1
|
Zhu Y, Arkin G, He T, Guo F, Zhang L, Wu Y, Prasad PN, Xie Z. Ultrasound imaging guided targeted sonodynamic therapy enhanced by magnetophoretically controlled magnetic microbubbles. Int J Pharm 2024; 655:124015. [PMID: 38527565 DOI: 10.1016/j.ijpharm.2024.124015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/26/2024] [Accepted: 03/16/2024] [Indexed: 03/27/2024]
Abstract
Sonodynamic therapy (SDT) utilizes ultrasonic excitation of a sensitizer to generate reactive oxygen species (ROS) to destroy tumor. Two dimensional (2D) black phosphorus (BP) is an emerging sonosensitizer that can promote ROS production to be used in SDT but it alone lacks active targeting effect and showed low therapy efficiency. In this study, a stable dispersion of integrated micro-nanoplatform consisting of BP nanosheets loaded and Fe3O4 nanoparticles (NPs) connected microbubbles was introduced for ultrasound imaging guided and magnetic field directed precision SDT of breast cancer. The targeted ultrasound imaging at 18 MHz and efficient SDT effects at 1 MHz were demonstrated both in-vitro and in-vivo on the breast cancer. The magnetic microbubbles targeted deliver BP nanosheets to the tumor site under magnetic navigation and increased the uptake of BP nanosheets by inducing cavitation effect for increased cell membrane permeability via ultrasound targeted microbubble destruction (UTMD). The mechanism of SDT by magnetic black phosphorus microbubbles was proposed to be originated from the ROS triggered mitochondria mediated apoptosis by up-regulating the pro-apoptotic proteins while down-regulating the anti-apoptotic proteins. In conclusion, the ultrasound theranostic was realized via the magnetic black phosphorus microbubbles, which could realize targeting and catalytic sonodynamic therapy.
Collapse
Affiliation(s)
- Yao Zhu
- Department of Materials Science, Shenzhen MSU-BIT University, Shenzhen 518172, PR China; Department of Ultrasonography, Shenzhen Medical Ultrasound Engineering Center, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, First Clinical Medical College of Southern University of Science and Technology, Shenzhen 518020, PR China
| | - Gulzira Arkin
- Department of Ultrasonography, Shenzhen Medical Ultrasound Engineering Center, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, First Clinical Medical College of Southern University of Science and Technology, Shenzhen 518020, PR China
| | - Tianzhen He
- Department of Ultrasonography, Shenzhen Medical Ultrasound Engineering Center, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, First Clinical Medical College of Southern University of Science and Technology, Shenzhen 518020, PR China
| | - Fengjuan Guo
- Department of Ultrasonography, Shenzhen Medical Ultrasound Engineering Center, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, First Clinical Medical College of Southern University of Science and Technology, Shenzhen 518020, PR China
| | - Ling Zhang
- Key Lab of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, PR China
| | - Yu Wu
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, PR China.
| | - Paras N Prasad
- Institute for Lasers, Photonics, and Biophotonics and Department of Chemistry, University at Buffalo, State University of New York, Buffalo, NY, USA.
| | - Zhongjian Xie
- Institute of Pediatrics, Shenzhen Children's Hospital, Clinical Medical College of Southern University of Science and Technology, Shenzhen 518038, Guangdong, PR China.
| |
Collapse
|
2
|
Tao X, Wang J, Liu B, Cheng P, Mu D, Du H, Niu B. Plasticity and crosstalk of mesenchymal stem cells and macrophages in immunomodulation in sepsis. Front Immunol 2024; 15:1338744. [PMID: 38352879 PMCID: PMC10861706 DOI: 10.3389/fimmu.2024.1338744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/10/2024] [Indexed: 02/16/2024] Open
Abstract
Sepsis is a multisystem disease characterized by dysregulation of the host immune response to infection. Immune response kinetics play a crucial role in the pathogenesis and progression of sepsis. Macrophages, which are known for their heterogeneity and plasticity, actively participate in the immune response during sepsis. These cells are influenced by the ever-changing immune microenvironment and exhibit two-sided immune regulation. Recently, the immunomodulatory function of mesenchymal stem cells (MSCs) in sepsis has garnered significant attention. The immune microenvironment can profoundly impact MSCs, prompting them to exhibit dual immunomodulatory functions akin to a double-edged sword. This discovery holds great importance for understanding sepsis progression and devising effective treatment strategies. Importantly, there is a close interrelationship between macrophages and MSCs, characterized by the fact that during sepsis, these two cell types interact and cooperate to regulate inflammatory processes. This review summarizes the plasticity of macrophages and MSCs within the immune microenvironment during sepsis, as well as the intricate crosstalk between them. This remains an important concern for the future use of these cells for immunomodulatory treatments in the clinic.
Collapse
Affiliation(s)
- Xingyu Tao
- Department of Critical Care Medicine, Chongqing Key Laboratory of Emergency Medicine, School of Medicine, Chongqing University Central Hospital, Chongqing University, Chongqing, China
| | - Jialian Wang
- Department of Critical Care Medicine, Chongqing Key Laboratory of Emergency Medicine, School of Medicine, Chongqing University Central Hospital, Chongqing University, Chongqing, China
| | - Bin Liu
- Department of Critical Care Medicine, Chongqing Key Laboratory of Emergency Medicine, School of Medicine, Chongqing University Central Hospital, Chongqing University, Chongqing, China
| | - Peifeng Cheng
- Department of Critical Care Medicine, Chongqing Key Laboratory of Emergency Medicine, School of Medicine, Chongqing University Central Hospital, Chongqing University, Chongqing, China
| | - Dan Mu
- Department of Critical Care Medicine, Chongqing Key Laboratory of Emergency Medicine, School of Medicine, Chongqing University Central Hospital, Chongqing University, Chongqing, China
| | - Huimin Du
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Bailin Niu
- Department of Critical Care Medicine, Chongqing Key Laboratory of Emergency Medicine, School of Medicine, Chongqing University Central Hospital, Chongqing University, Chongqing, China
- Department of Surgery, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
3
|
Zhong X, Chen J, Wen B, Wu X, Li M, Du F, Chen Y, Deng S, Zhao Y, Shen J, Xiao Z. Potential role of mesenchymal stem cells in T cell aging. J Mol Med (Berl) 2023; 101:1365-1378. [PMID: 37750918 DOI: 10.1007/s00109-023-02371-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 08/21/2023] [Accepted: 09/04/2023] [Indexed: 09/27/2023]
Abstract
Immunosenescence occurs with progressive age. T cell aging is manifested by immunodeficiency and inflammation. The main mechanisms are thymic involution, mitochondrial dysfunction, genetic and epigenetic alterations, loss of protein stability, reduction of T cell receptor (TCR) repertoire, naïve-memory T cell ratio imbalance, T cell senescence, and lack of effector plasticity. Mesenchymal stem cells (MSCs) are thought to hold great potential as anti-aging therapy. However, the role of MCSs in T cell aging remains elusive. This review makes a tentative summary of the potential role of MSCs in the protection against T cell aging. It might provide a new idea to intervene in the aging of the immune system.
Collapse
Affiliation(s)
- Xianmei Zhong
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, No. 1, Section 1, Xianglin Road, Longmatan District, Luzhou, 646000, Sichuan, China
- Department of Pharmacy, People's Hospital of Nanbu County, Nanchong, 637300, China
| | - Jie Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, No. 1, Section 1, Xianglin Road, Longmatan District, Luzhou, 646000, Sichuan, China
| | - Bo Wen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, No. 1, Section 1, Xianglin Road, Longmatan District, Luzhou, 646000, Sichuan, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, No. 1, Section 1, Xianglin Road, Longmatan District, Luzhou, 646000, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, Sichuan, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, No. 1, Section 1, Xianglin Road, Longmatan District, Luzhou, 646000, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, Sichuan, China
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, No. 1, Section 1, Xianglin Road, Longmatan District, Luzhou, 646000, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, Sichuan, China
| | - Yu Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, No. 1, Section 1, Xianglin Road, Longmatan District, Luzhou, 646000, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, Sichuan, China
| | - Shuai Deng
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, No. 1, Section 1, Xianglin Road, Longmatan District, Luzhou, 646000, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, Sichuan, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, No. 1, Section 1, Xianglin Road, Longmatan District, Luzhou, 646000, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, Sichuan, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, No. 1, Section 1, Xianglin Road, Longmatan District, Luzhou, 646000, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, Sichuan, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, No. 1, Section 1, Xianglin Road, Longmatan District, Luzhou, 646000, Sichuan, China.
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, Sichuan, China.
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
4
|
Zong C, Meng Y, Ye F, Yang X, Li R, Jiang J, Zhao Q, Gao L, Han Z, Wei L. AIF1 + CSF1R + MSCs, induced by TNF-α, act to generate an inflammatory microenvironment and promote hepatocarcinogenesis. Hepatology 2023; 78:434-451. [PMID: 35989499 PMCID: PMC10344441 DOI: 10.1002/hep.32738] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/12/2022] [Accepted: 08/12/2022] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND AIMS Increasing evidence suggests that mesenchymal stem cells (MSCs) home to injured local tissues and the tumor microenvironment in the liver. Chronic inflammation is regarded as the major trait of primary liver cancer. However, the characteristics of endogenous MSCs in the inflammatory environment and their role in the occurrence of liver cancer remain obscure. APPROACH AND RESULTS Using single-cell RNA sequencing, we identified a distinct inflammation-associated subset of MSCs, namely AIF1 + CSF1R + MSCs, which existed in the microenvironment before the occurrence of liver cancer. Furthermore, we found that this MSC subgroup is likely to be induced by TNF-α stimulation through the TNFR1/SIRT1 (sirtuin 1) pathway. In a rat primary liver cancer model, we showed that MSCs with high SIRT1 expression (Ad-Sirt1-MSCs) promoted macrophage recruitment and synergistically facilitated liver cancer occurrence by secreting C-C motif chemokine ligand (CCL) 5. Interestingly, depletion of macrophages or knockdown of CCL5 expression in Ad-Sirt1-MSCs attenuated the promotive effect of Ad-Sirt1-MSCs on liver inflammation and hepatocarcinogenesis (HCG). Finally, we demonstrated that SIRT1 up-regulated CCL5 expression through activation of the AKT/HIF1α signaling axis in MSCs. CONCLUSIONS Together, our results show that MSCs, which are mobilized to the injured site, can be educated by macrophages. In turn, the educated MSCs are involved in generating a chronic inflammatory microenvironment and promoting HCG.
Collapse
Affiliation(s)
- Chen Zong
- Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Second Military Medical University, Shanghai, China
- National Center for Liver Cancer, Shanghai, China
| | - Yan Meng
- Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Second Military Medical University, Shanghai, China
- National Center for Liver Cancer, Shanghai, China
| | - Fei Ye
- Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Second Military Medical University, Shanghai, China
- National Center for Liver Cancer, Shanghai, China
| | - Xue Yang
- Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Second Military Medical University, Shanghai, China
- National Center for Liver Cancer, Shanghai, China
| | - Rong Li
- Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Second Military Medical University, Shanghai, China
| | - Jinghua Jiang
- Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Second Military Medical University, Shanghai, China
- National Center for Liver Cancer, Shanghai, China
| | - Qiudong Zhao
- Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Second Military Medical University, Shanghai, China
- National Center for Liver Cancer, Shanghai, China
| | - Lu Gao
- Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Second Military Medical University, Shanghai, China
- National Center for Liver Cancer, Shanghai, China
| | - Zhipeng Han
- Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Second Military Medical University, Shanghai, China
- National Center for Liver Cancer, Shanghai, China
| | - Lixin Wei
- Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Second Military Medical University, Shanghai, China
- National Center for Liver Cancer, Shanghai, China
| |
Collapse
|
5
|
Lu H, Liang J, He X, Ye H, Ruan C, Shao H, Zhang R, Li Y. A Novel Oncogenic Role of FDX1 in Human Melanoma Related to PD-L1 Immune Checkpoint. Int J Mol Sci 2023; 24:ijms24119182. [PMID: 37298135 DOI: 10.3390/ijms24119182] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 06/12/2023] Open
Abstract
The aim of this study was to evaluate the association between Ferredoxin 1 (FDX1) expression and the prognostic survival of tumor patients and predict the efficacy of immunotherapy response to antitumor drug sensitivity. FDX1 plays an oncogenic role in thirty-three types of tumors, based on TCGA and GEO databases, and further experimental validation in vitro was provided through multiple cell lines. FDX1 was expressed highly in multiple types of cancer and differently linked to the survival prognosis of tumorous patients. A high phosphorylation level was correlated with the FDX1 site of S177 in lung cancer. FDX1 exhibited a significant association with infiltrated cancer-associated fibroblasts and CD8+ T cells. Moreover, FDX1 demonstrated correlations with immune and molecular subtypes, as well as functional enrichments in GO/KEGG pathways. Additionally, FDX1 displayed relationships with the tumor mutational burden (TMB), microsatellite instability (MSI), DNA methylation, and RNA and DNA synthesis (RNAss/DNAss) within the tumor microenvironment. Notably, FDX1 exhibited a strong connection with immune checkpoint genes in the co-expression network. The validity of these findings was further confirmed through Western blotting, RT-qPCR, and flow cytometry experiments conducted on WM115 and A375 tumor cells. Elevated FDX1 expression has been linked to the enhanced effectiveness of PD-L1 blockade immunotherapy in melanoma, as observed in the GSE22155 and GSE172320 cohorts. Autodocking simulations have suggested that FDX1 may influence drug resistance by affecting the binding sites of antitumor drugs. Collectively, these findings propose that FDX1 could serve as a novel and valuable biomarker and represent an immunotherapeutic target for augmenting immune responses in various human cancers when used in combination with immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Huijiao Lu
- Department of Biotechnology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jiahua Liang
- Department of Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Xue He
- Department of Biotechnology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Huabin Ye
- Department of Biotechnology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Chuangdong Ruan
- Department of Biotechnology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Hongwei Shao
- Department of Biotechnology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Rongxin Zhang
- Department of Biotechnology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yan Li
- Department of Biotechnology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| |
Collapse
|
6
|
Kustova MV, Prokofiev II, Perfilova VN, Muzyko EA, Zavadskaya VE, Varlamova SV, Kucheryavenko AS, Tyurenkov IN, Vasilyeva OS. The role of iNOS inhibition in the mechanism of the cardioprotective effect of new GABA and glutamic acid derivatives in the model of acute alcoholic myocardial injury in rats. BIOMEDITSINSKAIA KHIMIIA 2023; 69:112-124. [PMID: 37132493 DOI: 10.18097/pbmc20236902112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The cardioprotective effects of new derivatives of glutamic acid (glufimet) and GABA (mefargin) were studied in rats exposed to acute alcohol intoxication (AAI) under conditions of selective blockade of inducible NO-synthase (iNOS). AAI induced a pronounced decrease in the contractile function of the myocardium during exercise tests (load by volume, test for adrenoreactivity, isometric exercise), caused mitochondrial dysfunction and increased processes of lipid peroxidation (LPO) in heart cells. A decrease in NO production during iNOS inhibition and AAI improved the respiratory function of mitochondria, a decreased the level of LPO products, and increased mitochondrial superoxide dismutase activity of heart cells. This led to an increase in myocardial contractility. The studied compounds, glufimet and mefargin, caused a statistically significant increase in the rates of myocardial contraction and relaxation, left ventricular pressure, and also reduced NO production. This was accompanied by a decrease in the intensity of LPO processes and an increase in the respiratory control ratio (RCR), reflecting the coupling between respiration and phosphorylation processes during activation of the respiratory chain complexes I and II. The decrease in NO concentration during selective blockade of iNOS and administration of the studied substances was less pronounced than without blockade of the enzyme. This suggests the putative effect of new derivatives of neuroactive amino acids on the NO system.
Collapse
Affiliation(s)
- M V Kustova
- Volgograd State Medical University, Volgograd, Russia
| | - I I Prokofiev
- Volgograd State Medical University, Volgograd, Russia
| | - V N Perfilova
- Volgograd State Medical University, Volgograd, Russia
| | - E A Muzyko
- Volgograd State Medical University, Volgograd, Russia
| | | | - S V Varlamova
- Volgograd State Medical University, Volgograd, Russia
| | | | - I N Tyurenkov
- Volgograd State Medical University, Volgograd, Russia
| | - O S Vasilyeva
- Herzen Russian State Pedagogical University, St. Petersburg, Russia
| |
Collapse
|
7
|
Targeting Epigenetic Mechanisms: A Boon for Cancer Immunotherapy. Biomedicines 2023; 11:biomedicines11010169. [PMID: 36672677 PMCID: PMC9855697 DOI: 10.3390/biomedicines11010169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/02/2023] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Immunotherapy is rapidly emerging as a promising approach against cancer. In the last decade, various immunological mechanisms have been targeted to induce an increase in the immune response against cancer cells. However, despite promising results, many patients show partial response, resistance, or serious toxicities. A promising way to overcome this is the use of immunotherapeutic approaches, in combination with other potential therapeutic approaches. Aberrant epigenetic modifications play an important role in carcinogenesis and its progression, as well as in the functioning of immune cells. Thus, therapeutic approaches targeting aberrant epigenetic mechanisms and the immune response might provide an effective antitumor effect. Further, the recent development of potent epigenetic drugs and immunomodulators gives hope to this combinatorial approach. In this review, we summarize the synergy mechanism between epigenetic therapies and immunotherapy for the treatment of cancer, and discuss recent advancements in the translation of this approach.
Collapse
|
8
|
Han HT, Jin WL, Li X. Mesenchymal stem cells-based therapy in liver diseases. MOLECULAR BIOMEDICINE 2022; 3:23. [PMID: 35895169 PMCID: PMC9326420 DOI: 10.1186/s43556-022-00088-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/20/2022] [Indexed: 12/24/2022] Open
Abstract
Multiple immune cells and their products in the liver together form a complex and unique immune microenvironment, and preclinical models have demonstrated the importance of imbalances in the hepatic immune microenvironment in liver inflammatory diseases and immunocompromised liver diseases. Various immunotherapies have been attempted to modulate the hepatic immune microenvironment for the purpose of treating liver diseases. Mesenchymal stem cells (MSCs) have a comprehensive and plastic immunomodulatory capacity. On the one hand, they have been tried for the treatment of inflammatory liver diseases because of their excellent immunosuppressive capacity; On the other hand, MSCs have immune-enhancing properties in immunocompromised settings and can be modified into cellular carriers for targeted transport of immune enhancers by genetic modification, physical and chemical loading, and thus they are also used in the treatment of immunocompromised liver diseases such as chronic viral infections and hepatocellular carcinoma. In this review, we discuss the immunological basis and recent strategies of MSCs for the treatment of the aforementioned liver diseases. Specifically, we update the immune microenvironment of the liver and summarize the distinct mechanisms of immune microenvironment imbalance in inflammatory diseases and immunocompromised liver diseases, and how MSCs can fully exploit their immunotherapeutic role in liver diseases with both immune imbalance patterns.
Collapse
|
9
|
Xu Q, Liu X, Mohseni G, Hao X, Ren Y, Xu Y, Gao H, Wang Q, Wang Y. Mechanism research and treatment progress of NAD pathway related molecules in tumor immune microenvironment. Cancer Cell Int 2022; 22:242. [PMID: 35906622 PMCID: PMC9338646 DOI: 10.1186/s12935-022-02664-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 07/19/2022] [Indexed: 11/21/2022] Open
Abstract
Nicotinamide adenine dinucleotide (NAD) is the core of cellular energy metabolism. NAMPT, Sirtuins, PARP, CD38, and other molecules in this classic metabolic pathway affect many key cellular functions and are closely related to the occurrence and development of many diseases. In recent years, several studies have found that these molecules can regulate cell energy metabolism, promote the release of related cytokines, induce the expression of neoantigens, change the tumor immune microenvironment (TIME), and then play an anticancer role. Drugs targeting these molecules are under development or approved for clinical use. Although there are some side effects and drug resistance, the discovery of novel drugs, the development of combination therapies, and the application of new technologies provide solutions to these challenges and improve efficacy. This review presents the mechanisms of action of NAD pathway-related molecules in tumor immunity, advances in drug research, combination therapies, and some new technology-related therapies.
Collapse
Affiliation(s)
- QinChen Xu
- Department of Clinical Laboratory, The Second Hospital of Shandong University, 247 Beiyuan Street, 250033, Jinan, Shandong, China
| | - Xiaoyan Liu
- Department of Clinical Laboratory, The Second Hospital of Shandong University, 247 Beiyuan Street, 250033, Jinan, Shandong, China
| | - Ghazal Mohseni
- Department of Clinical Laboratory, The Second Hospital of Shandong University, 247 Beiyuan Street, 250033, Jinan, Shandong, China
| | - Xiaodong Hao
- Department of Clinical Laboratory, The Second Hospital of Shandong University, 247 Beiyuan Street, 250033, Jinan, Shandong, China
| | - Yidan Ren
- Department of Clinical Laboratory, The Second Hospital of Shandong University, 247 Beiyuan Street, 250033, Jinan, Shandong, China
| | - Yiwei Xu
- Marine College, Shandong University, 264209, Weihai, China
| | - Huiru Gao
- Department of Clinical Laboratory, The Second Hospital of Shandong University, 247 Beiyuan Street, 250033, Jinan, Shandong, China
| | - Qin Wang
- Department of Anesthesiology, Cheeloo College of Medicine, Qilu Hospital, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China.
| | - Yunshan Wang
- Department of Clinical Laboratory, The Second Hospital of Shandong University, 247 Beiyuan Street, 250033, Jinan, Shandong, China.
| |
Collapse
|
10
|
Mesenchymal stem cells: A living carrier for active tumor-targeted delivery. Adv Drug Deliv Rev 2022; 185:114300. [PMID: 35447165 DOI: 10.1016/j.addr.2022.114300] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 03/22/2022] [Accepted: 04/12/2022] [Indexed: 12/16/2022]
Abstract
The strategy of using mesenchymal stem cells (MSCs) as a living carrier for active delivery of therapeutic agents targeting tumor sites has been attempted in a wide range of studies to validate the feasibility and efficacy for tumor treatment. This approach reveals powerful tumor targeting and tumor penetration. In addition, MSCs have been confirmed to actively participate in immunomodulation of the tumor microenvironment. Thus, MSCs are not inert delivery vehicles but have a strong impact on the fate of tumor cells. In this review, these active properties of MSCs are addressed to highlight the advantages and challenges of using MSCs for tumor-targeted delivery. In addition, some of the latest examples of using MSCs to carry a variety of anti-tumor agents for tumor-targeted therapy are summarized. Recent technologies to improve the performance and safety of this delivery strategy will be introduced. The advances, applications, and challenges summarized in this review will provide a general understanding of this promising strategy for actively delivering drugs to tumor tissues.
Collapse
|
11
|
Zhang X, Li N, Zhu Y, Wen W. The role of mesenchymal stem cells in the occurrence, development, and therapy of hepatocellular carcinoma. Cancer Med 2022; 11:931-943. [PMID: 34981659 PMCID: PMC8855904 DOI: 10.1002/cam4.4521] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 12/03/2021] [Accepted: 12/11/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common type of liver malignant tumor, with high recurrence and mortality rates. Mesenchymal stem cells (MSCs) are multipotent cells that can be recruited into the tumor microenvironment (TME). What is known, TME plays a vital part in tumor progression. In recent years, accumulating studies have found that MSCs have a dual role of promotion and inhibition in the occurrence and development of HCC. In this review, we analyzed the role of MSCs in TME and summarized the relationship between MSCs and liver cancer stem cells, the molecular signaling pathway mechanisms of MSCs promoting and inhibiting HCC, and the latest research progress of MSCs in the treatment of HCC.
Collapse
Affiliation(s)
- Xiaoli Zhang
- Liver Disease Center of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Na Li
- Liver Disease Center of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Ying Zhu
- Liver Disease Center of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Wei Wen
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
12
|
Lu J, He X, Zhang L, Zhang R, Li W. Acetylation in Tumor Immune Evasion Regulation. Front Pharmacol 2021; 12:771588. [PMID: 34880761 PMCID: PMC8645962 DOI: 10.3389/fphar.2021.771588] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 11/05/2021] [Indexed: 12/24/2022] Open
Abstract
Acetylation is considered as one of the most common types of epigenetic modifications, and aberrant histone acetylation modifications are associated with the pathological process of cancer through the regulation of oncogenes and tumor suppressors. Recent studies have shown that immune system function and tumor immunity can also be affected by acetylation modifications. A comprehensive understanding of the role of acetylation function in cancer is essential, which may help to develop new therapies to improve the prognosis of cancer patients. In this review, we mainly discussed the functions of acetylase and deacetylase in tumor, immune system and tumor immunity, and listed the information of drugs targeting these enzymes in tumor immunotherapy.
Collapse
Affiliation(s)
- Jun Lu
- Hunan Normal University School of Medicine, Changsha, China.,Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha, China
| | - Xiang He
- Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha, China.,Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha, China
| | - Lijuan Zhang
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Ran Zhang
- Hunan Normal University School of Medicine, Changsha, China
| | - Wenzheng Li
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
13
|
Zhang T, Huang T, Su Y, Gao J. Mesenchymal Stem Cells‐Based Targeting Delivery System: Therapeutic Promises and Immunomodulation against Tumor. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202100030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Tianyuan Zhang
- Zhejiang Province Key Laboratory of Anti‐Cancer Drug Research College of Pharmaceutical Sciences Zhejiang University 866 Yuhangtang Rd Hangzhou 310058 China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine Zhejiang University 866 Yuhangtang Rd Hangzhou 310058 China
| | - Ting Huang
- Zhejiang Province Key Laboratory of Anti‐Cancer Drug Research College of Pharmaceutical Sciences Zhejiang University 866 Yuhangtang Rd Hangzhou 310058 China
| | - Yuanqin Su
- Zhejiang Province Key Laboratory of Anti‐Cancer Drug Research College of Pharmaceutical Sciences Zhejiang University 866 Yuhangtang Rd Hangzhou 310058 China
| | - Jianqing Gao
- Zhejiang Province Key Laboratory of Anti‐Cancer Drug Research College of Pharmaceutical Sciences Zhejiang University 866 Yuhangtang Rd Hangzhou 310058 China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine Zhejiang University 866 Yuhangtang Rd Hangzhou 310058 China
- Cancer Center of Zhejiang University 866 Yuhangtang Rd Hangzhou 310058 China
| |
Collapse
|
14
|
Wang X, Yang Y, Wang N, Wu X, Xu J, Zhou Y, Zhao X, He Z. Mesenchymal stem cell carriers enhance antitumor efficacy induced by oncolytic reovirus in acute myeloid leukemia. Int Immunopharmacol 2021; 94:107437. [PMID: 33571747 DOI: 10.1016/j.intimp.2021.107437] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/21/2021] [Accepted: 01/24/2021] [Indexed: 12/12/2022]
Abstract
Chemotherapy is the main treatment for acute myeloid leukemia (AML), but the therapeutic efficacy is modest, and most commonly manifests as relapse from remission. Thus, improving long-term AML survival is a crucial clinical challenge. In recent years, oncolytic virotherapy has provided an alternative approach for AML treatment. The use of oncolytic reoviruses has been explored in more than 30 clinical trials for safety and feasibility issues. However, like other oncolytic viruses, neutralizing antibodies (NAbs) reduce therapeutic efficacy. To tackle this problem, human umbilical cord mesenchymal stem cells (hUC-MSCs) were used to deliver reovirus using in vitro and in vivo models. Human UC-MSCs were successfully loaded with reovirus, without impairing biological function.We also observed in vitro protective effects of hUC-MSCs on reovirus in the presence of NAbs. In the immunocompromised AML mouse model, hUC-MSCs effectively carried reoviruses to tumor lesions and significantly prolonged the survival of AML xenografts in mice in the presence of a high titer anti-reovirus antibody (p = 0.001). However, reovirus-induced activation of AKT, stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK), and NF-κB signaling led to the maintenance of intrinsic migratory properties and secretion of pro-inflammatory cytokines from hUC-MSCs, particularly CXCL10. In immuno-competent AML mice, MSCs carrying reovirus triggered immune responses, and eventually inhibited tumor growth. Therefore, these results suggest that MSCs as carriers of oncolytic reoviruses can enhance the antitumor efficacy of virotherapy.
Collapse
Affiliation(s)
- Xianyao Wang
- Department of Immunology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, China; Center for Tissue Engineering and Stem Cell Research , Guizhou Medical University, Guiyang 550004, China; Key Laboratory of Adult Stem Cell Translational Research (Chinese Academy of Medical Sciences), Guiyang 550004, China
| | - Yichen Yang
- Center for Tissue Engineering and Stem Cell Research , Guizhou Medical University, Guiyang 550004, China
| | - Nianxue Wang
- Department of Immunology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, China; Center for Tissue Engineering and Stem Cell Research , Guizhou Medical University, Guiyang 550004, China
| | - Xijun Wu
- Center for Tissue Engineering and Stem Cell Research , Guizhou Medical University, Guiyang 550004, China; Key Laboratory of Adult Stem Cell Translational Research (Chinese Academy of Medical Sciences), Guiyang 550004, China
| | - Jianwei Xu
- Center for Tissue Engineering and Stem Cell Research , Guizhou Medical University, Guiyang 550004, China; Key Laboratory of Adult Stem Cell Translational Research (Chinese Academy of Medical Sciences), Guiyang 550004, China; Department of Pharmacology, Guizhou Medical University, Guiyang 550025, China
| | - Yanhua Zhou
- Center for Tissue Engineering and Stem Cell Research , Guizhou Medical University, Guiyang 550004, China; Key Laboratory of Adult Stem Cell Translational Research (Chinese Academy of Medical Sciences), Guiyang 550004, China
| | - Xing Zhao
- Department of Immunology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, China; Center for Tissue Engineering and Stem Cell Research , Guizhou Medical University, Guiyang 550004, China; Key Laboratory of Adult Stem Cell Translational Research (Chinese Academy of Medical Sciences), Guiyang 550004, China.
| | - Zhixu He
- Department of Immunology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, China; Key Laboratory of Adult Stem Cell Translational Research (Chinese Academy of Medical Sciences), Guiyang 550004, China; Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China.
| |
Collapse
|
15
|
Moloudizargari M, Govahi A, Fallah M, Rezvanfar MA, Asghari MH, Abdollahi M. The mechanisms of cellular crosstalk between mesenchymal stem cells and natural killer cells: Therapeutic implications. J Cell Physiol 2020; 236:2413-2429. [PMID: 32892356 DOI: 10.1002/jcp.30038] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/11/2020] [Accepted: 08/21/2020] [Indexed: 12/18/2022]
Abstract
Mesenchymal stem cells (MSCs) are mesenchymal precursors of various origins, with well-known immunomodulatory effects. Natural killer (NK) cells, the major cells of the innate immune system, are critical for the antitumor and antiviral defenses; however, in certain cases, they may be the main culprits in the pathogenesis of some NK-related conditions such as autoimmunities and hematological malignancies. On the other hand, these cells seem to be the major responders in beneficial phenomena like graft versus leukemia. Substantial data suggest that MSCs can variably affect NK cells and can be affected by these cells. Accordingly, acquiring a profound understanding of the crosstalk between MSCs and NK cells and the involved mechanisms seems to be a necessity to develop therapeutic approaches based on such interactions. Therefore, in this study, we made a thorough review of the existing literature on the interactions between MSCs and NK cells with a focus on the underlying mechanisms. The current knowledge herein suggests that MSCs possess a great potential to be used as tools for therapeutic targeting of NK cells in disease context and that preconditioning of MSCs, as well as their genetic manipulation before administration, may provide a wider variety of options in terms of eliciting more specific and desirable therapeutic outcomes. Nevertheless, our knowledge regarding the effects of MSCs on NK cells is still in its infancy, and further studies with well-defined conditions are warranted herein.
Collapse
Affiliation(s)
- Milad Moloudizargari
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Govahi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Marjan Fallah
- Department of Pharmacology and Toxicology, Medicinal Plant Research Centre, Faculty of Pharmacy, Islamic Azad University, Amol, Iran
| | - Mohammad A Rezvanfar
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, The Institute of Pharmaceutical Sciences (TIPS), and Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mohammad H Asghari
- Department of Pharmacology and Toxicology, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Mohammad Abdollahi
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, The Institute of Pharmaceutical Sciences (TIPS), and Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| |
Collapse
|