts with endothelial cells (ECs) provides a biocompatible surface that may prevent graft failure. We tested the use of ePTFE grafts seeded with autologous ECs expressing fibulin-5 and vascular endothelial growth factor (VEGF), as a dialysis access site in a porcine model. We connected the carotid arteries and jugular veins of 12 miniature pigs using 7-mm ePTFE grafts; five grafts were seeded with autologous venous ECs modified to express fibulin-5 and VEGF, and seven unseeded grafts were implanted at the same location and served as controls. At 6 months, after completion of angiography, the carotid arteries and jugular veins with the connecting grafts were excised and fixed. Autologous EC isolation and transduction and graft seeding were successful in all animals. At 3 months, 4 of 5 seeded grafts and 3 of 7 control grafts were patent. At 6 months, 4 of 5 (80%) seeded grafts and only 2 of 7 (29%) control grafts were patent. Seeding ePTFE vascular grafts with genetically modified ECs improved long term small caliber graft patency. The biosynthetic grafts offer a novel therapeutic modality for vascular access in hemodialysis.
Collapse
Affiliation(s)
- Itai Tzchori
- Department of Cardiovascular Medicine, Lady Davis Carmel Medical Center, Haifa, Israel; VESSL Therapeutics Ltd., Haifa, Israel
| | - Mizied Falah
- Department of Cardiovascular Medicine, Lady Davis Carmel Medical Center, Haifa, Israel; VESSL Therapeutics Ltd., Haifa, Israel
| | - Denis Shteynberg
- Department of Cardiovascular Medicine, Lady Davis Carmel Medical Center, Haifa, Israel; VESSL Therapeutics Ltd., Haifa, Israel
| | | | - Zeev Loberman
- Rappaport Faculty of Medicine, Technion Israel Institute of Technology, Haifa, Israel
| | - Luba Perry
- Department of Cardiovascular Medicine, Lady Davis Carmel Medical Center, Haifa, Israel
| | - Moshe Y Flugelman
- Department of Cardiovascular Medicine, Lady Davis Carmel Medical Center, Haifa, Israel; VESSL Therapeutics Ltd., Haifa, Israel; Rappaport Faculty of Medicine, Technion Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
35
|
Grounds MD. Obstacles and challenges for tissue engineering and regenerative medicine: Australian nuances. Clin Exp Pharmacol Physiol 2018; 45:390-400. [DOI: 10.1111/1440-1681.12899] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 11/15/2017] [Accepted: 11/16/2017] [Indexed: 01/31/2023]
Affiliation(s)
- Miranda D Grounds
- School of Human Sciences; the University of Western Australia; Perth WA Australia
| |
Collapse
|
36
|
Ben-Shaul S, Landau S, Levenberg S. Implanted scaffolds: Pre-ordered vessels halt ischaemia. Nat Biomed Eng 2017. [DOI: 10.1038/s41551-017-0089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|