1
|
Li HY, Xu XY, Lv SH, Chen W, Wang Y, Fu Y, Yang JP. LncRNA H19 accelerates renal fibrosis by negatively regulating the let-7b-5p/TGF-βR1/COL1A1 axis. Cell Signal 2024; 123:111373. [PMID: 39214267 DOI: 10.1016/j.cellsig.2024.111373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/31/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Transforming growth factor-beta1 (TGF-β1)-mediated renal fibrosis is a critical pathological process of chronic kidney disease worsening to end-stage renal disease. Recent studies have shown that long noncoding RNA H19 (lncRNA H19) is widely involved in the formation and progression of fibrosis in multiple organs. However, its molecular events in renal fibrosis remain to be elucidated. METHODS Rats were treated with adenine intragastrically and HK-2 cells were induced by TGF-β1 to construct renal fibrosis models in vivo and in vitro, respectively. Renal histopathological examination was performed using HE and Masson staining. Gene expression levels of interleukin-1beta (IL-1β), tumor necrosis factor-alpha (TNF-α), TGF-β1, fibronectin (Fn), alpha-smooth muscle actin (α-SMA), H19, let-7b-5p, TGF-β receptor 1 (TGF-βR1), and type I collagen (COL1A1) were detected by qRT-PCR. Immunohistochemistry, immunofluorescence, and western blot analysis were used to evaluate the expression of renal fibrosis biomarkers. Dual-luciferase reporter assay was used to verify the presence of binding sites between H19 and let-7b-5p, and between let-7b-5p and TGF-βR1 and COL1A1. RESULTS H19 was overexpressed in both in vivo and in vitro renal fibrosis models. H19 knockdown significantly reversed TGF-β1-induced upregulation of fibronectin, COL1A1, and α-SMA and downregulation of E-cadherin in HK-2 cells, accompanied by an increase in let-7b-5p. Let-7b-5p was bound to H19 in HK-2 cells, and its overexpression inhibited TGF-β1-induced HK-2 cell fibrosis. Further experiments determined that let-7b-5p directly targets TGF-βR1 and COL1A1 in HK-2 cells. In addition, inhibition of let-7b-5p reversed the reduction in HK-2 cell fibrosis induced by H19 knockdown. Finally, knockdown of H19 alleviated renal fibrosis in vivo and was associated with regulation of the let-7b-5p/TGF-βR1/COL1A1 axis. CONCLUSION Our results indicate that knockdown of H19 inhibits renal tubular epithelial fibrosis by negatively regulating the let-7b-5p/TGF-βR1/COL1A1 axis, which may provide new mechanistic insights into CRF progression.
Collapse
Affiliation(s)
- Huai-Yu Li
- Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China; The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xian-Yun Xu
- Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Sen-Hao Lv
- Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Wei Chen
- Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Ying Wang
- Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Yong Fu
- Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Jun-Ping Yang
- Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China.
| |
Collapse
|
2
|
Wei Q, Huang J, Livingston MJ, Wang S, Dong G, Xu H, Zhou J, Dong Z. Pseudogene GSTM3P1 derived long non-coding RNA promotes ischemic acute kidney injury by target directed microRNA degradation of kidney-protective mir-668. Kidney Int 2024; 106:640-657. [PMID: 39074555 PMCID: PMC11416318 DOI: 10.1016/j.kint.2024.06.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 05/21/2024] [Accepted: 06/17/2024] [Indexed: 07/31/2024]
Abstract
Long non-coding RNAs (lncRNAs) are a group of epigenetic regulators that have been implicated in kidney diseases including acute kidney injury (AKI). However, very little is known about the specific lncRNAs involved in AKI and the mechanisms underlying their pathologic roles. Here, we report a new lncRNA derived from the pseudogene GSTM3P1, which mediates ischemic AKI by interacting with and promoting the degradation of mir-668, a kidney-protective microRNA. GSTM3P1 and its mouse orthologue Gstm2-ps1 were induced by hypoxia in cultured kidney proximal tubular cells. In mouse kidneys, Gstm2-ps1 was significantly upregulated in proximal tubules at an early stage of ischemic AKI. This transient induction of Gstm2-ps1 depends on G3BP1, a key component in stress granules. GSTM3P1 overexpression increased kidney proximal tubular apoptosis after ATP depletion, which was rescued by mir-668. Notably, kidney proximal tubule-specific knockout of Gstm2-ps1 protected mice from ischemic AKI, as evidenced by improved kidney function, diminished tubular damage and apoptosis, and reduced kidney injury biomarker (NGAL) induction. To test the therapeutic potential, Gstm2-ps1 siRNAs were introduced into cultured mouse proximal tubular cells or administered to mice. In cultured cells, Gstm2-ps1 knockdown suppressed ATP depletion-associated apoptosis. In mice, Gstm2-ps1 knockdown ameliorated ischemic AKI. Mechanistically, both GSTM3P1 and Gstm2-ps1 possessed mir-668 binding sites and downregulated the mature form of mir-668. Specifically, GSTM3P1 directly bound to mature mir-668 to induce its decay via target-directed microRNA degradation. Thus, our results identify GSTM3P1 as a novel lncRNA that promotes kidney tubular cell death in AKI by binding mir-668 to inducing its degradation.
Collapse
Affiliation(s)
- Qingqing Wei
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, Georgia, USA.
| | - Jing Huang
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, Georgia, USA; Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Man Jiang Livingston
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Shixuan Wang
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Guie Dong
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Hongyan Xu
- Department of Biostatistics, Data Science and Epidemiology, School of Public Health, Augusta University, Augusta, Georgia, USA
| | - Jiliang Zhou
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Zheng Dong
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, Georgia, USA; Charlie Norwood VA Medical Center, Augusta, Georgia, USA.
| |
Collapse
|
3
|
Tawengi M, Al-Dali Y, Tawengi A, Benter IF, Akhtar S. Targeting the epidermal growth factor receptor (EGFR/ErbB) for the potential treatment of renal pathologies. Front Pharmacol 2024; 15:1394997. [PMID: 39234105 PMCID: PMC11373609 DOI: 10.3389/fphar.2024.1394997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 07/29/2024] [Indexed: 09/06/2024] Open
Abstract
Epidermal growth factor receptor (EGFR), which is referred to as ErbB1/HER1, is the prototype of the EGFR family of receptor tyrosine kinases which also comprises ErbB2 (Neu, HER2), ErbB3 (HER3), and ErbB4 (HER4). EGFR, along with other ErbBs, is expressed in the kidney tubules and is physiologically involved in nephrogenesis and tissue repair, mainly following acute kidney injury. However, its sustained activation is linked to several kidney pathologies, including diabetic nephropathy, hypertensive nephropathy, glomerulonephritis, chronic kidney disease, and renal fibrosis. This review aims to provide a summary of the recent findings regarding the consequences of EGFR activation in several key renal pathologies. We also discuss the potential interplay between EGFR and the reno-protective angiotensin-(1-7) (Ang-(1-7), a heptapeptide member of the renin-angiotensin-aldosterone system that counter-regulates the actions of angiotensin II. Ang-(1-7)-mediated inhibition of EGFR transactivation might represent a potential mechanism of action for its renoprotection. Our review suggests that there is a significant body of evidence supporting the potential inhibition of EGFR/ErbB, and/or administration of Ang-(1-7), as potential novel therapeutic strategies in the treatment of renal pathologies. Thus, EGFR inhibitors such as Gefitinib and Erlinotib that have an acceptable safety profile and have been clinically used in cancer chemotherapy since their FDA approval in the early 2000s, might be considered for repurposing in the treatment of renal pathologies.
Collapse
Affiliation(s)
- Mohamed Tawengi
- College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Yazan Al-Dali
- College of Medicine, QU Health, Qatar University, Doha, Qatar
| | | | - Ibrahim F Benter
- Faculty of Pharmacy, Final International University, Kyrenia, Cyprus
| | - Saghir Akhtar
- College of Medicine, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
4
|
Kim GD, Shin SI, Jung SW, An H, Choi SY, Eun M, Jun CD, Lee S, Park J. Cell Type- and Age-Specific Expression of lncRNAs across Kidney Cell Types. J Am Soc Nephrol 2024; 35:870-885. [PMID: 38621182 PMCID: PMC11230714 DOI: 10.1681/asn.0000000000000354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 04/08/2024] [Indexed: 04/17/2024] Open
Abstract
Key Points
We constructed a single-cell long noncoding RNA atlas of various tissues, including normal and aged kidneys.We identified age- and cell type–specific expression changes of long noncoding RNAs in kidney cells.
Background
Accumulated evidence demonstrates that long noncoding RNAs (lncRNAs) regulate cell differentiation and homeostasis, influencing kidney aging and disease. Despite their versatility, the function of lncRNA remains poorly understood because of the lack of a reference map of lncRNA transcriptome in various cell types.
Methods
In this study, we used a targeted single-cell RNA sequencing method to enrich and characterize lncRNAs in individual cells. We applied this method to various mouse tissues, including normal and aged kidneys.
Results
Through tissue-specific clustering analysis, we identified cell type–specific lncRNAs that showed a high correlation with known cell-type marker genes. Furthermore, we constructed gene regulatory networks to explore the functional roles of differentially expressed lncRNAs in each cell type. In the kidney, we observed dynamic expression changes of lncRNAs during aging, with specific changes in glomerular cells. These cell type– and age-specific expression patterns of lncRNAs suggest that lncRNAs may have a potential role in regulating cellular processes, such as immune response and energy metabolism, during kidney aging.
Conclusions
Our study sheds light on the comprehensive landscape of lncRNA expression and function and provides a valuable resource for future analysis of lncRNAs (https://gist-fgl.github.io/sc-lncrna-atlas/).
Collapse
Affiliation(s)
- Gyeong Dae Kim
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - So-I Shin
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Su Woong Jung
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Hyunsu An
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Sin Young Choi
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Minho Eun
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Chang-Duk Jun
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Sangho Lee
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Jihwan Park
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| |
Collapse
|
5
|
Cañadas-Garre M, Baños-Jaime B, Maqueda JJ, Smyth LJ, Cappa R, Skelly R, Hill C, Brennan EP, Doyle R, Godson C, Maxwell AP, McKnight AJ. Genetic variants affecting mitochondrial function provide further insights for kidney disease. BMC Genomics 2024; 25:576. [PMID: 38858654 PMCID: PMC11163707 DOI: 10.1186/s12864-024-10449-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 05/24/2024] [Indexed: 06/12/2024] Open
Abstract
BACKGROUND Chronic kidney disease (CKD) is a complex disorder that has become a high prevalence global health problem, with diabetes being its predominant pathophysiologic driver. Autosomal genetic variation only explains some of the predisposition to kidney disease. Variations in the mitochondrial genome (mtDNA) and nuclear-encoded mitochondrial genes (NEMG) are implicated in susceptibility to kidney disease and CKD progression, but they have not been thoroughly explored. Our aim was to investigate the association of variation in both mtDNA and NEMG with CKD (and related traits), with a particular focus on diabetes. METHODS We used the UK Biobank (UKB) and UK-ROI, an independent collection of individuals with type 1 diabetes mellitus (T1DM) patients. RESULTS Fourteen mitochondrial variants were associated with estimated glomerular filtration rate (eGFR) in UKB. Mitochondrial variants and haplogroups U, H and J were associated with eGFR and serum variables. Mitochondrial haplogroup H was associated with all the serum variables regardless of the presence of diabetes. Mitochondrial haplogroup X was associated with end-stage kidney disease (ESKD) in UKB. We confirmed the influence of several known NEMG on kidney disease and function and found novel associations for SLC39A13, CFL1, ACP2 or ATP5G1 with serum variables and kidney damage, and for SLC4A1, NUP210 and MYH14 with ESKD. The G allele of TBC1D32-rs113987180 was associated with higher risk of ESKD in patients with diabetes (OR:9.879; CI95%:4.440-21.980; P = 2.0E-08). In UK-ROI, AGXT2-rs71615838 and SURF1-rs183853102 were associated with diabetic nephropathies, and TFB1M-rs869120 with eGFR. CONCLUSIONS We identified novel variants both in mtDNA and NEMG which may explain some of the missing heritability for CKD and kidney phenotypes. We confirmed the role of MT-ND5 and mitochondrial haplogroup H on renal disease (serum variables), and identified the MT-ND5-rs41535848G variant, along with mitochondrial haplogroup X, associated with higher risk of ESKD. Despite most of the associations were independent of diabetes, we also showed potential roles for NEMG in T1DM.
Collapse
Affiliation(s)
- Marisa Cañadas-Garre
- Molecular Epidemiology and Public Health Research Group, Centre for Public Health,, Queen's University Belfast, Institute for Clinical Sciences A, Royal Victoria Hospital, Belfast, BT12 6BA, UK.
- Genomic Oncology Area, Centre for Genomics and Oncological Research: Pfizer, GENYO, University of Granada-Andalusian Regional Government, PTS Granada. Avenida de La Ilustración 114, 18016, Granada, Spain.
- Hematology Department, Hospital Universitario Virgen de Las Nieves, Avenida de Las Fuerzas Armadas 2, 18014, Granada, Spain.
- Instituto de Investigación Biosanitaria de Granada (Ibs.GRANADA), Avda. de Madrid, 15, 18012, Granada, Spain.
| | - Blanca Baños-Jaime
- Molecular Epidemiology and Public Health Research Group, Centre for Public Health,, Queen's University Belfast, Institute for Clinical Sciences A, Royal Victoria Hospital, Belfast, BT12 6BA, UK
- Instituto de Investigaciones Químicas (IIQ), Centro de Investigaciones Científicas Isla de La Cartuja (cicCartuja), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Sevilla, Avda. Américo Vespucio 49, 41092, Seville, Spain
| | - Joaquín J Maqueda
- Molecular Epidemiology and Public Health Research Group, Centre for Public Health,, Queen's University Belfast, Institute for Clinical Sciences A, Royal Victoria Hospital, Belfast, BT12 6BA, UK
- Experimental Oncology Laboratory, IRCCS Rizzoli Orthopaedic Institute, 40136, Bologna, Italy
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40126, Bologna, Italy
| | - Laura J Smyth
- Molecular Epidemiology and Public Health Research Group, Centre for Public Health,, Queen's University Belfast, Institute for Clinical Sciences A, Royal Victoria Hospital, Belfast, BT12 6BA, UK
| | - Ruaidhri Cappa
- Molecular Epidemiology and Public Health Research Group, Centre for Public Health,, Queen's University Belfast, Institute for Clinical Sciences A, Royal Victoria Hospital, Belfast, BT12 6BA, UK
| | - Ryan Skelly
- Molecular Epidemiology and Public Health Research Group, Centre for Public Health,, Queen's University Belfast, Institute for Clinical Sciences A, Royal Victoria Hospital, Belfast, BT12 6BA, UK
| | - Claire Hill
- Molecular Epidemiology and Public Health Research Group, Centre for Public Health,, Queen's University Belfast, Institute for Clinical Sciences A, Royal Victoria Hospital, Belfast, BT12 6BA, UK
| | - Eoin P Brennan
- UCD Diabetes Complications Research Centre, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, D04 V1W8, Ireland
- School of Medicine, University College Dublin, Dublin, D04 V1W8, Ireland
| | - Ross Doyle
- UCD Diabetes Complications Research Centre, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, D04 V1W8, Ireland
- School of Medicine, University College Dublin, Dublin, D04 V1W8, Ireland
- Mater Misericordiae University Hospital, Eccles St, Dublin, D07 R2WY, Ireland
| | - Catherine Godson
- UCD Diabetes Complications Research Centre, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, D04 V1W8, Ireland
- School of Medicine, University College Dublin, Dublin, D04 V1W8, Ireland
| | - Alexander P Maxwell
- Molecular Epidemiology and Public Health Research Group, Centre for Public Health,, Queen's University Belfast, Institute for Clinical Sciences A, Royal Victoria Hospital, Belfast, BT12 6BA, UK
- Regional Nephrology Unit, Belfast City Hospital, Level 11Lisburn Road, Belfast, BT9 7AB, UK
| | - Amy Jayne McKnight
- Molecular Epidemiology and Public Health Research Group, Centre for Public Health,, Queen's University Belfast, Institute for Clinical Sciences A, Royal Victoria Hospital, Belfast, BT12 6BA, UK
| |
Collapse
|
6
|
An B, Fang Y, Wang L, Nie W, Wang M, Nie H, Wu C, Wang R. Inhibition of TGF-β1/Smad3 signaling by compound 5aa: A potential treatment for idiopathic pulmonary fibrosis. Bioorg Chem 2024; 147:107374. [PMID: 38636433 DOI: 10.1016/j.bioorg.2024.107374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/04/2024] [Accepted: 04/13/2024] [Indexed: 04/20/2024]
Abstract
The incidence of idiopathic pulmonary fibrosis (IPF) has been steadily increasing each year, posing significant challenges in its treatment. In this study, we conducted the design and synthesis of 23 new inhibitors that specifically target the TGF-β1/Smad3 pathway. Initially, we employed a cell model of TGF-β-induced pulmonary fibrosis, using cell survival rate and HYP expression as indicators to identify the potent ingredient 5aa, which demonstrated significant anti-pulmonary fibrosis activity. Subsequently, we induced mice with bleomycin (BLM) to establish an experimental animal model of pulmonary fibrosis, and evaluated the pharmacodynamics of 5aa in vivo against pulmonary fibrosis. The alterations in HYP and collagen levels in BLM-induced pulmonary fibrosis mice were analyzed using ELISA and immunohistochemistry techniques. The results indicated that compound 5aa effectively suppressed the fibrotic response induced by TGF-β1, inhibited the expression of the fibrotic marker α-SMA, and hindered the EMT process in NIH3T3 cells. Additionally, oral administration of 5aa demonstrated significant therapeutic effects in a mouse model of IPF, comparable to the established drug Nintedanib. Moreover, compound 5aa exhibited higher bioavailability in vivo compared to Nintedanib. These collective outcomes suggest that 5aa holds promise as a potential inhibitor of TGF-β1/Smad3 signaling for the treatment of IPF.
Collapse
Affiliation(s)
- Baijiao An
- The Key Laboratory of biomarker high throughput screening and target translation of breast and gastrointestinal tumor, Affiliated Zhongshan Hospital of Dalian University, No.6 Jiefang Street, Zhongshan District, Dalian, Liaoning 116001, China; School of Biomedical Engineering, Dalian University of Technology, Dalian 116024, China; School of Pharmacy, Binzhou Medical University, Yantai, Shandong, 264003, China
| | - Yanhua Fang
- The Key Laboratory of biomarker high throughput screening and target translation of breast and gastrointestinal tumor, Affiliated Zhongshan Hospital of Dalian University, No.6 Jiefang Street, Zhongshan District, Dalian, Liaoning 116001, China
| | - Lihan Wang
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong, 264003, China
| | - Wenyan Nie
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong, 264003, China
| | - Mengxuan Wang
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong, 264003, China
| | - Haoran Nie
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong, 264003, China
| | - Chengjun Wu
- School of Biomedical Engineering, Dalian University of Technology, Dalian 116024, China.
| | - Ruoyu Wang
- The Key Laboratory of biomarker high throughput screening and target translation of breast and gastrointestinal tumor, Affiliated Zhongshan Hospital of Dalian University, No.6 Jiefang Street, Zhongshan District, Dalian, Liaoning 116001, China.
| |
Collapse
|
7
|
Moreno J, Gluud LL, Galsgaard ED, Hvid H, Mazzoni G, Das V. Identification of ligand and receptor interactions in CKD and MASH through the integration of single cell and spatial transcriptomics. PLoS One 2024; 19:e0302853. [PMID: 38768139 PMCID: PMC11104622 DOI: 10.1371/journal.pone.0302853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/10/2024] [Indexed: 05/22/2024] Open
Abstract
BACKGROUND Chronic Kidney Disease (CKD) and Metabolic dysfunction-associated steatohepatitis (MASH) are metabolic fibroinflammatory diseases. Combining single-cell (scRNAseq) and spatial transcriptomics (ST) could give unprecedented molecular disease understanding at single-cell resolution. A more comprehensive analysis of the cell-specific ligand-receptor (L-R) interactions could provide pivotal information about signaling pathways in CKD and MASH. To achieve this, we created an integrative analysis framework in CKD and MASH from two available human cohorts. RESULTS The analytical framework identified L-R pairs involved in cellular crosstalk in CKD and MASH. Interactions between cell types identified using scRNAseq data were validated by checking the spatial co-presence using the ST data and the co-expression of the communicating targets. Multiple L-R protein pairs identified are known key players in CKD and MASH, while others are novel potential targets previously observed only in animal models. CONCLUSION Our study highlights the importance of integrating different modalities of transcriptomic data for a better understanding of the molecular mechanisms. The combination of single-cell resolution from scRNAseq data, combined with tissue slide investigations and visualization of cell-cell interactions obtained through ST, paves the way for the identification of future potential therapeutic targets and developing effective therapies.
Collapse
Affiliation(s)
- Jaime Moreno
- Digital Science and Innovation, Computational Biology – AI & Digital Research, Novo Nordisk A/S, Maløv, Denmark
| | - Lise Lotte Gluud
- Gastro Unit, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
- Dept of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | | | - Henning Hvid
- Global Drug Discovery, Novo Nordisk A/S, Maløv, Denmark
| | - Gianluca Mazzoni
- Digital Science and Innovation, Computational Biology – AI & Digital Research, Novo Nordisk A/S, Maløv, Denmark
| | - Vivek Das
- Digital Science and Innovation, Computational Biology – AI & Digital Research, Novo Nordisk A/S, Maløv, Denmark
| |
Collapse
|
8
|
Yun QS, Bao YX, Jiang JB, Guo Q. Mechanisms of norcantharidin against renal tubulointerstitial fibrosis. Pharmacol Rep 2024; 76:263-272. [PMID: 38472637 DOI: 10.1007/s43440-024-00578-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024]
Abstract
Renal tubulointerstitial fibrosis (RTIF) is a common feature and inevitable consequence of all progressive chronic kidney diseases, leading to end-stage renal failure regardless of the initial cause. Although research over the past few decades has greatly improved our understanding of the pathophysiology of RTIF, until now there has been no specific treatment available that can halt the progression of RTIF. Norcantharidin (NCTD) is a demethylated analogue of cantharidin, a natural compound isolated from 1500 species of medicinal insect, the blister beetle (Mylabris phalerata Pallas), traditionally used for medicinal purposes. Many studies have found that NCTD can attenuate RTIF and has the potential to be an anti-RTIF drug. This article reviews the recent progress of NCTD in the treatment of RTIF, with emphasis on the pharmacological mechanism of NCTD against RTIF.
Collapse
Affiliation(s)
- Qin-Su Yun
- Department of Pharmacy, The First People's Hospital of Changzhou and the 3rd Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, Jiangsu, China
| | - Yu-Xin Bao
- Research Center for Medicine and Biology, Zunyi Medical University, 6 West Xuefu Road, Zunyi, 563000, Guizhou, China.
| | - Jie-Bing Jiang
- Department of Pharmacology, Naval Medical University, Shanghai, 200433, China
| | - Qian Guo
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, 881 Yonghe Road, Nantong, 226001 , Jiangsu, China.
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, 99 Shangda Road, Shanghai, 200444, China.
| |
Collapse
|
9
|
Gu YY, Liu XS, Lan HY. Therapeutic potential for renal fibrosis by targeting Smad3-dependent noncoding RNAs. Mol Ther 2024; 32:313-324. [PMID: 38093516 PMCID: PMC10861968 DOI: 10.1016/j.ymthe.2023.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/13/2023] [Accepted: 12/11/2023] [Indexed: 01/26/2024] Open
Abstract
Renal fibrosis is a characteristic hallmark of chronic kidney disease (CKD) that ultimately results in renal failure, leaving patients with few therapeutic options. TGF-β is a master regulator of renal fibrosis and mediates progressive renal fibrosis via both canonical and noncanonical signaling pathways. In the canonical Smad signaling, Smad3 is a key mediator in tissue fibrosis and mediates renal fibrosis via a number of noncoding RNAs (ncRNAs). In this regard, targeting Smad3-dependent ncRNAs may offer a specific therapy for renal fibrosis. This review highlights the significance and innovation of TGF-β/Smad3-associated ncRNAs as biomarkers and therapeutic targets in renal fibrogenesis. In addition, the underlying mechanisms of these ncRNAs and their future perspectives in the treatment of renal fibrosis are discussed.
Collapse
Affiliation(s)
- Yue-Yu Gu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Departments of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, and Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong; Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China; Departments of Nephrology and Pathology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xu-Sheng Liu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Hui-Yao Lan
- Departments of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, and Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong; Departments of Nephrology and Pathology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China.
| |
Collapse
|
10
|
Tang PC, Chan MK, Chung JY, Chan AS, Zhang D, Li C, Leung K, Ng CS, Wu Y, To K, Lan H, Tang PM. Hematopoietic Transcription Factor RUNX1 is Essential for Promoting Macrophage-Myofibroblast Transition in Non-Small-Cell Lung Carcinoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2302203. [PMID: 37967345 PMCID: PMC10767400 DOI: 10.1002/advs.202302203] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 10/06/2023] [Indexed: 11/17/2023]
Abstract
Macrophage-myofibroblast transition (MMT) is a newly discovered pathway for mass production of pro-tumoral cancer-associated fibroblasts (CAFs) in non-small cell lung carcinoma (NSCLC) in a TGF-β1/Smad3 dependent manner. Better understanding its regulatory signaling in tumor microenvironment (TME) may identify druggable target for the development of precision medicine. Here, by dissecting the transcriptome dynamics of tumor-associated macrophage at single-cell resolution, a crucial role of a hematopoietic transcription factor Runx1 in MMT formation is revealed. Surprisingly, integrative bioinformatic analysis uncovers Runx1 as a key regulator in the downstream of MMT-specific TGF-β1/Smad3 signaling. Stromal Runx1 level positively correlates with the MMT-derived CAF abundance and mortality in NSCLC patients. Mechanistically, macrophage-specific Runx1 promotes the transcription of genes related to CAF signatures in MMT cells at genomic level. Importantly, macrophage-specific genetic deletion and systemic pharmacological inhibition of TGF-β1/Smad3/Runx1 signaling effectively prevent MMT-driven CAF and tumor formation in vitro and in vivo, representing a potential therapeutic target for clinical NSCLC.
Collapse
Affiliation(s)
- Philip Chiu‐Tsun Tang
- Department of Anatomical and Cellular PathologyState Key Laboratory of Translational OncologyThe Chinese University of Hong KongShatin999077Hong Kong
| | - Max Kam‐Kwan Chan
- Department of Anatomical and Cellular PathologyState Key Laboratory of Translational OncologyThe Chinese University of Hong KongShatin999077Hong Kong
| | - Jeff Yat‐Fai Chung
- Department of Anatomical and Cellular PathologyState Key Laboratory of Translational OncologyThe Chinese University of Hong KongShatin999077Hong Kong
| | - Alex Siu‐Wing Chan
- Department of Applied Social SciencesThe Hong Kong Polytechnic UniversityHunghom999077Hong Kong
| | - Dongmei Zhang
- College of PharmacyJinan UniversityGuangzhou510632China
| | - Chunjie Li
- Department of Head and Neck OncologyWest China Hospital of StomatologySichuan UniversityChengduSichuan610041China
| | - Kam‐Tong Leung
- Department of PaediatricsThe Chinese University of Hong KongShatin999077Hong Kong
| | - Calvin Sze‐Hang Ng
- Department of SurgeryThe Chinese University of Hong KongShatin999077Hong Kong
| | - Yi Wu
- MOE Key Laboratory of Environment and Genes Related to DiseasesSchool of Basic Medical SciencesXi'an Jiaotong UniversityXi'an710061China
| | - Ka‐Fai To
- Department of Anatomical and Cellular PathologyState Key Laboratory of Translational OncologyThe Chinese University of Hong KongShatin999077Hong Kong
| | - Hui‐Yao Lan
- Department of Medicine and TherapeuticsLi Ka Shing Institute of Health SciencesThe Chinese University of Hong KongShatin999077Hong Kong
| | - Patrick Ming‐Kuen Tang
- Department of Anatomical and Cellular PathologyState Key Laboratory of Translational OncologyThe Chinese University of Hong KongShatin999077Hong Kong
| |
Collapse
|
11
|
He H, Wang H, Chen X, Zhong Y, Huang XR, Ma RCW, Wang C, Lan HY. Treatment for type 2 diabetes and diabetic nephropathy by targeting Smad3 signaling. Int J Biol Sci 2024; 20:200-217. [PMID: 38164169 PMCID: PMC10750285 DOI: 10.7150/ijbs.87820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/10/2023] [Indexed: 01/03/2024] Open
Abstract
TGF-β/Smad3 signaling plays a critical role in type 2 diabetes (T2D) and type 2 diabetic nephropathy (T2DN), but treatment by specifically targeting Smad3 remains unexplored. To develop a new Smad3-targeted therapy for T2D and T2DN, we treated db/db mice at the pre-diabetic or established diabetic stage with a pharmacological Smad3 inhibitor SIS3. The therapeutic effect and mechanisms of anti-Smad3 treatment on T2D and T2DN were investigated. We found that anti-Smad3 treatment on pre-diabetic db/db mice largely attenuated both T2D and T2DN by markedly reducing blood glucose levels, and inhibiting the elevated serum creatinine, microalbuminuria, and renal fibrosis and inflammation. Unexpectedly, although SIS3 treatment on the established diabetic db/db mice inhibited T2DN but did not significantly improve T2D. Mechanistically, we uncovered that inhibition of T2DN in SIS3-treated db/db mice was associated with effectively restoring the balance of TGF-β/Smad signaling by inhibiting Smad3 while increasing Smad7, thereby suppressing Smad3-mediated renal fibrosis and NF-κB-driven renal inflammation via lncRNA Erbb4-IR and LRN9884-dependent mechanisms. We also revealed that inhibition of islet β cell injury by preventing the loss of islet Pax 6 could be the mechanism through which the pre-diabetic treatment, rather than the late SIS3 treatment on db/db mice significantly improved the T2D phenotype.
Collapse
Affiliation(s)
- Huijun He
- Division of Nephrology, Department of Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, 519000, China; Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China
- Department of Medicine and Therapeutics, and Li Ka Shing Institute of Health Sciences, the Chinese University of Hong Kong, Hong Kong; and Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, and Departments of Nephrology and Pathology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, China
| | - Honglian Wang
- Department of Medicine and Therapeutics, and Li Ka Shing Institute of Health Sciences, the Chinese University of Hong Kong, Hong Kong; and Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, and Departments of Nephrology and Pathology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, China
| | - Xiaocui Chen
- Department of Medicine and Therapeutics, and Li Ka Shing Institute of Health Sciences, the Chinese University of Hong Kong, Hong Kong; and Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, and Departments of Nephrology and Pathology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, China
| | - Yu Zhong
- Department of Medicine and Therapeutics, and Li Ka Shing Institute of Health Sciences, the Chinese University of Hong Kong, Hong Kong; and Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, and Departments of Nephrology and Pathology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, China
| | - Xiao Ru Huang
- Department of Medicine and Therapeutics, and Li Ka Shing Institute of Health Sciences, the Chinese University of Hong Kong, Hong Kong; and Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, and Departments of Nephrology and Pathology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, China
| | - Ronald CW Ma
- Department of Medicine and Therapeutics, and Li Ka Shing Institute of Health Sciences, the Chinese University of Hong Kong, Hong Kong; and Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, and Departments of Nephrology and Pathology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, China
| | - Cheng Wang
- Division of Nephrology, Department of Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, 519000, China; Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China
| | - Hui-Yao Lan
- Department of Medicine and Therapeutics, and Li Ka Shing Institute of Health Sciences, the Chinese University of Hong Kong, Hong Kong; and Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, and Departments of Nephrology and Pathology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, China
| |
Collapse
|
12
|
Liu L, Guo J, Pang XL, Shang WJ, Wang ZG, Wang JX, Yang XL, Feng GW. Exploration of the mechanism of NORAD activation of TGF-β1/Smad3 through miR-136-5p and promotion of tacrolimus-induced renal fibrosis. Ren Fail 2023; 45:2147083. [PMID: 36748746 PMCID: PMC9930837 DOI: 10.1080/0886022x.2022.2147083] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Tacrolimus is a potent immunosuppressant, but has various side effects, with nephrotoxicity being the most common. Renal fibrosis is an important process of tacrolimus nephrotoxicity. Therefore, it is important to identify the factors that contribute to renal fibrosis after tacrolimus nephrotoxicity, and control its development. METHODS The present study aims to determine whether tacrolimus may speed up the course of renal fibrosis by upregulating noncoding RNA activated by DNA damage (NORAD) to compete with miR-136-5p, and activating the TGF-β1/Smad3 pathway. Furthermore, in vivo rat models and in vitro cell models were established. Then, the expression levels of NORAD and miR-136-5p were determined by RT-qPCR, while the expression of the TGF-β1/Smad3 pathway was determined by western blot and RT-qPCR. In order to investigate the interaction between NORAD and miR-136-5p, as well as miR-136-5p and SYK, two luciferase reporters were employed. The renal fibrosis of mice was observed using Masson and PAS staining. The expression of inflammatory factors IL-1, IL-6, MCP-1 and TNF-α was detected by ELISA. RESULTS In the in vitro experiments, NORAD was upregulated, while miR-136-5p was downregulated after tacrolimus induction. The expression of the TGF-β1/Smad3 pathway correspondingly changed after the induction by tacrolimus. In the in vivo experiments, the expression of NORAD and miR-136-5p, and the trend for renal fibrosis were consistent with the results in the in vitro experiments. Furthermore, the inflammatory factors correspondingly changed with the severity of renal fibrosis. Moreover, the expression trend of the TGF-β1/Smad3 pathway in tacrolimus-induced rats was consistent with that in the in vitro experiments. CONCLUSION Through in vitro and in vivo experiments, the present study was able to successfully prove that tacrolimus upregulates NORAD to compete with miR-136-5p, resulting in a decrease in miR-136-5p expression, which in turn activates the TGF-β1/smad3 pathway, and finally induces the aggravation of renal fibrosis.
Collapse
Affiliation(s)
- Lei Liu
- Department of Kidney Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jia Guo
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xin-lu Pang
- Department of Kidney Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wen-jun Shang
- Department of Kidney Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhi-gang Wang
- Department of Kidney Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jun-xiang Wang
- Department of Kidney Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | | | - Gui-wen Feng
- Department of Kidney Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China,CONTACT Guiwen Feng Department of Kidney Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| |
Collapse
|
13
|
王 一, 郭 建, 邵 宝, 陈 海, 蓝 辉. [The Role of TGF-β1/SMAD in Diabetic Nephropathy: Mechanisms and Research Development]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2023; 54:1065-1073. [PMID: 38162063 PMCID: PMC10752761 DOI: 10.12182/20231160108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Indexed: 01/03/2024]
Abstract
Diabetic nephropathy (DN) is a common complication of diabetes and a leading cause of end-stage renal disease. Transforming growth factor-β1 (TGF-β1)/SMAD signaling activation plays an important role in the onset and progression of DN. Reported findings suggest that the activation of TGF-β1 (including the latent form, the active form, and the receptors) and its downstream signaling proteins (SMAD3, SMAD7, etc.) plays a critical role in DN. In addition, TGF-β1/SMAD signaling may mediate the pathogenesis and progression of DN via various microRNAs (miRNAs) and long non-coding RNAs (lncRNAs). Emerging evidence shows that TGF-β1, SMAD3, and SMAD7 are the main signaling proteins that contribute to the development of DN, and that they can be potential targets for the treatment of DN. However, recent clinical trials have shown that the anti-TGF-β1 monoclonal antibody treatment fails to effectively alleviate DN, which suggests that upstream inhibition of TGF-β1/SMAD signaling does not alleviate clinical symptoms and that this may be related to the fact that TGF-β1/SMAD has multiple biological effects. Targeted inhibition of the downstream TGF-β1 signaling (e.g., SMAD3 and SMAD7) may be an effective approach to attenuate DN. This article discussed the current understanding of the molecular mechanisms and potential targets for the treatment and prevention of DN by focusing on TGF-β1/SMAD signaling.
Collapse
Affiliation(s)
- 一帆 王
- 香港大学中医药学院 (香港 999000)School of Chinese Medicine, The University of Hong Kong, Hong Kong 999000, China
| | - 建波 郭
- 香港大学中医药学院 (香港 999000)School of Chinese Medicine, The University of Hong Kong, Hong Kong 999000, China
| | - 宝仪 邵
- 香港大学中医药学院 (香港 999000)School of Chinese Medicine, The University of Hong Kong, Hong Kong 999000, China
| | - 海勇 陈
- 香港大学中医药学院 (香港 999000)School of Chinese Medicine, The University of Hong Kong, Hong Kong 999000, China
- 香港大学深圳医院 中医部 (深圳 518053)Department of Chinese Medicine, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518053, China
| | - 辉耀 蓝
- 香港大学中医药学院 (香港 999000)School of Chinese Medicine, The University of Hong Kong, Hong Kong 999000, China
- 香港大学深圳医院 中医部 (深圳 518053)Department of Chinese Medicine, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518053, China
| |
Collapse
|
14
|
Ji ZZ, Chan MKK, Chan ASW, Leung KT, Jiang X, To KF, Wu Y, Tang PMK. Tumour-associated macrophages: versatile players in the tumour microenvironment. Front Cell Dev Biol 2023; 11:1261749. [PMID: 37965573 PMCID: PMC10641386 DOI: 10.3389/fcell.2023.1261749] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/12/2023] [Indexed: 11/16/2023] Open
Abstract
Tumour-Associated Macrophages (TAMs) are one of the pivotal components of the tumour microenvironment. Their roles in the cancer immunity are complicated, both pro-tumour and anti-cancer activities are reported, including not only angiogenesis, extracellular matrix remodeling, immunosuppression, drug resistance but also phagocytosis and tumour regression. Interestingly, TAMs are highly dynamic and versatile in solid tumours. They show anti-cancer or pro-tumour activities, and interplay between the tumour microenvironment and cancer stem cells and under specific conditions. In addition to the classic M1/M2 phenotypes, a number of novel dedifferentiation phenomena of TAMs are discovered due to the advanced single-cell technology, e.g., macrophage-myofibroblast transition (MMT) and macrophage-neuron transition (MNT). More importantly, emerging information demonstrated the potential of TAMs on cancer immunotherapy, suggesting by the therapeutic efficiency of the checkpoint inhibitors and chimeric antigen receptor engineered cells based on macrophages. Here, we summarized the latest discoveries of TAMs from basic and translational research and discussed their clinical relevance and therapeutic potential for solid cancers.
Collapse
Affiliation(s)
- Zoey Zeyuan Ji
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Max Kam-Kwan Chan
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Alex Siu-Wing Chan
- Department of Applied Social Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Kam-Tong Leung
- Department of Paediatrics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Xiaohua Jiang
- Key Laboratory for Regenerative Medicine of the Ministry of Education of China, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Ka-Fai To
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Yi Wu
- MOE Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, China
| | - Patrick Ming-Kuen Tang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| |
Collapse
|
15
|
Li JC, Jia J, Dong L, Hu ZJ, Huang XR, Wang HL, Wang L, Yang SJ, Lan HY. Angiotensin II mediates hypertensive cardiac fibrosis via an Erbb4-IR-dependent mechanism. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 33:180-190. [PMID: 37449045 PMCID: PMC10336735 DOI: 10.1016/j.omtn.2023.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 06/22/2023] [Indexed: 07/18/2023]
Abstract
Transforming growth factor β (TGF-β)/Smad3 plays a vital role in hypertensive cardiac fibrosis. The long non-coding RNA (lncRNA) Erbb4-IR is a novel Smad3-dependent lncRNA that mediates kidney fibrosis. However, the role of Erbb4-IR in hypertensive heart disease remains unexplored and was investigated in the present study by ultrasound-microbubble-mediated silencing of cardiac Erbb4-IR in hypertensive mice induced by angiotensin II. We found that chronic angiotensin II infusion induced hypertension and upregulated cardiac Erbb4-IR, which was associated with cardiac dysfunction, including a decrease in left ventricle ejection fraction (LVEF) and LV fractional shortening (LVFS) and an increase in LV mass. Knockdown of cardiac Erbb4-IR by Erbb4-IR short hairpin RNA (shRNA) gene transfer effectively improved the angiotensin II-induced deterioration of cardiac function, although blood pressure was not altered. Furthermore, silencing cardiac Erbb4-IR also inhibited angiotensin II-induced progressive cardiac fibrosis, as evidenced by reduced collagen I and III, alpha-smooth muscle actin (α-SMA), and fibronectin accumulation. Mechanistically, improved hypertensive cardiac injury by specifically silencing cardiac Erbb4-IR was associated with increased myocardial Smad7 and miR-29b, revealing that Erbb4-IR may target Smad7 and miR-29b to mediate angiotensin II-induced hypertensive cardiac fibrosis. In conclusion, Erbb4-IR is pathogenic in angiotensin II (Ang II)-induced cardiac remodeling, and targeting Erbb4-IR may be a novel therapy for hypertensive cardiovascular diseases.
Collapse
Affiliation(s)
- Jian-Chun Li
- Research Center of Integrated Traditional Chinese and Western Medicine, The TCM Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, and Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Jian Jia
- Research Center of Integrated Traditional Chinese and Western Medicine, The TCM Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Li Dong
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, and Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, China
- National Traditional Chinese Medicine Clinical Research Base, The TCM Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Zhong-Jing Hu
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, and Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, China
- National Traditional Chinese Medicine Clinical Research Base, The TCM Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Xiao-Ru Huang
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, and Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, China
| | - Hong-Lian Wang
- Research Center of Integrated Traditional Chinese and Western Medicine, The TCM Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, and Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Li Wang
- Research Center of Integrated Traditional Chinese and Western Medicine, The TCM Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Si-Jin Yang
- National Traditional Chinese Medicine Clinical Research Base, The TCM Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Hui-Yao Lan
- Research Center of Integrated Traditional Chinese and Western Medicine, The TCM Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, and Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, China
| |
Collapse
|
16
|
Sun Y, Ge J, Shao F, Ren Z, Huang Z, Ding Z, Dong L, Chen J, Zhang J, Zang Y. Long noncoding RNA AI662270 promotes kidney fibrosis through enhancing METTL3-mediated m 6 A modification of CTGF mRNA. FASEB J 2023; 37:e23071. [PMID: 37389924 DOI: 10.1096/fj.202202012rrr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 06/07/2023] [Accepted: 06/20/2023] [Indexed: 07/01/2023]
Abstract
The sustained release of profibrotic cytokines, mainly transforming growth factor-β (TGF-β), leads to the occurrence of kidney fibrosis and chronic kidney disease (CKD). Connective tissue growth factor (CTGF) appears to be an alternative target to TGF-β for antifibrotic therapy in CKD. In this study, we found that long noncoding RNA AI662270 was significantly increased in various renal fibrosis models. In vivo, ectopic expression of AI662270 alone was sufficient to activate interstitial fibroblasts and drive kidney fibrosis, whereas inhibition of AI662270 blocked the activation of interstitial fibroblasts and ameliorated kidney fibrosis in various murine models. Mechanistic studies revealed that overexpression of AI662270 significantly increased CTGF product, which was required for the role of AI662270 in driving kidney fibrosis. Furthermore, AI662270 binds to the CTGF promoter and directly interacts with METTL3, the methyltransferase of RNA N6 -methyladenosine (m6 A) modification. Functionally, AI662270-mediated recruitment of METTL3 increased the m6 A methylation of CTGF mRNA and consequently enhanced CTGF mRNA stability. In conclusion, our results support that AI662270 promotes CTGF expression at the posttranscriptional stage by recruiting METTL3 to the CTGF promoter and depositing m6 A modifications on the nascent mRNA, thereby, uncovering a novel regulatory mechanism of CTGF in the pathogenesis of kidney fibrosis.
Collapse
Affiliation(s)
- Yanyan Sun
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, P.R. China
| | - Jia Ge
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, P.R. China
| | - Fang Shao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, P.R. China
| | - Zhengrong Ren
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, P.R. China
| | - Zhen Huang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, P.R. China
| | - Zhi Ding
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, P.R. China
| | - Lei Dong
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, P.R. China
| | - Jiangning Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, P.R. China
- State Key Laboratory of Analytical Chemistry for Life Sciences and Collaborative Innovation Center of Chemistry for Life Sciences, Nanjing University, Nanjing, P.R. China
| | - Junfeng Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, P.R. China
| | - Yuhui Zang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, P.R. China
| |
Collapse
|
17
|
Srivastava A, Tomar B, Sharma D, Rath SK. Mitochondrial dysfunction and oxidative stress: Role in chronic kidney disease. Life Sci 2023; 319:121432. [PMID: 36706833 DOI: 10.1016/j.lfs.2023.121432] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/18/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023]
Abstract
Chronic kidney disease (CKD) is associated with a variety of distinct disease processes that permanently change the function and structure of the kidney across months or years. CKD is characterized as a glomerular filtration defect or proteinuria that lasts longer than three months. In most instances, CKD leads to end-stage kidney disease (ESKD), necessitating kidney transplantation. Mitochondrial dysfunction is a typical response to damage in CKD patients. Despite the abundance of mitochondria in the kidneys, variations in mitochondrial morphological and functional characteristics have been associated with kidney inflammatory responses and injury during CKD. Despite these variations, CKD is frequently used to define some classic signs of mitochondrial dysfunction, including altered mitochondrial shape and remodeling, increased mitochondrial oxidative stress, and a marked decline in mitochondrial biogenesis and ATP generation. With a focus on the most significant developments and novel understandings of the involvement of mitochondrial remodeling in the course of CKD, this article offers a summary of the most recent advances in the sources of procured mitochondrial dysfunction in the advancement of CKD. Understanding mitochondrial biology and function is crucial for developing viable treatment options for CKD.
Collapse
Affiliation(s)
- Anjali Srivastava
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Bhawna Tomar
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Divyansh Sharma
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Srikanta Kumar Rath
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
18
|
Giannuzzi F, Maiullari S, Gesualdo L, Sallustio F. The Mission of Long Non-Coding RNAs in Human Adult Renal Stem/Progenitor Cells and Renal Diseases. Cells 2023; 12:cells12081115. [PMID: 37190024 DOI: 10.3390/cells12081115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/29/2023] [Accepted: 04/06/2023] [Indexed: 05/17/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are a large, heterogeneous class of transcripts and key regulators of gene expression at both the transcriptional and post-transcriptional levels in different cellular contexts and biological processes. Understanding the potential mechanisms of action of lncRNAs and their role in disease onset and development may open up new possibilities for therapeutic approaches in the future. LncRNAs also play an important role in renal pathogenesis. However, little is known about lncRNAs that are expressed in the healthy kidney and that are involved in renal cell homeostasis and development, and even less is known about lncRNAs involved in human adult renal stem/progenitor cells (ARPC) homeostasis. Here we give a thorough overview of the biogenesis, degradation, and functions of lncRNAs and highlight our current understanding of their functional roles in kidney diseases. We also discuss how lncRNAs regulate stem cell biology, focusing finally on their role in human adult renal stem/progenitor cells, in which the lncRNA HOTAIR prevents them from becoming senescent and supports these cells to secrete high quantities of α-Klotho, an anti-aging protein capable of influencing the surrounding tissues and therefore modulating the renal aging.
Collapse
Affiliation(s)
- Francesca Giannuzzi
- Department of Interdisciplinary Medicine (DIM), University of Bari Aldo Moro, 70124 Bari, Italy
| | - Silvia Maiullari
- Department of Interdisciplinary Medicine (DIM), University of Bari Aldo Moro, 70124 Bari, Italy
| | - Loreto Gesualdo
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari Aldo Moro, 70124 Bari, Italy
- MIRROR-Medical Institute for Regeneration, Repairing and Organ Replacement, Interdepartmental Center, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Fabio Sallustio
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari Aldo Moro, 70124 Bari, Italy
- MIRROR-Medical Institute for Regeneration, Repairing and Organ Replacement, Interdepartmental Center, University of Bari Aldo Moro, 70124 Bari, Italy
| |
Collapse
|
19
|
Yiu W, Lok S, Xue R, Chen J, Lai K, Lan H, Tang S. The long noncoding RNA Meg3 mediates TLR4-induced inflammation in experimental obstructive nephropathy. Clin Sci (Lond) 2023; 137:317-331. [PMID: 36705251 PMCID: PMC9977690 DOI: 10.1042/cs20220537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 01/28/2023]
Abstract
Kidney inflammation contributes to the progression of chronic kidney disease (CKD). Modulation of Toll-like receptor 4 (TLR4) signaling is a potential therapeutic strategy for this pathology, but the regulatory mechanisms of TLR4 signaling in kidney tubular inflammation remains unclear. Here, we demonstrated that tubule-specific deletion of TLR4 in mice conferred protection against obstruction-induced kidney injury, with reduction in inflammatory cytokine production, macrophage infiltration and kidney fibrosis. Transcriptome analysis revealed a marked down-regulation of long noncoding RNA (lncRNA) Meg3 in the obstructed kidney from tubule-specific TLR4 knockout mice compared with wild-type control. Meg3 was also induced by lipopolysaccharide in tubular epithelial cells via a p53-dependent signaling pathway. Silencing of Meg3 suppressed LPS-induced cytokine production of CCL-2 and CXCL-2 and the activation of p38 MAPK pathway in vitro and ameliorated kidney fibrosis in mice with obstructive nephropathy. Together, these findings identify a proinflammatory role of lncRNA Meg3 in CKD and suggest a novel regulatory pathway in TLR4-driven inflammatory responses in tubular epithelial cells.
Collapse
Affiliation(s)
- Wai Han Yiu
- Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong
| | - Sarah W.Y. Lok
- Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong
| | - Rui Xue
- Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong
| | - Jiaoyi Chen
- Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong
| | - Kar Neng Lai
- Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong
| | - Hui Yao Lan
- Department of Medicine and Therapeutics and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Sydney C.W. Tang
- Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong
- Correspondence: Sydney C.W. Tang ()
| |
Collapse
|
20
|
Lu Y, Zhang R, Gu X, Wang X, Xi P, Chen X. Exosomes from tubular epithelial cells undergoing epithelial-to-mesenchymal transition promote renal fibrosis by M1 macrophage activation. FASEB Bioadv 2023; 5:101-113. [PMID: 36876297 PMCID: PMC9983075 DOI: 10.1096/fba.2022-00080] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/20/2022] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
Kidney fibrosis is the common final pathway of chronic kidney disease (CKD), and it is distinguished by inflammation, mesenchymal transition with myofibroblast formation, and epithelial-to-mesenchymal transition (EMT). Macrophages are protuberant inflammatory cells in the kidney, and their roles are dependent on their phenotypes. However, it remains unclear whether tubular epithelial cells (TECs) undergoing EMT can influence the phenotypes of macrophages and the underlying mechanisms during the development of kidney fibrosis. Here, we investigated the characteristics of TECs and macrophages during kidney fibrosis with a focus on EMT and inflammation. We found that the coculture of exosomes from transforming growth factor-beta (TGF-β)-induced TECs with macrophages induced macrophage M1 polarization, while exosomes from TECs without TGF-β stimulation or stimulation with TGF-β alone did not induce an increase in M1 macrophage-related markers. Notably, TECs induced to undergo EMT by TGF-β treatment released more exosomes than the other groups. Furthermore, it is noteworthy that when we injected exosomes from TECs undergoing EMT into mice, in addition to the high level of inflammatory response and the activation of M1 macrophages, the indicators of EMT and renal fibrosis in mouse kidney tissue were correspondingly elevated. In summary, exosomes from TECs undergoing EMT by TGF-β treatment induced M1 polarization and led to a positive feedback effect for further EMT and the development of renal fibrosis. Therefore, the obstacle to the release of such exosomes may be a novel therapeutic strategy for CKD.
Collapse
Affiliation(s)
- Yuqing Lu
- Affiliated Hospital of Nantong UniversityNantongChina
- Medical School of Nantong UniversityNantongChina
| | - Rui Zhang
- Affiliated Hospital of Nantong UniversityNantongChina
- Medical School of Nantong UniversityNantongChina
| | - Xiameng Gu
- Affiliated Hospital of Nantong UniversityNantongChina
- Medical School of Nantong UniversityNantongChina
| | - Xuerong Wang
- Affiliated Hospital of Nantong UniversityNantongChina
- Medical School of Nantong UniversityNantongChina
| | - Peipei Xi
- Affiliated Hospital of Nantong UniversityNantongChina
| | - Xiaolan Chen
- Affiliated Hospital of Nantong UniversityNantongChina
- Medical School of Nantong UniversityNantongChina
| |
Collapse
|
21
|
Liu HJ, Miao H, Yang JZ, Liu F, Cao G, Zhao YY. Deciphering the role of lipoproteins and lipid metabolic alterations in ageing and ageing-associated renal fibrosis. Ageing Res Rev 2023; 85:101861. [PMID: 36693450 DOI: 10.1016/j.arr.2023.101861] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/07/2023] [Accepted: 01/20/2023] [Indexed: 01/22/2023]
Abstract
Fibrosis is the ultimate pathological feature of many chronic diseases, and ageing a major risk factor for fibrotic diseases. Current therapies are limited to those that reduce the rate of functional decline in patients with mild to moderate disease, but few interventions are available to specifically target the pathogenesis of fibrosis. In this context, new treatments that can significantly improve survival time and quality of life for these patients are urgently needed. In this review, we outline both the synthesis and metabolism of lipids and lipoproteins associated with ageing-associated renal fibrosis and the prominent contribution of lipids and lipidomics in the discovery of biomarkers that can be used for the prevention, diagnosis, and treatment of renal ageing and fibrosis. Next, we describe the effect of dyslipidaemia on ageing-related renal fibrosis and the pathophysiological changes in the kidney caused by dyslipidaemia. We then summarize the enzymes, transporters, transcription factors, and RNAs that contribute to dysregulated lipid metabolism in renal fibrosis and discuss their role in renal fibrosis in detail. We conclude by discussing the progress in research on small molecule therapeutic agents that prevent and treat ageing and ageing-associated renal fibrosis by modulating lipid metabolism. A growing number of studies suggest that restoring aberrant lipid metabolism may be a novel and promising therapeutic strategy to combat ageing and ageing-associated renal fibrosis.
Collapse
Affiliation(s)
- Hong-Jiao Liu
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang 310053, China
| | - Hua Miao
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang 310053, China
| | - Jun-Zheng Yang
- Guangdong Nephrotic Drug Engineering Technology Research Center, Institute of Consun Co. for Chinese Medicine in Kidney Diseases, Guangdong Consun Pharmaceutical Group, No. 71 Dongpeng Avenue, Guangzhou, Guangdong 510530, China
| | - Fei Liu
- Department of Urology, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 South of Panjiayuan, Beijing 100021, China.
| | - Gang Cao
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang 310053, China.
| | - Ying-Yong Zhao
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang 310053, China.
| |
Collapse
|
22
|
Chen Y, Huang C, Duan ZB, Chen YX, Xu CY. LncRNA NEAT1 accelerates renal fibrosis progression via targeting miR-31 and modulating RhoA/ROCK signal pathway. Am J Physiol Cell Physiol 2023; 324:C292-C306. [PMID: 36440854 DOI: 10.1152/ajpcell.00382.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Renal fibrosis is the final pathway for chronic kidney disease to end-stage renal failure. Noncoding RNAs have been reported to play a crucial role in renal fibrosis. Here, the effects of long noncoding RNA (lncRNA) nuclear-enriched abundant transcript 1 (NEAT1) and miR-31 on renal fibrosis and their regulatory mechanism were evaluated. RT-qPCR was used to assess NEAT1, miR-31, and RhoA levels. Western blot was performed to analyze the expression of fibrosis markers, RhoA, rho-related kinase (ROCK1), and connective tissue growth factor (CTGF). RNA immunoprecipitation (RIP), fluorescence in situ hybridization (FISH), and luciferase reporter assays verified the interaction between miR-31 and NEAT1 or RhoA. Renal fibrosis and injury were observed by Masson and hematoxylin and eosin (H&E) staining. The expression level of inflammatory cytokines was detected by ELISA. Immunohistochemistry (IHC) was performed to examine the expression levels of α-smooth muscle actin (α-SMA) and RhoA in renal tissues. We showed that NEAT1 was highly expressed, whereas miR-31 was decreased in renal fibrosis. NEAT1 was found to directly bind miR-31 to positively regulate RhoA expression. Furthermore, NEAT1 silencing inhibited renal fibrosis and inflammation and suppressed the RhoA/ROCK1 signaling pathway. However, knockdown of miR-31 could reverse these effects. NEAT1 silencing or overexpression of miR-31 alleviated renal fibrosis in vivo. In conclusion, NEAT1 accelerates renal fibrosis progression via negative regulation of miR-31 and the activation of RhoA/ROCK1 pathway, thereby upregulating the expression level of CTGF, providing a theoretical basis for treatment and prognostic evaluation of renal fibrosis.
Collapse
Affiliation(s)
- Yan Chen
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Chong Huang
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhi-Bin Duan
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yan-Xia Chen
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Cheng-Yun Xu
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
23
|
Li Q, Huo Y, Wang S, Yang L, Li Q, Du X. TGF-β1 regulates the lncRNA transcriptome of ovarian granulosa cells in a transcription activity-dependent manner. Cell Prolif 2023; 56:e13336. [PMID: 36125095 DOI: 10.1111/cpr.13336] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/23/2022] [Accepted: 09/01/2022] [Indexed: 01/11/2023] Open
Abstract
OBJECTIVES Transforming growth factor β1 (TGF-β1), an essential cytokine belongs to TGF-β superfamily, is crucial for female fertility. Increasing evidence show that long noncoding RNAs (lncRNAs) influence the state of granulosa cells (GCs). This study aimed to detect the effects of TGF-β1 on the lncRNA transcriptome, and investigate whether lncRNAs mediate the functions of TGF-β1 in GCs. MATERIAL AND METHODS RNA-seq and bioinformatics analyses were performed to identify and characterize the differentially expressed lncRNAs (DElncRNAs). The regulatory mechanism of TGF-β1 to lncRNA transcriptome was analyzed by chromatin immunoprecipitation. The effects of lncRNAs on the antiapoptotic and proproliferative functions of TGF-β1 were examined by morphological analysis, fluorescence-activated cell sorting, Cell Counting Kit-8, and Western blot. RESULTS A total of 72 DElncRNAs highly sensitive to TGF-β1 were identified with the criteria of |log2 (fold chage)| ≥ 3 and false discovery rate < 0.05. Functional assessment showed that DElncRNAs were enriched in TGF-β, nuclear factor kappa B, p53, and Hippo pathways which are crucial for the normal state and function of GCs. Importantly, SMAD4 is essential for the regulation of TGF-β1 to lncRNA transcriptome. In vitro studies confirmed that TGF-β1 induced TEX14-IT1 transcription in a SMAD4-dependent manner, and TEX14-IT1 mediated the antiapoptotic and proproliferative effects of TGF-β1 in GCs. CONCLUSIONS Our findings demonstrate that TGF-β1 alters lncRNA transcriptome in a SMAD4-dependent manner, and highlight that lncRNAs mediate the functions of TGF-β1 in GCs, which contribute to a better understanding of the epigenetic regulation of female fertility.
Collapse
Affiliation(s)
- Qiqi Li
- Laboratory of Statistical Genetics and Epigenetics, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yangan Huo
- Laboratory of Statistical Genetics and Epigenetics, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Siqi Wang
- Laboratory of Statistical Genetics and Epigenetics, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Liu Yang
- Laboratory of Statistical Genetics and Epigenetics, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Qifa Li
- Laboratory of Statistical Genetics and Epigenetics, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xing Du
- Laboratory of Statistical Genetics and Epigenetics, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
24
|
Zhang J, Wang H, Chen H, Li H, Xu P, Liu B, Zhang Q, Lv C, Song X. ATF3 -activated accelerating effect of LINC00941/lncIAPF on fibroblast-to-myofibroblast differentiation by blocking autophagy depending on ELAVL1/HuR in pulmonary fibrosis. Autophagy 2022; 18:2636-2655. [PMID: 35427207 PMCID: PMC9629064 DOI: 10.1080/15548627.2022.2046448] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is characterized by lung scarring and has no effective treatment. Fibroblast-to-myofibroblast differentiation and myofibroblast proliferation and migration are major clinical manifestations of this disease; hence, blocking these processes is a practical treatment strategy. Here, highly upregulated LINC00941/lncIAPF was found to accelerate pulmonary fibrosis by promoting fibroblast-to-myofibroblast differentiation and myofibroblast proliferation and migration. Assay for transposase-accessible chromatin using sequencing and chromatin immunoprecipitation experiments elucidated that histone 3 lysine 27 acetylation (H3K27ac) activated the chromosome region opening in the LINC00941 promoter. As a consequence, the transcription factor ATF3 (activating transcription factor 3) bound to this region, and LINC00941 transcription was enhanced. RNA affinity isolation, RNA immunoprecipitation (RIP), RNase-RIP, half-life analysis, and ubiquitination experiments unveiled that LINC00941 formed a RNA-protein complex with ELAVL1/HuR (ELAV like RNA binding protein 1) to exert its pro-fibrotic function. Dual-fluorescence mRFP-GFP-MAP1LC3/LC3 (microtubule associated protein 1 light chain 3) adenovirus monitoring technology, human autophagy RT2 profiler PCR array, and autophagic flux revealed that the LINC00941-ELAVL1 axis inhibited autophagosome fusion with a lysosome. ELAVL1 RIP-seq, RIP-PCR, mRNA stability, and rescue experiments showed that the LINC00941-ELAVL1 complex inhibited autophagy by controlling the stability of the target genes EZH2 (enhancer of zeste 2 polycomb repressive complex 2 subunit), STAT1 (signal transducer and activators of transcription 1) and FOXK1 (forkhead box K1). Finally, the therapeutic effect of LINC00941 was confirmed in a mouse model and patients with IPF. This work provides a therapeutic target and a new effective therapeutic strategy related to autophagy for IPF.Abbreviations: ACTA2/a-SMA: actin alpha 2, smooth muscle; ATF3: activating transcription factor 3; ATG: autophagy related; Baf-A1: bafilomycin A1; BLM: bleomycin; CDKN: cyclin dependent kinase inhibitor; CLN3: CLN3 lysosomal/endosomal transmembrane protein, battenin; COL1A: collagen type I alpha; COL3A: collagen type III alpha; CXCR4: C-X-C motif chemokine receptor 4; DRAM2: DNA damage regulated autophagy modulator 2; ELAVL1/HuR: ELAV like RNA binding protein 1; EZH2: enhancer of zeste 2 polycomb repressive complex 2 subunit; FADD: Fas associated via death domain; FAP/FAPα: fibroblast activation protein alpha; FOXK1: forkhead box K1; FVC: forced vital capacity; GABARAP: GABA type A receptor-associated protein; GABARAPL2: GABA type A receptor associated protein like 2; IGF1: insulin like growth factor 1; IPF: idiopathic pulmonary fibrosis; LAMP: lysosomal associated membrane protein; lncRNA: long noncoding RNA; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; NPC1: NPC intracellular cholesterol transporter 1; RGS: regulator of G protein signaling; RPLP0: ribosomal protein lateral stalk subunit P0; ROC: receiver operating characteristic; S100A4: S100 calcium binding protein A4; SQSTM1/p62: sequestosome 1; STAT1: signal transducers and activators of transcription 1; TGFB1/TGF-β1: transforming growth factor beta 1; TNF: tumor necrosis factor; UIP: usual interstitial pneumonia; ULK1: unc-51 like autophagy activating kinase 1; VIM: vimentin.
Collapse
Affiliation(s)
- Jinjin Zhang
- Department of Cellular and Genetic Medicine, School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, Shandong, China,Medical Research Center, Binzhou Medical University, Yantai, Shandong, China
| | - Haixia Wang
- Department of Cellular and Genetic Medicine, School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, Shandong, China,Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou, Province, China
| | - Hongbin Chen
- Department of Cellular and Genetic Medicine, School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, Shandong, China
| | - Hongbo Li
- Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou, Province, China
| | - Pan Xu
- Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou, Province, China
| | - Bo Liu
- Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou, Province, China
| | - Qian Zhang
- Department of Pathology, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou, Province, China
| | - Changjun Lv
- Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou, Province, China,Changjun Lv Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou Medical University
| | - Xiaodong Song
- Department of Cellular and Genetic Medicine, School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, Shandong, China,Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou, Province, China,CONTACT Xiaodong Song Department of Cellular and Genetic Medicine, School of Pharmaceutical Sciences, Binzhou Medical University, Yantai264003, Shandong, China
| |
Collapse
|
25
|
Liu C, Ma K, Zhang Y, He X, Song L, Chi M, Han Z, Li G, Zhang Q, Liu C. Kidney diseases and long non-coding RNAs in the limelight. Front Physiol 2022; 13:932693. [PMID: 36299256 PMCID: PMC9589442 DOI: 10.3389/fphys.2022.932693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 09/21/2022] [Indexed: 11/13/2022] Open
Abstract
The most extensively and well-investigated sequences in the human genome are protein-coding genes, while large numbers of non-coding sequences exist in the human body and are even more diverse with more potential roles than coding sequences. With the unveiling of non-coding RNA research, long-stranded non-coding RNAs (lncRNAs), a class of transcripts >200 nucleotides in length primarily expressed in the nucleus and rarely in the cytoplasm, have drawn our attention. LncRNAs are involved in various levels of gene regulatory processes, including but not limited to promoter activity, epigenetics, translation and transcription efficiency, and intracellular transport. They are also dysregulated in various pathophysiological processes, especially in diseases and cancers involving genomic imprinting. In recent years, numerous studies have linked lncRNAs to the pathophysiology of various kidney diseases. This review summarizes the molecular mechanisms involved in lncRNAs, their impact on kidney diseases, and associated complications, as well as the value of lncRNAs as emerging biomarkers for the prevention and prognosis of kidney diseases, suggesting their potential as new therapeutic tools.
Collapse
Affiliation(s)
- Chenxin Liu
- Reproductive and Women-Children Hospital, School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Kuai Ma
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yunchao Zhang
- Reproductive and Women-Children Hospital, School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xing He
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Linjiang Song
- Reproductive and Women-Children Hospital, School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mingxuan Chi
- Department of Nephrology, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, Sichuan Renal Disease Clinical Research Center, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Zhongyu Han
- Reproductive and Women-Children Hospital, School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Guanhua Li
- Department of Cardiovascular Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- *Correspondence: Guanhua Li, ; Qinxiu Zhang, ; Chi Liu,
| | - Qinxiu Zhang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Guanhua Li, ; Qinxiu Zhang, ; Chi Liu,
| | - Chi Liu
- Department of Nephrology, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, Sichuan Renal Disease Clinical Research Center, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
- *Correspondence: Guanhua Li, ; Qinxiu Zhang, ; Chi Liu,
| |
Collapse
|
26
|
Tang PCT, Chung JYF, Liao J, Chan MKK, Chan ASW, Cheng G, Li C, Huang XR, Ng CSH, Lam EWF, Zhang D, Ho YP, To KF, Leung KT, Jiang X, Ko H, Lee TL, Lan HY, Tang PMK. Single-cell RNA sequencing uncovers a neuron-like macrophage subset associated with cancer pain. SCIENCE ADVANCES 2022; 8:eabn5535. [PMID: 36206343 PMCID: PMC9544324 DOI: 10.1126/sciadv.abn5535] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 08/23/2022] [Indexed: 05/29/2023]
Abstract
Tumor innervation is a common phenomenon with unknown mechanism. Here, we discovered a direct mechanism of tumor-associated macrophage (TAM) for promoting de novo neurogenesis via a subset showing neuronal phenotypes and pain receptor expression associated with cancer-driven nocifensive behaviors. This subset is rich in lung adenocarcinoma associated with poorer prognosis. By elucidating the transcriptome dynamics of TAM with single-cell resolution, we discovered a phenomenon "macrophage to neuron-like cell transition" (MNT) for directly promoting tumoral neurogenesis, evidenced by macrophage depletion and fate-mapping study in lung carcinoma models. Encouragingly, we detected neuronal phenotypes and activities of the bone marrow-derived MNT cells (MNTs) in vitro. Adoptive transfer of MNTs into NOD/SCID mice markedly enhanced their cancer-associated nocifensive behaviors. We identified macrophage-specific Smad3 as a pivotal regulator for promoting MNT at the genomic level; its disruption effectively blocked the tumor innervation and cancer-dependent nocifensive behaviors in vivo. Thus, MNT may represent a precision therapeutic target for cancer pain.
Collapse
Affiliation(s)
- Philip Chiu-Tsun Tang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong SAR
| | - Jeff Yat-Fai Chung
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong SAR
| | - Jinyue Liao
- Department of Chemical Pathology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR
| | - Max Kam-Kwan Chan
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong SAR
| | - Alex Siu-Wing Chan
- Department of Applied Social Sciences, The Hong Kong Polytechnic University, Hong Kong SAR
| | - Guangyao Cheng
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR
| | - Chunjie Li
- Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xiao-Ru Huang
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR
| | - Calvin Sze-Hang Ng
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong SAR
| | - Eric W-F Lam
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, 651 Dongfeng East Road, Guangzhou, Guangdong Province 510060, China
| | - Dongmei Zhang
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Yi-Ping Ho
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR
| | - Ka-Fai To
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong SAR
| | - Kam-Tong Leung
- Department of Paediatrics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR
| | - Xiaohua Jiang
- Key Laboratory for Regenerative Medicine of the Ministry of Education of China, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR
| | - Ho Ko
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR
| | - Tin-Lap Lee
- Reproduction, Development and Endocrinology Program, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR
| | - Hui-Yao Lan
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR
- Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, The Chinese University of Hong Kong, 999077 Hong Kong SAR
| | - Patrick Ming-Kuen Tang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong SAR
| |
Collapse
|
27
|
Chan MKK, Chung JYF, Tang PCT, Chan ASW, Ho JYY, Lin TPT, Chen J, Leung KT, To KF, Lan HY, Tang PMK. TGF-β signaling networks in the tumor microenvironment. Cancer Lett 2022; 550:215925. [DOI: 10.1016/j.canlet.2022.215925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 09/05/2022] [Accepted: 09/17/2022] [Indexed: 11/02/2022]
|
28
|
Zhang L, Chai D, Chen C, Li C, Qiu Z, Kuang T, Parveena M, Dong K, Yu J, Deng W, Wang W. Mycobiota and C-Type Lectin Receptors in Cancers: Know thy Neighbors. Front Microbiol 2022; 13:946995. [PMID: 35910636 PMCID: PMC9326027 DOI: 10.3389/fmicb.2022.946995] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/13/2022] [Indexed: 11/15/2022] Open
Abstract
Numerous studies have demonstrated the importance of gut bacteria in the development of malignancy, while relatively little research has been done on gut mycobiota. As a part of the gut microbiome, the percentage of gut mycobiota is negligible compared to gut bacteria. However, the effect of gut fungi on human health and disease is significant. This review systematically summarizes the research progress on mycobiota, especially gut fungi, in patients with head and neck cancer (HNC), esophageal cancer (EC), gastric cancer (GC), colorectal cancer (CRC), hepatocellular carcinoma (HCC), pancreatic cancer, melanoma, breast cancer, and lung carcinoma-induced cachexia. Moreover, we also describe, for the first time in detail, the role of the fungal recognition receptors, C-type lectin receptors (CLRs) (Dectin-1, Dectin-2, Dectin-3, and Mincle) and their downstream effector caspase recruitment domain-containing protein 9 (CARD9), in tumors to provide a reference for further research on intestinal fungi in the diagnosis and treatment of malignant tumors.
Collapse
Affiliation(s)
- Lilong Zhang
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Digestive System Disease, Wuhan, China
| | - Dongqi Chai
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Digestive System Disease, Wuhan, China
| | - Chen Chen
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Chunlei Li
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Digestive System Disease, Wuhan, China
| | - Zhendong Qiu
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Digestive System Disease, Wuhan, China
| | - Tianrui Kuang
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Digestive System Disease, Wuhan, China
| | - Mungur Parveena
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Digestive System Disease, Wuhan, China
| | - Keshuai Dong
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jia Yu
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wenhong Deng
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- *Correspondence: Wenhong Deng,
| | - Weixing Wang
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- Weixing Wang,
| |
Collapse
|
29
|
Tang PCT, Zhang YY, Li JSF, Chan MKK, Chen J, Tang Y, Zhou Y, Zhang D, Leung KT, To KF, Tang SCW, Lan HY, Tang PMK. LncRNA-Dependent Mechanisms of Transforming Growth Factor-β: From Tissue Fibrosis to Cancer Progression. Noncoding RNA 2022; 8:ncrna8030036. [PMID: 35736633 PMCID: PMC9227532 DOI: 10.3390/ncrna8030036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/19/2022] [Accepted: 05/21/2022] [Indexed: 11/16/2022] Open
Abstract
Transforming growth factor-β (TGF-β) is a crucial pathogenic mediator of inflammatory diseases. In tissue fibrosis, TGF-β regulates the pathogenic activity of infiltrated immunocytes and promotes extracellular matrix production via de novo myofibroblast generation and kidney cell activation. In cancer, TGF-β promotes cancer invasion and metastasis by enhancing the stemness and epithelial mesenchymal transition of cancer cells. However, TGF-β is highly pleiotropic in both tissue fibrosis and cancers, and thus, direct targeting of TGF-β may also block its protective anti-inflammatory and tumor-suppressive effects, resulting in undesirable outcomes. Increasing evidence suggests the involvement of long non-coding RNAs (lncRNAs) in TGF-β-driven tissue fibrosis and cancer progression with a high cell-type and disease specificity, serving as an ideal target for therapeutic development. In this review, the mechanism and translational potential of TGF-β-associated lncRNAs in tissue fibrosis and cancer will be discussed.
Collapse
Affiliation(s)
- Philip Chiu-Tsun Tang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong 999077, China; (P.C.-T.T.); (J.S.-F.L.); (M.K.-K.C.); (K.-F.T.)
| | - Ying-Ying Zhang
- Department of Nephrology, Tongji University School of Medicine, Shanghai 200065, China;
| | - Jane Siu-Fan Li
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong 999077, China; (P.C.-T.T.); (J.S.-F.L.); (M.K.-K.C.); (K.-F.T.)
| | - Max Kam-Kwan Chan
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong 999077, China; (P.C.-T.T.); (J.S.-F.L.); (M.K.-K.C.); (K.-F.T.)
| | - Jiaoyi Chen
- Division of Nephrology, Department of Medicine, The University of Hong Kong, Hong Kong 999077, China; (J.C.); (S.C.-W.T.)
| | - Ying Tang
- Department of Nephrology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510080, China;
| | - Yiming Zhou
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China;
| | - Dongmei Zhang
- College of Pharmacy, Jinan University, Guangzhou 510632, China;
| | - Kam-Tong Leung
- Department of Paediatrics, The Chinese University of Hong Kong, Hong Kong 999077, China;
| | - Ka-Fai To
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong 999077, China; (P.C.-T.T.); (J.S.-F.L.); (M.K.-K.C.); (K.-F.T.)
| | - Sydney Chi-Wai Tang
- Division of Nephrology, Department of Medicine, The University of Hong Kong, Hong Kong 999077, China; (J.C.); (S.C.-W.T.)
| | - Hui-Yao Lan
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China;
| | - Patrick Ming-Kuen Tang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong 999077, China; (P.C.-T.T.); (J.S.-F.L.); (M.K.-K.C.); (K.-F.T.)
- Correspondence:
| |
Collapse
|
30
|
Zhang C, Tam TW, Chau MK, García Córdoba CA, Yung S, Chan TM. Effect of Combined Mycophenolate and Rapamycin Treatment on Kidney Fibrosis in Murine Lupus Nephritis. Front Pharmacol 2022; 13:866077. [PMID: 35571122 PMCID: PMC9095843 DOI: 10.3389/fphar.2022.866077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/28/2022] [Indexed: 11/29/2022] Open
Abstract
Background: A significant proportion of lupus nephritis patients develop chronic kidney disease (CKD) and progressive kidney fibrosis, for which there is no specific treatment. We previously reported that mycophenolate or rapamycin monotherapy showed comparable efficacy in suppressing kidney fibrosis in a murine model of lupus nephritis through their direct action on mesangial cells. We extended our study to investigate the effect of combined mycophenolate and rapamycin treatment (MR) on kidney fibrosis in NZBWF1/J mice. Methods: Female NZBWF1/J mice with active nephritis were randomized to receive vehicle or treatment with mycophenolate (50 mg/kg/day) and rapamycin (1.5 mg/kg/day) (MR) for up to 12 weeks, and the effect of treatment on clinical parameters, kidney histology, and fibrotic processes was investigated. Results: Progression of nephritis in untreated mice was accompanied by mesangial proliferation, glomerulosclerosis, tubular atrophy, protein cast formation, increased mTOR and ERK phosphorylation, and induction of TGF-β1, IL-6, α-smooth muscle actin, fibronectin, and collagen expression. Combined MR treatment prolonged survival, improved kidney function, decreased anti-dsDNA antibody level, and ameliorated histopathological changes. The effect of combined MR treatment on kidney histology and function was comparable to that of mycophenolate or rapamycin monotherapy. In vitro studies in human mesangial cells showed that exogenous TGF-β1 and IL-6 both induced mTOR and ERK phosphorylation and downstream fibrotic processes. Both mycophenolic acid and rapamycin inhibited inflammatory and fibrotic processes induced by TGF-β1 or IL-6 by downregulating mTOR and ERK phosphorylation. Conclusions: Our findings indicate that combined mycophenolate and rapamycin, at reduced dose, improves kidney fibrosis in murine lupus nephritis through their distinct effect on mTOR and ERK signaling in mesangial cells.
Collapse
Affiliation(s)
- Chenzhu Zhang
- Department of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Tsz Wai Tam
- Department of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Mel Km Chau
- Department of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | | | - Susan Yung
- Department of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Tak Mao Chan
- Department of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
31
|
Sun J, Jin T, Niu Z, Guo J, Guo Y, Yang R, Wang Q, Gao H, Zhang Y, Li T, He W, Li Z, Ma W, Su W, Li L, Fan X, Shan H, Liang H. LncRNA DACH1 protects against pulmonary fibrosis by binding to SRSF1 to suppress CTNNB1 accumulation. Acta Pharm Sin B 2022; 12:3602-3617. [PMID: 36176913 PMCID: PMC9513499 DOI: 10.1016/j.apsb.2022.04.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/04/2022] [Accepted: 03/08/2022] [Indexed: 11/17/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive disease with unknown etiology and limited therapeutic options. Activation of fibroblasts is a prominent feature of pulmonary fibrosis. Here we report that lncRNA DACH1 (dachshund homolog 1) is downregulated in the lungs of IPF patients and in an experimental mouse model of lung fibrosis. LncDACH1 knockout mice develop spontaneous pulmonary fibrosis, whereas overexpression of LncDACH1 attenuated TGF-β1-induced aberrant activation, collagen deposition and differentiation of mouse lung fibroblasts. Similarly, forced expression of LncDACH1 not only prevented bleomycin (BLM)-induced lung fibrosis, but also reversed established lung fibrosis in a BLM model. Mechanistically, LncDACH1 binding to the serine/arginine-rich splicing factor 1 (SRSF1) protein decreases its activity and inhibits the accumulation of Ctnnb1. Enhanced expression of SRSF1 blocked the anti-fibrotic effect of LncDACH1 in lung fibroblasts. Furthermore, loss of LncDACH1 promoted proliferation, differentiation, and extracellular matrix (ECM) deposition in mouse lung fibroblasts, whereas such effects were abolished by silencing of Ctnnb1. In addition, a conserved fragment of LncDACH1 alleviated hyperproliferation, ECM deposition and differentiation of MRC-5 cells driven by TGF-β1. Collectively, LncDACH1 inhibits lung fibrosis by interacting with SRSF1 to suppress CTNNB1 accumulation, suggesting that LncDACH1 might be a potential therapeutic target for pulmonary fibrosis.
Collapse
Affiliation(s)
- Jian Sun
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin 150081, China
- Zhuhai People's Hospital, Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Hospital Affiliated with Jinan University, Jinan University, Zhuhai 519000, China
| | - Tongzhu Jin
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin 150081, China
| | - Zhihui Niu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin 150081, China
| | - Jiayu Guo
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin 150081, China
| | - Yingying Guo
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin 150081, China
| | - Ruoxuan Yang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin 150081, China
| | - Qianqian Wang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin 150081, China
| | - Huiying Gao
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin 150081, China
| | - Yuhan Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin 150081, China
| | - Tianyu Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin 150081, China
| | - Wenxin He
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University, Shanghai 200433, China
| | - Zhixin Li
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University, Shanghai 200433, China
| | - Wenchao Ma
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin 150081, China
| | - Wei Su
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin 150081, China
| | - Liangliang Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin 150081, China
| | - Xingxing Fan
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China
| | - Hongli Shan
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin 150081, China
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin 150081, China
| | - Haihai Liang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin 150081, China
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin 150081, China
- Corresponding author.
| |
Collapse
|
32
|
Yu XY, Sun Q, Zhang YM, Zou L, Zhao YY. TGF-β/Smad Signaling Pathway in Tubulointerstitial Fibrosis. Front Pharmacol 2022; 13:860588. [PMID: 35401211 PMCID: PMC8987592 DOI: 10.3389/fphar.2022.860588] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 02/28/2022] [Indexed: 12/22/2022] Open
Abstract
Chronic kidney disease (CKD) was a major public health problem worldwide. Renal fibrosis, especially tubulointerstitial fibrosis, is final manifestation of CKD. Many studies have demonstrated that TGF-β/Smad signaling pathway plays a crucial role in renal fibrosis. Therefore, targeted inhibition of TGF-β/Smad signaling pathway can be used as a potential therapeutic measure for tubulointerstitial fibrosis. At present, a variety of targeting TGF-β1 and its downstream Smad proteins have attracted attention. Natural products used as potential therapeutic strategies for tubulointerstitial fibrosis have the characteristics of acting on multiple targets by multiple components and few side effects. With the continuous research and technique development, more and more molecular mechanisms of natural products have been revealed, and there are many natural products that inhibited tubulointerstitial fibrosis via TGF-β/Smad signaling pathway. This review summarized the role of TGF-β/Smad signaling pathway in tubulointerstitial fibrosis and natural products against tubulointerstitial fibrosis by targeting TGF-β/Smad signaling pathway. Additionally, many challenges and opportunities are presented for inhibiting renal fibrosis in the future.
Collapse
Affiliation(s)
- Xiao-Yong Yu
- Department of Nephrology, Shaanxi Traditional Chinese Medicine Hospital, Xi’an, China
- *Correspondence: Xiao-Yong Yu, ; Liang Zou, ; Ying-Yong Zhao,
| | - Qian Sun
- Department of Nephrology, Shaanxi Traditional Chinese Medicine Hospital, Xi’an, China
| | - Ya-Mei Zhang
- Key Disciplines of Clinical Pharmacy, Clinical Genetics Laboratory, Affiliated Hospital and Clinical Medical College of Chengdu University, Chengdu, China
| | - Liang Zou
- School of Food and Bioengineering, Chengdu University, Chengdu, China
- *Correspondence: Xiao-Yong Yu, ; Liang Zou, ; Ying-Yong Zhao,
| | - Ying-Yong Zhao
- Key Disciplines of Clinical Pharmacy, Clinical Genetics Laboratory, Affiliated Hospital and Clinical Medical College of Chengdu University, Chengdu, China
- *Correspondence: Xiao-Yong Yu, ; Liang Zou, ; Ying-Yong Zhao,
| |
Collapse
|
33
|
Chen YY, Chen XG, Zhang S. Druggability of lipid metabolism modulation against renal fibrosis. Acta Pharmacol Sin 2022; 43:505-519. [PMID: 33990764 PMCID: PMC8888625 DOI: 10.1038/s41401-021-00660-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 03/16/2021] [Indexed: 02/08/2023] Open
Abstract
Renal fibrosis contributes to progressive damage to renal structure and function. It is a common pathological process as chronic kidney disease develops into kidney failure, irrespective of diverse etiologies, and eventually leads to death. However, there are no effective drugs for renal fibrosis treatment at present. Lipid aggregation in the kidney and consequent lipotoxicity always accompany chronic kidney disease and fibrosis. Numerous studies have revealed that restoring the defective fatty acid oxidation in the kidney cells can mitigate renal fibrosis. Thus, it is an important strategy to reverse the dysfunctional lipid metabolism in the kidney, by targeting critical regulators of lipid metabolism. In this review, we highlight the potential "druggability" of lipid metabolism to ameliorate renal fibrosis and provide current pre-clinical evidence, exemplified by some representative druggable targets and several other metabolic regulators with anti-renal fibrosis roles. Then, we introduce the preliminary progress of noncoding RNAs as promising anti-renal fibrosis drug targets from the perspective of lipid metabolism. Finally, we discuss the prospects and deficiencies of drug targeting lipid reprogramming in the kidney.
Collapse
Affiliation(s)
- Yuan-yuan Chen
- grid.506261.60000 0001 0706 7839State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union medical college, Beijing, 100050 China
| | - Xiao-guang Chen
- grid.506261.60000 0001 0706 7839State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union medical college, Beijing, 100050 China
| | - Sen Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union medical college, Beijing, 100050, China.
| |
Collapse
|
34
|
Wang W, Chen J, Hu D, Pan P, Liang L, Wu W, Tang Y, Huang XR, Yu X, Wu J, Lan HY. SARS-CoV-2 N Protein Induces Acute Kidney Injury via Smad3-Dependent G1 Cell Cycle Arrest Mechanism. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103248. [PMID: 34813685 PMCID: PMC8787402 DOI: 10.1002/advs.202103248] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/10/2021] [Indexed: 05/02/2023]
Abstract
COVID-19 is infected by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and can cause severe multiple organ injury and death. Kidney is one of major target organs of COVID-19 and acute kidney injury (AKI) is common in critically ill COVID-19 patients. However, mechanisms through which COVID-19 causes AKI remain largely unknown and treatment remains unspecific and ineffective. Here, the authors report that normal kidney-specifically overexpressing SARS-CoV-2 N develops AKI, which worsens in mice under ischemic condition. Mechanistically, it is uncovered that SARS-CoV-2 N-induced AKI is Smad3-dependent as SARS-CoV-2 N protein can interact with Smad3 and enhance TGF-β/Smad3 signaling to cause tubular epithelial cell death and AKI via the G1 cell cycle arrest mechanism. This is further confirmed in Smad3 knockout mice and cells in which deletion of Smad3 protects against SARS-CoV-2 N protein-induced cell death and AKI in vivo and in vitro. Most significantly, it is also found that targeting Smad3 with a Smad3 pharmacological inhibitor is able to inhibit SARS-CoV-2 N-induced AKI. In conclusion, the authors identify that SARS-CoV-2 N protein is a key mediator for AKI and induces AKI via the Smad3-dependent G1 cell cycle arrest mechanism. Targeting Smad3 may represent as a novel therapy for COVID-19-asscoaited AKI.
Collapse
Affiliation(s)
- Wenbiao Wang
- Departments of Medicine and TherapeuticsLi Ka Shing Institute of Health Sciences, and Lui Che Woo Institute of Innovative MedicineThe Chinese University of Hong KongHong Kong999077China
- Guangdong Provincial Key Laboratory of VirologyInstitute of Medical MicrobiologyJinan UniversityGuangzhou510632China
- Guangdong‐Hong Kong Joint Laboratory for Immunological and Genetic Kidney DiseaseGuangdong Academy of Medical ScienceGuangdong Provincial People's HospitalGuangzhou510080China
- The Chinese University of Hong Kong‐Guangdong Academy of Sciences/Guangdong Provincial People's Hospital Joint Research Laboratory on Immunological and Genetic Kidney DiseasesThe Chinese University of Hong KongHong Kong999077China
| | - Junzhe Chen
- Departments of Medicine and TherapeuticsLi Ka Shing Institute of Health Sciences, and Lui Che Woo Institute of Innovative MedicineThe Chinese University of Hong KongHong Kong999077China
- Department of NephrologyThe Third Affiliated HospitalSouthern Medical UniversityGuangzhou510080China
| | - Dingwen Hu
- State Key Laboratory of VirologyCollege of Life SciencesWuhan UniversityWuhan430072China
| | - Pan Pan
- Guangdong Provincial Key Laboratory of VirologyInstitute of Medical MicrobiologyJinan UniversityGuangzhou510632China
| | - Liying Liang
- Departments of Medicine and TherapeuticsLi Ka Shing Institute of Health Sciences, and Lui Che Woo Institute of Innovative MedicineThe Chinese University of Hong KongHong Kong999077China
| | - Wenjing Wu
- Departments of Medicine and TherapeuticsLi Ka Shing Institute of Health Sciences, and Lui Che Woo Institute of Innovative MedicineThe Chinese University of Hong KongHong Kong999077China
- Guangdong‐Hong Kong Joint Laboratory for Immunological and Genetic Kidney DiseaseGuangdong Academy of Medical ScienceGuangdong Provincial People's HospitalGuangzhou510080China
| | - Ying Tang
- Department of NephrologyThe Third Affiliated HospitalSouthern Medical UniversityGuangzhou510080China
| | - Xiao R. Huang
- Departments of Medicine and TherapeuticsLi Ka Shing Institute of Health Sciences, and Lui Che Woo Institute of Innovative MedicineThe Chinese University of Hong KongHong Kong999077China
- Guangdong‐Hong Kong Joint Laboratory for Immunological and Genetic Kidney DiseaseGuangdong Academy of Medical ScienceGuangdong Provincial People's HospitalGuangzhou510080China
| | - Xueqing Yu
- Guangdong‐Hong Kong Joint Laboratory for Immunological and Genetic Kidney DiseaseGuangdong Academy of Medical ScienceGuangdong Provincial People's HospitalGuangzhou510080China
| | - Jianguo Wu
- Guangdong Provincial Key Laboratory of VirologyInstitute of Medical MicrobiologyJinan UniversityGuangzhou510632China
- State Key Laboratory of VirologyCollege of Life SciencesWuhan UniversityWuhan430072China
| | - Hui Y. Lan
- Departments of Medicine and TherapeuticsLi Ka Shing Institute of Health Sciences, and Lui Che Woo Institute of Innovative MedicineThe Chinese University of Hong KongHong Kong999077China
- The Chinese University of Hong Kong‐Guangdong Academy of Sciences/Guangdong Provincial People's Hospital Joint Research Laboratory on Immunological and Genetic Kidney DiseasesThe Chinese University of Hong KongHong Kong999077China
| |
Collapse
|
35
|
Xue VW, Chung JYF, Tang PCT, Chan ASW, To THW, Chung JSY, Mussal F, Lam EWF, Li C, To KF, Leung KT, Lan HY, Tang PMK. USMB-shMincle: a virus-free gene therapy for blocking M1/M2 polarization of tumor-associated macrophages. MOLECULAR THERAPY-ONCOLYTICS 2021; 23:26-37. [PMID: 34589582 PMCID: PMC8463747 DOI: 10.1016/j.omto.2021.08.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 08/17/2021] [Indexed: 02/08/2023]
Abstract
Mincle is essential for tumor-associated macrophage (TAM)-driven cancer progression and represents a potential immunotherapeutic target for cancer. Nevertheless, the lack of a specific inhibitor has largely limited its clinical translation. Here, we successfully developed a gene therapeutic strategy for silencing Mincle in a virus-free and tumor-specific manner by combining RNA interference technology with an ultrasound-microbubble-mediated gene transfer system (USMB). We identified a small hairpin RNA (shRNA) sequence shMincle that can silence not only Mincle expression but also the protumoral effector production in mouse bone marrow- and human THP-1-derived macrophages in the cancer setting in vitro. By using our well-established USMB system (USMB-shMincle), the shMincle-expressing plasmids were delivered in a tissue-specific manner into xenografts of human lung carcinoma A549 and melanoma A375 in vivo. Encouragingly, we found that USMB-shMincle effectively inhibited the protumoral phenotypes of TAMs as well as the progression of both A549 and A375 xenografts in a dose-dependent manner in mice without significant side effects. Mechanistically, we identified that USMB-shMincle markedly enhanced the anticancer M1 phenotype of TAMs in the A549 and A375 xenografts by blocking the protumoral Mincle/Syk/nuclear factor κB (NF-κB) signaling axis. Thus, USMB-shMincle may represent a clinically translatable novel and safe gene therapeutic approach for cancer treatment.
Collapse
Affiliation(s)
- Vivian Weiwen Xue
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Shatin 999077, Hong Kong
| | - Jeff Yat-Fai Chung
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Shatin 999077, Hong Kong
| | - Philip Chiu-Tsun Tang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Shatin 999077, Hong Kong
| | - Alex Siu-Wing Chan
- Department of Applied Social Sciences, The Hong Kong Polytechnic University, Shatin 999077, Hong Kong
| | - Travis Hoi-Wai To
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Shatin 999077, Hong Kong
| | - Justin Shing-Yin Chung
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Shatin 999077, Hong Kong
| | - Francis Mussal
- Paediatric Oncology, Birmingham Children's Hospital, University of Birmingham, Birmingham B15 2TT, UK
| | - Eric W-F Lam
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong 510060, China
| | - Chunjie Li
- Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ka-Fai To
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Shatin 999077, Hong Kong
| | - Kam-Tong Leung
- Department of Paediatrics, The Chinese University of Hong Kong, Shatin 999077, Hong Kong
| | - Hui-Yao Lan
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin 999077, Hong Kong
| | - Patrick Ming-Kuen Tang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Shatin 999077, Hong Kong
| |
Collapse
|
36
|
Kaucsár T, Róka B, Tod P, Do PT, Hegedűs Z, Szénási G, Hamar P. Divergent regulation of lncRNA expression by ischemia in adult and aging mice. GeroScience 2021; 44:429-445. [PMID: 34697716 PMCID: PMC8811094 DOI: 10.1007/s11357-021-00460-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 09/11/2021] [Indexed: 12/24/2022] Open
Abstract
Elderly patients have increased susceptibility to acute kidney injury (AKI). Long noncoding RNAs (lncRNA) are key regulators of cellular processes, and have been implicated in both aging and AKI. Our aim was to study the effects of aging and ischemia-reperfusion injury (IRI) on the renal expression of lncRNAs. Adult and old (10- and 26-30-month-old) C57BL/6 N mice were subjected to unilateral IRI followed by 7 days of reperfusion. Renal expression of 90 lncRNAs and mRNA expression of injury, regeneration, and fibrosis markers was measured by qPCR in the injured and contralateral control kidneys. Tubular injury, regeneration, and fibrosis were assessed by histology. Urinary lipocalin-2 excretion was increased in old mice prior to IRI, but plasma urea was similar. In the control kidneys of old mice tubular cell necrosis and apoptosis, mRNA expression of kidney injury molecule-1, fibronectin-1, p16, and p21 was elevated. IRI increased plasma urea concentration only in old mice, but injury, regeneration, and fibrosis scores and their mRNA markers were similar in both age groups. AK082072 and Y lncRNAs were upregulated, while H19 and RepA transcript were downregulated in the control kidneys of old mice. IRI upregulated Miat, Igf2as, SNHG5, SNHG6, RNCR3, Malat1, Air, Linc1633, and Neat1 v1, while downregulated Linc1242. LncRNAs H19, AK082072, RepA transcript, and Six3os were influenced by both aging and IRI. Our results indicate that both aging and IRI alter renal lncRNA expression suggesting that lncRNAs have a versatile and complex role in aging and kidney injury. An Ingenuity Pathway Analysis highlighted that the most downregulated H19 may be linked to aging/senescence through p53.
Collapse
Affiliation(s)
- Tamás Kaucsár
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Beáta Róka
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Pál Tod
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Phuong Thanh Do
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Zoltán Hegedűs
- Institute of Biophysics, Biological Research Centre, Eötvös Loránd Research Network (ELKH), Szeged, Hungary
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pécs, Pécs, Hungary
| | - Gábor Szénási
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Péter Hamar
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary.
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary.
| |
Collapse
|
37
|
You YK, Wu WF, Huang XR, Li HD, Ren YP, Zeng JC, Chen H, Lan HY. Deletion of Smad3 protects against C-reactive protein-induced renal fibrosis and inflammation in obstructive nephropathy. Int J Biol Sci 2021; 17:3911-3922. [PMID: 34671208 PMCID: PMC8495386 DOI: 10.7150/ijbs.62929] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 08/14/2021] [Indexed: 11/27/2022] Open
Abstract
Introduction and Aims: Elevated plasma levels of C-reactive protein (CRP) are closely associated with progressive renal injury in patients with chronic kidney disease (CKD). Here, we tested a hypothesis that CRP may promote renal fibrosis and inflammation via a TGF-β/Smad3-dependent mechanism. Methods: Role and mechanisms of TGF-β/Smad3 in CRP-induced renal fibrosis and inflammation were examined in a mouse model of unilateral ureteral obstruction (UUO) induced in CRP Tg/Smad3 KO mice and in a rat tubular epithelial cell line in which Smad3 gene is stably knocked down (S3KD-NRK52E). Results: We found that mice overexpressing the human CRP gene were largely promoted renal inflammation and fibrosis as evidenced by increasing IL-1β, TNF-α, MCP-1 expression, F4/80+ macrophages infiltration, and marked accumulation of α-smooth muscle actin (α-SMA), collagen I and fibronectin in the UUO kidney, which were blunted when Smad3 gene was deleted in CRPtg-Smad3KO. Mechanistically, we found that the protection of renal inflammation and fibrosis in the UUO kidney of CRPtg-Smad3KO mice was associated with the inactivation of CD32-NF-κB and TGF-β/Smad3 signaling. Conclusion: In conclusion, Smad3 deficiency protects against CRP-mediated renal inflammation and fibrosis in the UUO kidney by inactivating CD32-NF-κB and TGF-β/Smad3 signaling.
Collapse
Affiliation(s)
- Yong-Ke You
- Department of Nephrology, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, China.,Department of Medicine and Therapeutics, and Li Ka Shing Institute of Health Sciences, the Chinese University of Hong Kong, Hong Kong, China.,School of Chinese Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong, China
| | - Wei-Feng Wu
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong, China
| | - Xiao-Ru Huang
- Department of Medicine and Therapeutics, and Li Ka Shing Institute of Health Sciences, the Chinese University of Hong Kong, Hong Kong, China.,Guangdong-Hong Kong Joint Laboratory for Immunological and Genetic Kidney Disease, Guangdong Academy of Medical Science, Guangdong Provincial People's Hospital, Guangzhou, China.,CUHK-Guangdong Provincial People's Hospital Joint Research Laboratory for Immunological and Genetic Kidney Disease, the Chinese University of Hong Kong, Hong Kong, China
| | - Hai-Di Li
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong, China
| | - Ye-Ping Ren
- Department of Nephrology, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, China
| | - Jin-Cheng Zeng
- Guangdong-Hong Kong Joint Laboratory for Immunological and Genetic Kidney Disease, Guangdong Academy of Medical Science, Guangdong Provincial People's Hospital, Guangzhou, China
| | - Haiyong Chen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong, China
| | - Hui Yao Lan
- Department of Medicine and Therapeutics, and Li Ka Shing Institute of Health Sciences, the Chinese University of Hong Kong, Hong Kong, China.,Guangdong-Hong Kong Joint Laboratory for Immunological and Genetic Kidney Disease, Guangdong Academy of Medical Science, Guangdong Provincial People's Hospital, Guangzhou, China.,CUHK-Guangdong Provincial People's Hospital Joint Research Laboratory for Immunological and Genetic Kidney Disease, the Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
38
|
Yuan X, Tang WB, Peng L, Chen Y, Tang S, Ge H, Wang X, Xiao X. Elevation of LncRNA ENST00000453774.1 Prevents Renal Fibrosis by Upregulating FBN1, IGF1R, and KLF7. Kidney Blood Press Res 2021; 46:563-573. [PMID: 34614499 DOI: 10.1159/000515624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 03/03/2021] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Transforming growth factor-β (TGF-β), a common outcome of various progressive chronic kidney diseases, can regulate and induce fibrosis. OBJECTIVE The study aimed to identify downstream targets of lncRNA ENST00000453774.1 (lnc453774.1) and outline their functions on the development of renal fibrosis. METHODS HK-2 cells were induced with 5 ng/mL TGF-β1 for 24 h to construct a renal fibrosis cell model. Differentially expressed genes (DEGs) targeted by lnc453774.1 in TGF-β1-induced renal fibrosis were identified using RNA sequencing. The dataset GSE23338 was employed to identify DEGs in 48-h TGF-β1-stimulated human kidney epithelial cells, and these DEGs were intersected with genes in the key module using weighted gene co-expression network analysis to generate key genes associated with renal fibrosis. MicroRNAs (miRs) that had targeting relationship with keys genes and lnc453774.1 were predicted by using Miranda software, and important genes were intersected with key genes that had targeting relationship with these miRs. Key target genes by lnc453774.1 were identified in a protein-protein interaction network among lnc453774.1, important genes, and reported genes related to autophagy, oxidative stress, and cell adhesion. RESULTS Key genes in the key module (turquoise) were intersected with DEGs in the dataset GSE23338 and yielded 20 key genes regulated by lnc453774.1 involved in renal fibrosis. Fourteen miRs had targeting relationship with lnc453774.1 and key genes, and 8 important genes targeted by these 14 miRs were identified. Fibrillin-1 (FBN1), insulin-like growth factor 1 receptor (IGF1R), and Kruppel-like factor 7 (KLF7) were identified to be involved in autophagy, oxidative stress, and cell adhesion and were elevated in the lnc453774.1-overexpressing TGF-β1-induced cells. CONCLUSION These results show FBN1, IGF1R, and KLF7 serve as downstream targets of lnc453774.1, and that lnc453774.1 may protect against renal fibrosis through competing endogenous miRs which target FBN1, IGF1R, and KLF7 mRNAs.
Collapse
Affiliation(s)
- Xiangning Yuan
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - Wen-Bin Tang
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - Ling Peng
- The Nephrotic Laboratory, Xiangya Hospital, Central South University, Changsha, China
| | - Yusa Chen
- Department of Nephrology, Hunan Provincial People's Hospital, Changsha, China
| | - Shumei Tang
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - Huipeng Ge
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiufen Wang
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiangcheng Xiao
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
39
|
Zhang YY, Tan RZ, Yu Y, Niu YY, Yu C. LncRNA GAS5 protects against TGF-β-induced renal fibrosis via the Smad3/miRNA-142-5p axis. Am J Physiol Renal Physiol 2021; 321:F517-F526. [PMID: 34486400 DOI: 10.1152/ajprenal.00085.2021] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 08/31/2021] [Indexed: 12/23/2022] Open
Abstract
Increasing evidence shows that long noncoding RNAs (lncRNAs) play an important role in kidney disease. In this study, we investigated the role of the lncRNA growth arrest-specific 5 (GAS5) in the pathogenesis of renal fibrosis. We found that GAS5 was markedly decreased in the fibrotic kidney of a unilateral ureteral obstructive nephropathy mouse model. In addition, GAS5 was expressed in mouse tubular epithelial cells (mTECs) and interstitial fibroblasts in normal renal tissue and was especially highly expressed in the cytoplasm. In vitro experiments showed that GAS5 was downregulated by transforming growth factor-β1 (TGF-β1) in a dose- and time-dependent manner. Overexpression of GAS5 blocked TGF-β1-induced collagen type I and fibronectin expression and vice versa. Mechanistic experiments revealed that Smad3 but not Smad2 drove the regulation of GAS5. More importantly, GAS5 interacted with miR-142-5p and was involved in the renoprotective effect by participating in the competing endogenous RNA network. Finally, we also found that knockdown of GAS5 promoted TGF-β1-induced mouse tubular epithelial cell apoptosis via the Smad3 pathway. Taken together, our results uncovered a lncRNA/miRNA competing endogenous RNA network-based mechanism that modulates extracellular matrix formation and cell apoptosis via the Smad3 pathway.NEW & NOTEWORTHY In this work, we mainly discuss long noncoding RNA growth arrest-specific 5 (GAS5), acting in a renoprotective role via the Smad3/miRNA-142-5p axis, that modulates extracellular matrix formation and cell apoptosis. Overexpression of GAS5 effectively blocked renal fibrosis in vitro. This study reveals that GAS5 may represent as a novel and precision therapeutic target for alleviating renal fibrosis.
Collapse
Affiliation(s)
- Ying-Ying Zhang
- Department of Nephrology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Rui-Zhi Tan
- Research Center of Combined Traditional Chinese and Western Medicine, Affiliated Traditional Medicine Hospital, Southwest Medical University, Luzhou, People's Republic of China
| | - Ying Yu
- Department of Nephrology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Yang-Yang Niu
- Department of Nephrology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Chen Yu
- Department of Nephrology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| |
Collapse
|
40
|
Chen S, Zhou M, Ying X, Zhou C. Ellagic acid protects rats from chronic renal failure via MiR-182/FOXO3a axis. Mol Immunol 2021; 138:150-160. [PMID: 34428620 DOI: 10.1016/j.molimm.2021.08.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 01/20/2023]
Abstract
Studies showed that ellagic acid (EA) can significantly improve kidney function, but the renal-protective effects of EA and the potential mechanism require adequate elucidation. This study investigated the mechanisms of EA in chronic renal failure (CRF) injury. A rat model of CRF was established by 5/6 nephrectomy. The body weight, urine volume and urine protein content of the rat model of CRF with EA treatment (0/20/40 mg/kg/day) were recorded. Hematoxylin&eosin (H&E) staining, Masson staining and TUNEL were used for histopathological observation. Serum levels of creatinine value, blood urea nitrogen, superoxide dismutase, glutathione, malondialdehyde, tumor necrosis factor-α, interleukin-6 and intercellular cell adhesion molecule-1 were determined using enzyme-linked immunosorbent assay (ELISA) kits. The expressions of genes involved in CRF damage were detected by quantitative real-time PCR (qRT-PCR) and western blot. The relationships among EA, miR-182 and FOXO3a were verified by TargetScan 7.2, dual-luciferase assay and rescue experiments. In this study, EA treatment significantly increased the body weight, but reduced urination and urine protein content, renal tissue damage, collagen deposition, inflammation and the contents of serum creatinine (Scr), blood urea nitrogen (BUN), and malondialdehyde (MDA), and improved the antioxidant capacity of CRF rats. Moreover, EA treatment inhibited miR-182, TGF-β1, fibronectin and Bax levels, and promoted those of FOXO3a and Bcl-2 in CRF rats. Additionally, miR-182 specifically targeted FOXO3a, and effectively reduced the renal-protective effect of EA. Further research found that overexpressed FOXO3a partially reversed the inhibitory effect of miR-182 on CRF rats. Our results suggest that EA might reduce CRF injury in rats via miR-182/FOXO3a.
Collapse
Affiliation(s)
- Siqi Chen
- Department of Nephrology, The Affiliated People's Hospital, Ningbo University, Ningbo, Zhejiang, 315040, China
| | - Meiyang Zhou
- Department of Nephrology, The Affiliated People's Hospital, Ningbo University, Ningbo, Zhejiang, 315040, China
| | - Xuxia Ying
- Department of Intensive Care Unit, The Affiliated People's Hospital, Ningbo University, Ningbo, Zhejiang, 315040, China
| | - Canxin Zhou
- Department of Nephrology, The Affiliated People's Hospital, Ningbo University, Ningbo, Zhejiang, 315040, China.
| |
Collapse
|
41
|
Xia W, He Y, Gan Y, Zhang B, Dai G, Ru F, Jiang Z, Chen Z, Chen X. Long Non-coding RNA: An Emerging Contributor and Potential Therapeutic Target in Renal Fibrosis. Front Genet 2021; 12:682904. [PMID: 34386039 PMCID: PMC8353329 DOI: 10.3389/fgene.2021.682904] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 06/28/2021] [Indexed: 12/19/2022] Open
Abstract
Renal fibrosis (RF) is a pathological process that culminates in terminal renal failure in chronic kidney disease (CKD). Fibrosis contributes to progressive and irreversible decline in renal function. However, the molecular mechanisms involved in RF are complex and remain poorly understood. Long non-coding RNAs (lncRNAs) are a major type of non-coding RNAs, which significantly affect various disease processes, cellular homeostasis, and development through multiple mechanisms. Recent investigations have implicated aberrantly expressed lncRNA in RF development and progression, suggesting that lncRNAs play a crucial role in determining the clinical manifestation of RF. In this review, we comprehensively evaluated the recently published articles on lncRNAs in RF, discussed the potential application of lncRNAs as diagnostic and/or prognostic biomarkers, proposed therapeutic targets for treating RF-associated diseases and subsequent CKD transition, and highlight future research directions in the context of the role of lncRNAs in the development and treatment of RF.
Collapse
Affiliation(s)
- Weiping Xia
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Yao He
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Yu Gan
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Bo Zhang
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Guoyu Dai
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Feng Ru
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Zexiang Jiang
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhi Chen
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiang Chen
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
42
|
Wang L, Wang HL, Liu TT, Lan HY. TGF-Beta as a Master Regulator of Diabetic Nephropathy. Int J Mol Sci 2021; 22:7881. [PMID: 34360646 PMCID: PMC8345981 DOI: 10.3390/ijms22157881] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/13/2021] [Accepted: 07/13/2021] [Indexed: 12/26/2022] Open
Abstract
Diabetic nephropathy (DN) is one of the most common complications in diabetes mellitus and the leading cause of end-stage renal disease. TGF-β is a pleiotropic cytokine and has been recognized as a key mediator of DN. However, anti-TGF-β treatment for DN remains controversial due to the diverse role of TGF-β1 in DN. Thus, understanding the regulatory role and mechanisms of TGF-β in the pathogenesis of DN is the initial step towards the development of anti-TGF-β treatment for DN. In this review, we first discuss the diverse roles and signaling mechanisms of TGF-β in DN by focusing on the latent versus active TGF-β1, the TGF-β receptors, and the downstream individual Smad signaling molecules including Smad2, Smad3, Smad4, and Smad7. Then, we dissect the regulatory mechanisms of TGF-β/Smad signaling in the development of DN by emphasizing Smad-dependent non-coding RNAs including microRNAs and long-non-coding RNAs. Finally, the potential therapeutic strategies for DN by targeting TGF-β signaling with various therapeutic approaches are discussed.
Collapse
Affiliation(s)
- Li Wang
- Research Center for Integrative Medicine, Affiliated Traditional Medicine Hospital of Southwest Medical University, Luzhou 646000, China; (L.W.); (H.-L.W.); (T.-T.L.)
| | - Hong-Lian Wang
- Research Center for Integrative Medicine, Affiliated Traditional Medicine Hospital of Southwest Medical University, Luzhou 646000, China; (L.W.); (H.-L.W.); (T.-T.L.)
| | - Tong-Tong Liu
- Research Center for Integrative Medicine, Affiliated Traditional Medicine Hospital of Southwest Medical University, Luzhou 646000, China; (L.W.); (H.-L.W.); (T.-T.L.)
| | - Hui-Yao Lan
- Department of Medicine and Therapeutics, and Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong 999077, China
| |
Collapse
|
43
|
Aashaq S, Batool A, Mir SA, Beigh MA, Andrabi KI, Shah ZA. TGF-β signaling: A recap of SMAD-independent and SMAD-dependent pathways. J Cell Physiol 2021; 237:59-85. [PMID: 34286853 DOI: 10.1002/jcp.30529] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 06/06/2021] [Accepted: 07/06/2021] [Indexed: 12/20/2022]
Abstract
Transforming growth factor-β (TGF-β) is a proinflammatory cytokine known to control a diverse array of pathological and physiological conditions during normal development and tumorigenesis. TGF-β-mediated physiological effects are heterogeneous and vary among different types of cells and environmental conditions. TGF-β serves as an antiproliferative agent and inhibits tumor development during primary stages of tumor progression; however, during the later stages, it encourages tumor development and mediates metastatic progression and chemoresistance. The fundamental elements of TGF-β signaling have been divulged more than a decade ago; however, the process by which the signals are relayed from cell surface to nucleus is very complex with additional layers added in tumor cell niches. Although the intricate understanding of TGF-β-mediated signaling pathways and their regulation are still evolving, we tried to make an attempt to summarize the TGF-β-mediated SMAD-dependent andSMAD-independent pathways. This manuscript emphasizes the functions of TGF-β as a metastatic promoter and tumor suppressor during the later and initial phases of tumor progression respectively.
Collapse
Affiliation(s)
- Sabreena Aashaq
- Department of Immunology and Molecular Medicine, Sher-i-Kashmir Institute of Medical Sciences, Soura, Srinagar, JK, India
| | - Asiya Batool
- Division of Cancer Pharmacology, Indian Institute of Integrative Medicine, Srinagar, JK, India
| | | | | | | | - Zaffar Amin Shah
- Department of Immunology and Molecular Medicine, Sher-i-Kashmir Institute of Medical Sciences, Soura, Srinagar, JK, India
| |
Collapse
|
44
|
Higgins CE, Tang J, Higgins SP, Gifford CC, Mian BM, Jones DM, Zhang W, Costello A, Conti DJ, Samarakoon R, Higgins PJ. The Genomic Response to TGF-β1 Dictates Failed Repair and Progression of Fibrotic Disease in the Obstructed Kidney. Front Cell Dev Biol 2021; 9:678524. [PMID: 34277620 PMCID: PMC8284093 DOI: 10.3389/fcell.2021.678524] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/07/2021] [Indexed: 12/14/2022] Open
Abstract
Tubulointerstitial fibrosis is a common and diagnostic hallmark of a spectrum of chronic renal disorders. While the etiology varies as to the causative nature of the underlying pathology, persistent TGF-β1 signaling drives the relentless progression of renal fibrotic disease. TGF-β1 orchestrates the multifaceted program of kidney fibrogenesis involving proximal tubular dysfunction, failed epithelial recovery or re-differentiation, capillary collapse and subsequent interstitial fibrosis eventually leading to chronic and ultimately end-stage disease. An increasing complement of non-canonical elements function as co-factors in TGF-β1 signaling. p53 is a particularly prominent transcriptional co-regulator of several TGF-β1 fibrotic-response genes by complexing with TGF-β1 receptor-activated SMADs. This cooperative p53/TGF-β1 genomic cluster includes genes involved in cellular proliferative control, survival, apoptosis, senescence, and ECM remodeling. While the molecular basis for this co-dependency remains to be determined, a subset of TGF-β1-regulated genes possess both p53- and SMAD-binding motifs. Increases in p53 expression and phosphorylation, moreover, are evident in various forms of renal injury as well as kidney allograft rejection. Targeted reduction of p53 levels by pharmacologic and genetic approaches attenuates expression of the involved genes and mitigates the fibrotic response confirming a key role for p53 in renal disorders. This review focuses on mechanisms underlying TGF-β1-induced renal fibrosis largely in the context of ureteral obstruction, which mimics the pathophysiology of pediatric unilateral ureteropelvic junction obstruction, and the role of p53 as a transcriptional regulator within the TGF-β1 repertoire of fibrosis-promoting genes.
Collapse
Affiliation(s)
- Craig E. Higgins
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY, United States
| | - Jiaqi Tang
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY, United States
| | - Stephen P. Higgins
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY, United States
| | - Cody C. Gifford
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY, United States
| | - Badar M. Mian
- The Urological Institute of Northeastern New York, Albany, NY, United States
- Division of Urology, Department of Surgery, Albany Medical College, Albany, NY, United States
| | - David M. Jones
- Department of Pathology and Laboratory Medicine, Albany Medical College, Albany, NY, United States
| | - Wenzheng Zhang
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY, United States
| | - Angelica Costello
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY, United States
| | - David J. Conti
- Division of Transplantation Surgery, Department of Surgery, Albany Medical College, Albany, NY, United States
| | - Rohan Samarakoon
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY, United States
| | - Paul J. Higgins
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY, United States
- The Urological Institute of Northeastern New York, Albany, NY, United States
- Division of Urology, Department of Surgery, Albany Medical College, Albany, NY, United States
| |
Collapse
|
45
|
High glucose-induced Smad3 linker phosphorylation and CCN2 expression are inhibited by dapagliflozin in a diabetic tubule epithelial cell model. Biosci Rep 2021; 41:228674. [PMID: 34003249 PMCID: PMC8220447 DOI: 10.1042/bsr20203947] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 05/13/2021] [Accepted: 05/18/2021] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND In the kidney glucose is freely filtered by the glomerulus and, mainly, reabsorbed by sodium glucose cotransporter 2 (SGLT2) expressed in the early proximal tubule. Human proximal tubule epithelial cells (PTECs) undergo pathological and fibrotic changes seen in diabetic kidney disease (DKD) in response to elevated glucose. We developed a specific in vitro model of DKD using primary human PTECs with exposure to high D-glucose and TGF-β1 and propose a role for SGLT2 inhibition in regulating fibrosis. METHODS Western blotting was performed to detect cellular and secreted proteins as well as phosphorylated intracellular signalling proteins. qPCR was used to detect CCN2 RNA. Gamma glutamyl transferase (GT) activity staining was performed to confirm PTEC phenotype. SGLT2 and ERK inhibition on high D-glucose, 25 mM, and TGF-β1, 0.75 ng/ml, treated cells was explored using dapagliflozin and U0126, respectively. RESULTS Only the combination of high D-glucose and TGF-β1 treatment significantly up-regulated CCN2 RNA and protein expression. This increase was significantly ameliorated by dapagliflozin. High D-glucose treatment raised phospho ERK which was also inhibited by dapagliflozin. TGF-β1 increased cellular phospho SSXS Smad3 serine 423 and 425, with and without high D-glucose. Glucose alone had no effect. Smad3 serine 204 phosphorylation was significantly raised by a combination of high D-glucose+TGF-β1; this rise was significantly reduced by both SGLT2 and MEK inhibition. CONCLUSIONS We show that high D-glucose and TGF-β1 are both required for CCN2 expression. This treatment also caused Smad3 linker region phosphorylation. Both outcomes were inhibited by dapagliflozin. We have identified a novel SGLT2 -ERK mediated promotion of TGF-β1/Smad3 signalling inducing a pro-fibrotic growth factor secretion. Our data evince support for substantial renoprotective benefits of SGLT2 inhibition in the diabetic kidney.
Collapse
|
46
|
Zhang B, Xu S, Liu J, Xie Y, Xiaobo S. Long Noncoding RNAs: Novel Important Players in Adipocyte Lipid Metabolism and Derivative Diseases. Front Physiol 2021; 12:691824. [PMID: 34168572 PMCID: PMC8217837 DOI: 10.3389/fphys.2021.691824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 05/14/2021] [Indexed: 01/08/2023] Open
Abstract
Obesity, a global public health issue, is characterized by excessive adiposity and is strongly related to some chronic diseases including cardiovascular diseases and diabetes. Extra energy intake-induced adipogenesis involves various transcription factors and long noncoding RNAs (lncRNAs) that control lipogenic mRNA expression. Currently, lncRNAs draw much attention for their contribution to adipogenesis and adipose tissue function. Increasing evidence also manifests the pivotal role of lncRNAs in modulating white, brown, and beige adipose tissue development and affecting the progression of the diseases induced by adipose dysfunction. The aim of this review is to summarize the roles of lncRNAs in adipose tissue development and obesity-caused diseases to provide novel drug targets for the treatment of obesity and metabolic diseases.
Collapse
Affiliation(s)
- Bin Zhang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Saijun Xu
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Jinyan Liu
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yong Xie
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Sun Xiaobo
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
47
|
Srivastava SP, Goodwin JE, Tripathi P, Kanasaki K, Koya D. Interactions among Long Non-Coding RNAs and microRNAs Influence Disease Phenotype in Diabetes and Diabetic Kidney Disease. Int J Mol Sci 2021; 22:ijms22116027. [PMID: 34199672 PMCID: PMC8199750 DOI: 10.3390/ijms22116027] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/21/2021] [Accepted: 05/27/2021] [Indexed: 02/07/2023] Open
Abstract
Large-scale RNA sequencing and genome-wide profiling data revealed the identification of a heterogeneous group of noncoding RNAs, known as long noncoding RNAs (lncRNAs). These lncRNAs play central roles in health and disease processes in diabetes and cancer. The critical association between aberrant expression of lncRNAs in diabetes and diabetic kidney disease have been reported. LncRNAs regulate diverse targets and can function as sponges for regulatory microRNAs, which influence disease phenotype in the kidneys. Importantly, lncRNAs and microRNAs may regulate bidirectional or crosstalk mechanisms, which need to be further investigated. These studies offer the novel possibility that lncRNAs may be used as potential therapeutic targets for diabetes and diabetic kidney diseases. Here, we discuss the functions and mechanisms of actions of lncRNAs, and their crosstalk interactions with microRNAs, which provide insight and promise as therapeutic targets, emphasizing their role in the pathogenesis of diabetes and diabetic kidney disease.
Collapse
Affiliation(s)
- Swayam Prakash Srivastava
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06511, USA;
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06511, USA
- Correspondence: or (S.P.S.); (D.K.)
| | - Julie E. Goodwin
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06511, USA;
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Pratima Tripathi
- Department of Biochemistry, Dr. Ram Manohar Lohia Institute of Medical Sciences, Lucknow 226010, India;
| | - Keizo Kanasaki
- Internal Medicine 1, Shimane University Faculty of Medicine, Izumo 693-0021, Japan;
| | - Daisuke Koya
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Ishikawa 920-0293, Japan
- Correspondence: or (S.P.S.); (D.K.)
| |
Collapse
|
48
|
Lin J, Luo Z, Liu S, Chen Q, Liu S, Chen J. Long non-coding RNA H19 promotes myoblast fibrogenesis via regulating the miR-20a-5p-Tgfbr2 axis. Clin Exp Pharmacol Physiol 2021; 48:921-931. [PMID: 33615521 DOI: 10.1111/1440-1681.13489] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/13/2021] [Accepted: 02/18/2021] [Indexed: 02/06/2023]
Abstract
Emerging evidence has indicated long non-coding RNAs (lncRNAs) play important roles in diverse biological processes, including fibrosis. Here, we report that lncRNA H19 is able to promote skeletal muscle fibrosis. lnc-H19 was identified to be highly expressed in skeletal muscle fibrosis in vivo and in vitro; while lnc-H19 knockdown attenuated fibrosis in vitro. The knockdown of lnc-H19 was proved to inhibit the activation of the TGFβ/Smad pathway in C2C12 myoblasts by sponging miR-20a-5p to regulate Tgfbr2 expression through the competing endogenous RNA function. Our study elucidates the roles of the lnc-H19-miR-20a-5p-Tgfbr2 axis in regulating the TGFβ/Smad pathway of myoblast fibrogenesis, which might provide a promising therapeutic target for skeletal muscle fibrosis.
Collapse
Affiliation(s)
- Jinrong Lin
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhiwen Luo
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Shaohua Liu
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Qingyan Chen
- Biology Department, Boston University, Boston, MA, USA
| | - Siyang Liu
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Jiwu Chen
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
49
|
Expression and function of Smad7 in autoimmune and inflammatory diseases. J Mol Med (Berl) 2021; 99:1209-1220. [PMID: 34059951 PMCID: PMC8367892 DOI: 10.1007/s00109-021-02083-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 04/18/2021] [Accepted: 04/22/2021] [Indexed: 12/22/2022]
Abstract
Transforming growth factor-β (TGF-β) plays a critical role in the pathological processes of various diseases. However, the signaling mechanism of TGF-β in the pathological response remains largely unclear. In this review, we discuss advances in research of Smad7, a member of the I-Smads family and a negative regulator of TGF-β signaling, and mainly review the expression and its function in diseases. Smad7 inhibits the activation of the NF-κB and TGF-β signaling pathways and plays a pivotal role in the prevention and treatment of various diseases. Specifically, Smad7 can not only attenuate growth inhibition, fibrosis, apoptosis, inflammation, and inflammatory T cell differentiation, but also promotes epithelial cells migration or disease development. In this review, we aim to summarize the various biological functions of Smad7 in autoimmune diseases, inflammatory diseases, cancers, and kidney diseases, focusing on the molecular mechanisms of the transcriptional and posttranscriptional regulation of Smad7.
Collapse
|
50
|
Gu YY, Dou JY, Huang XR, Liu XS, Lan HY. Transforming Growth Factor-β and Long Non-coding RNA in Renal Inflammation and Fibrosis. Front Physiol 2021; 12:684236. [PMID: 34054586 PMCID: PMC8155637 DOI: 10.3389/fphys.2021.684236] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 04/06/2021] [Indexed: 12/17/2022] Open
Abstract
Renal fibrosis is one of the most characterized pathological features in chronic kidney disease (CKD). Progressive fibrosis eventually leads to renal failure, leaving dialysis or allograft transplantation the only clinical option for CKD patients. Transforming growth factor-β (TGF-β) is the key mediator in renal fibrosis and is an essential regulator for renal inflammation. Therefore, the general blockade of the pro-fibrotic TGF-β may reduce fibrosis but may risk promoting renal inflammation and other side effects due to the diverse role of TGF-β in kidney diseases. Long non-coding RNAs (lncRNAs) are RNA transcripts with more than 200 nucleotides and have been regarded as promising therapeutic targets for many diseases. This review focuses on the importance of TGF-β and lncRNAs in renal inflammation, fibrogenesis, and the potential applications of TGF-β and lncRNAs as the therapeutic targets and biomarkers in renal fibrosis and CKD are highlighted.
Collapse
Affiliation(s)
- Yue-Yu Gu
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Jing-Yun Dou
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Nephrology, Weihai Hospital of Traditional Chinese Medicine, Weihai, China
| | - Xiao-Ru Huang
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China.,Guangdong-Hong Kong Joint Laboratory for Immunity and Genetics of Chronic Kidney Disease, Guangdong Academy of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou, China
| | - Xu-Sheng Liu
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hui-Yao Lan
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China.,Guangdong-Hong Kong Joint Laboratory for Immunity and Genetics of Chronic Kidney Disease, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|