1
|
Lee K, Cha H, Kim J, Jang Y, Son Y, Joe CY, Kim J, Kim J, Lee SH, Lee S. Dissecting transcriptome signals of anti-PD-1 response in lung adenocarcinoma. Sci Rep 2024; 14:21096. [PMID: 39256604 PMCID: PMC11387489 DOI: 10.1038/s41598-024-72108-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 09/03/2024] [Indexed: 09/12/2024] Open
Abstract
Immune checkpoint blockades are actively adopted in diverse cancer types including metastatic melanoma and lung cancer. Despite of durable response in 20-30% of patients, we still lack molecular markers that could predict the patient responses reliably before treatment. Here we present a composite model for predicting anti-PD-1 response based on tumor mutation burden (TMB) and transcriptome sequencing data of 85 lung adenocarcinoma (LUAD) patients who received anti-PD-(L)1 treatment. We found that TMB was a good predictor (AUC = 0.81) for PD-L1 negative patients (n = 20). For PD-L1 positive patients (n = 65), we built an ensemble model of 100 XGBoost learning machines where gene expression, gene set activities and cell type composition were used as input features. The transcriptome-based models showed excellent accuracy (AUC > 0.9) and highlighted the contribution of T cell activities. Importantly, nonresponder patients with high prediction score turned out to have high CTLA4 expression, which suggested that neoadjuvant CTLA4 combination therapy might be effective for these patients. Our data and analysis results provide valuable insights into developing biomarkers and strategies for treating LUAD patients using immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Kyeongmi Lee
- Department of Bio-Information Science, Ewha Womans University, Seoul, 03760, South Korea
| | - Honghui Cha
- Department of Health Sciences and Technology, Samsung Advanced Institute of Health Science and Technology, Sungkyunkwan University, Seoul, 06351, South Korea
| | - Jaewon Kim
- Ewha Research Center for Systems Biology (ERCSB), Ewha Womans University, Seoul, 03760, South Korea
| | - Yeongjun Jang
- Ewha Research Center for Systems Biology (ERCSB), Ewha Womans University, Seoul, 03760, South Korea
| | - Yelin Son
- Ewha Research Center for Systems Biology (ERCSB), Ewha Womans University, Seoul, 03760, South Korea
| | - Cheol Yong Joe
- Department of Health Sciences and Technology, Samsung Advanced Institute of Health Science and Technology, Sungkyunkwan University, Seoul, 06351, South Korea
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, South Korea
| | - Jaesang Kim
- Department of Life Sciences, Ewha Womans University, Seoul, 03760, South Korea
- Ewha-JAX Cancer Immunotherapy Research Center, Ewha Womans University, Seoul, 03760, South Korea
| | - Jhingook Kim
- Department of Lung Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, South Korea
| | - Se-Hoon Lee
- Department of Health Sciences and Technology, Samsung Advanced Institute of Health Science and Technology, Sungkyunkwan University, Seoul, 06351, South Korea.
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, South Korea.
| | - Sanghyuk Lee
- Department of Bio-Information Science, Ewha Womans University, Seoul, 03760, South Korea.
- Ewha Research Center for Systems Biology (ERCSB), Ewha Womans University, Seoul, 03760, South Korea.
- Department of Life Sciences, Ewha Womans University, Seoul, 03760, South Korea.
| |
Collapse
|
2
|
Zhu S, Liu B, Fu G, Yang L, Wei D, Zhang L, Zhang Q, Gao Y, Sun D, Wei W. PKC-θ is an important driver of fluoride-induced immune imbalance of regulatory T cells/effector T cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 934:173081. [PMID: 38754514 DOI: 10.1016/j.scitotenv.2024.173081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/28/2024] [Accepted: 05/07/2024] [Indexed: 05/18/2024]
Abstract
Fluoride is unnecessary in the human body. Long-term fluoride exposure may lead to immune system abnormalities. However, the mechanism remains unclear. This study aim to explore the mechanism of fluoride interference in the immune system and also identify the key indicators of fluoride-induced immune damage. Questionnaires were used to collect basic information. Multiple linear analyses and other statistical methods were used in order to process the data. Flow cytometry was used to detect relevant immunomarkers and analyze immune damage. Simultaneously, Wistar rats and cell models exposed to fluoride were established to detect the effects of fluoride on immune homeostasis. The results showed that sex, residence time, smoking, and Corona Virus Disease 2019 (COVID-19) infection may indirectly influence fluoride-induced immune damage. In residents of fluoride-exposed areas, there was a significant decrease in CD3+ T lymphocytes and CD4+ and CD8+ cells and a downward trend in the CD4+/CD8+ cell ratio. CD4+CD8+/CD4+, regulatory T cells (Tregs), and Tregs/effector T cells (Teffs) ratios showed opposite changes. Fluoride inhibits T cell activation by inhibiting the expression and phosphorylation of Protein Kinase C-θ (PKC-θ), hinders the internalization of T cell receptors, and affects NF-kB and c-Jun protein expression, leading to homeostatic Treg/Teff imbalance in vivo and in vitro experiments. This study represents the first evidence suggesting that PKC-θ may be the key to immune imbalance in the body under fluoride exposure. It is possible that Tregs/Teffs cell ratio provide a reference point for the diagnosis and treatment of fluoride-induced immune damage.
Collapse
Affiliation(s)
- Siqi Zhu
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Bingshu Liu
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Guiyu Fu
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Liu Yang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Dan Wei
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Liwei Zhang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang 150081, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, Harbin 150081, China; Heilongjiang Provincial Key Lab of Trace Elements and Human Health Harbin Medical University, Harbin 150081, China
| | - Qiong Zhang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Yanhui Gao
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang 150081, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, Harbin 150081, China; Heilongjiang Provincial Key Lab of Trace Elements and Human Health Harbin Medical University, Harbin 150081, China.
| | - Dianjun Sun
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang 150081, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, Harbin 150081, China; Heilongjiang Provincial Key Lab of Trace Elements and Human Health Harbin Medical University, Harbin 150081, China.
| | - Wei Wei
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang 150081, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, Harbin 150081, China; Heilongjiang Provincial Key Lab of Trace Elements and Human Health Harbin Medical University, Harbin 150081, China.
| |
Collapse
|
3
|
Zhdanov DD, Gladilina YA, Blinova VG, Abramova AA, Shishparenok AN, Eliseeva DD. Induction of FoxP3 Pre-mRNA Alternative Splicing to Enhance the Suppressive Activity of Regulatory T Cells from Amyotrophic Lateral Sclerosis Patients. Biomedicines 2024; 12:1022. [PMID: 38790984 PMCID: PMC11117958 DOI: 10.3390/biomedicines12051022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/15/2024] [Accepted: 04/23/2024] [Indexed: 05/26/2024] Open
Abstract
Forkhead box protein 3 (FoxP3) is a key transcription factor responsible for the development, maturation, and function of regulatory T cells (Tregs). The FoxP3 pre-mRNA is subject to alternative splicing, resulting in the translation of multiple splice variants. We have shown that Tregs from patients with amyotrophic lateral sclerosis (ALS) have reduced expression of full-length (FL) FoxP3, while other truncated splice variants are expressed predominantly. A correlation was observed between the reduced number of Tregs in the peripheral blood of ALS patients, reduced total FoxP3 mRNA, and reduced mRNA of its FL splice variant. Induction of FL FoxP3 was achieved using splice-switching oligonucleotides capable of base pairing with FoxP3 pre-mRNA and selectively modulating the inclusion of exons 2 and 7 in the mature mRNA. Selective expression of FL FoxP3 resulted in the induction of CD127low, CD152, and Helios-positive cells, while the cell markers CD4 and CD25 were not altered. Such Tregs had an increased proliferative activity and a higher frequency of cell divisions per day. The increased suppressive activity of Tregs with the induced FL FoxP3 splice variant was associated with the increased synthesis of the pro-apoptotic granzymes A and B, and perforin, IL-10, and IL-35, which are responsible for contact-independent suppression, and with the increased ability to suppress telomerase in target cells. The upregulation of Treg suppressive and proliferative activity using splice-switching oligonucleotides to induce the predominant expression of the FoxP3 FL variant is a promising approach for regenerative cell therapy in Treg-associated diseases.
Collapse
Affiliation(s)
- Dmitry D. Zhdanov
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, Pogodinskaya St. 10/8, 119121 Moscow, Russia; (Y.A.G.); (V.G.B.); (A.A.A.); (A.N.S.)
- Department of Biochemistry, Peoples’ Friendship University of Russia named after Patrice Lumumba (RUDN University), Miklukho-Maklaya St. 6, 117198 Moscow, Russia
| | - Yulia A. Gladilina
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, Pogodinskaya St. 10/8, 119121 Moscow, Russia; (Y.A.G.); (V.G.B.); (A.A.A.); (A.N.S.)
| | - Varvara G. Blinova
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, Pogodinskaya St. 10/8, 119121 Moscow, Russia; (Y.A.G.); (V.G.B.); (A.A.A.); (A.N.S.)
| | - Anna A. Abramova
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, Pogodinskaya St. 10/8, 119121 Moscow, Russia; (Y.A.G.); (V.G.B.); (A.A.A.); (A.N.S.)
- Research Center of Neurology, Volokolamskoe Shosse, 80, 125367 Moscow, Russia;
| | - Anastasia N. Shishparenok
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, Pogodinskaya St. 10/8, 119121 Moscow, Russia; (Y.A.G.); (V.G.B.); (A.A.A.); (A.N.S.)
| | - Daria D. Eliseeva
- Research Center of Neurology, Volokolamskoe Shosse, 80, 125367 Moscow, Russia;
| |
Collapse
|
4
|
Koch KC, Jadon N, Thesmar I, Tew GN, Minter LM. Combating bone marrow failure with polymer materials. Front Immunol 2024; 15:1396486. [PMID: 38694497 PMCID: PMC11061490 DOI: 10.3389/fimmu.2024.1396486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/03/2024] [Indexed: 05/04/2024] Open
Abstract
Bone marrow failure (BMF) has become one of the most studied autoimmune disorders, particularly due to its prevalence both as an inherited disease, but also as a result of chemotherapies. BMF is associated with severe symptoms such as bleeding episodes and susceptibility to infections, and often has underlying characteristics, such as anemia, thrombocytopenia, and neutropenia. The current treatment landscape for BMF requires stem cell transplantation or chemotherapies to induce immune suppression. However, there is limited donor cell availability or dose related toxicity associated with these treatments. Optimizing these treatments has become a necessity. Polymer-based materials have become increasingly popular, as current research efforts are focused on synthesizing novel cell matrices for stem cell expansion to solve limited donor cell availability, as well as applying polymer delivery vehicles to intracellularly deliver cargo that can aid in immunosuppression. Here, we discuss the importance and impact of polymer materials to enhance therapeutics in the context of BMF.
Collapse
Affiliation(s)
- Kayla C. Koch
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, MA, United States
| | - Nidhi Jadon
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA, United States
| | - Iris Thesmar
- University of Massachusetts Amherst, Amherst, MA, United States
| | - Gregory N. Tew
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, MA, United States
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA, United States
- University of Massachusetts Amherst, Amherst, MA, United States
| | - Lisa M. Minter
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA, United States
- University of Massachusetts Amherst, Amherst, MA, United States
| |
Collapse
|
5
|
Jadon N, Shanthalingam S, Tew GN, Minter LM. PRMT5 regulates epigenetic changes in suppressive Th1-like iTregs in response to IL-12 treatment. Front Immunol 2024; 14:1292049. [PMID: 38259494 PMCID: PMC10800960 DOI: 10.3389/fimmu.2023.1292049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 12/13/2023] [Indexed: 01/24/2024] Open
Abstract
Background Induced regulatory T cells (iTregs) are a heterogeneous population of immunosuppressive T cells with therapeutic potential. Treg cells show a range of plasticity and can acquire T effector-like capacities, as is the case for T helper 1 (Th1)-like iTregs. Thus, it is important to distinguish between functional plasticity and lineage instability. Aplastic anemia (AA) is an autoimmune disorder characterized by immune-mediated destruction of hematopoietic stem and progenitor cells in the bone marrow (BM). Th1-like 1 iTregs can be potent suppressors of aberrant Th1-mediated immune responses such as those that drive AA disease progression. Here we investigated the function of the epigenetic enzyme, protein arginine methyltransferase 5 (PRMT5), its regulation of the iTreg-destabilizing deacetylase, sirtuin 1 (Sirt1) in suppressive Th1-like iTregs, and the potential for administering Th1-like iTregs as a cell-based therapy for AA. Methods We generated Th1-like iTregs by culturing iTregs with IL-12, then assessed their suppressive capacity, expression of iTreg suppression markers, and enzymatic activity of PRMT5 using histone symmetric arginine di-methylation (H3R2me2s) as a read out. We used ChIP sequencing on Th1 cells, iTregs, and Th1-like iTregs to identify H3R2me2s-bound genes unique to Th1-like iTregs, then validated targets using CHiP-qPCR. We knocked down PRMT5 to validate its contribution to Th1-like iTreg lineage commitment. Finally we tested the therapeutic potential of Th1-like iTregs using a Th1-mediated mouse model of AA. Results Exposing iTregs to the Th1 cytokine, interleukin-12 (IL-12), during early events of differentiation conveyed increased suppressive function. We observed increased PRMT5 enzymatic activity, as measured by H3R2me2s, in Th1-like iTregs, which was downregulated in iTregs. Using ChIP-sequencing we discovered that H3R2me2s is abundantly bound to the Sirt1 promoter region in Th1-like iTregs to negatively regulate its expression. Furthermore, administering Th1-like iTregs to AA mice provided a survival benefit. Conclusions Knocking down PRMT5 in Th1-like iTregs concomitantly reduced their suppressive capacity, supporting the notion that PRMT5 is important for the superior suppressive capacity and stability of Th1-like iTregs. Conclusively, therapeutic administration of Th1-like iTregs in a mouse model of AA significantly extended their survival and they may have therapeutic potential.
Collapse
Affiliation(s)
- Nidhi Jadon
- Graduate Program in Animal Biotechnology and Biomedical Sciences, Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA, United States
| | - Sudarvili Shanthalingam
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA, United States
| | - Gregory N. Tew
- Department of Polymer Science & Engineering, University of Massachusetts Amherst, Amherst, MA, United States
| | - Lisa M. Minter
- Graduate Program in Animal Biotechnology and Biomedical Sciences, Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA, United States
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA, United States
| |
Collapse
|
6
|
Koch KC, Bizmark TM, Tew GN. Alcohol-containing protein transduction domain mimics. J Control Release 2024; 365:950-956. [PMID: 38065415 DOI: 10.1016/j.jconrel.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/27/2023] [Accepted: 12/02/2023] [Indexed: 12/22/2023]
Abstract
The application and design of protein transduction domains (PTDs) and protein transduction domain mimics (PTDMs) have revolutionized the field of biomacromolecule delivery. Our group has previously synthesized block copolymer PTDMs with well-defined hydrophobic and cationic blocks via ring-opening metathesis polymerization (ROMP). We have optimized the balance of hydrophobicity and cationic density to intracellularly deliver model proteins, active proteins, and antibodies. Despite the presence of serine, threonine, and tyrosine in naturally occurring PTDs, synthetic analogs have yet to be studied in PTDMs. In our present work, we introduce different alcohol groups to our PTDM structures as a new design parameter. A library of nine novel PTDMs were synthesized to incorporate alcohol groups of varying structures and evaluated based on their ability to intracellularly deliver fluorescently labeled antibodies. One PTDM in this novel library, named PTDM4, incorporates alcohol groups in both the hydrophobic and cationic blocks and was found to be the best performing PTDM with almost twice the median fluorescence intensity of the delivered antibody and half the cationic density compared to our positive control, a PTDM thoroughly studied by our group. PTDM4 was further studied by intracellularly delivering the active enzyme, TAT-Cre Recombinase. The activity of TAT-Cre Recombinase delivered by PTDM4 was comparable to that of the positive control, again with half the cationic density. This study is one of the first to examine the effects of alcohol groups on intracellular antibody and active enzyme delivery.
Collapse
Affiliation(s)
- Kayla C Koch
- Department of Polymer Science & Engineering, University of Massachusetts, Amherst, MA 01003, United States
| | - Tamara M Bizmark
- Department of Chemistry, Johannes Gutenberg University, Mainz, Germany
| | - Gregory N Tew
- Department of Polymer Science & Engineering, University of Massachusetts, Amherst, MA 01003, United States; Molecular & Cellular Biology Program, University of Massachusetts, Amherst, MA 01003, United States; Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, MA 01003, United States.
| |
Collapse
|
7
|
Christofi P, Pantazi C, Psatha N, Sakellari I, Yannaki E, Papadopoulou A. Promises and Pitfalls of Next-Generation Treg Adoptive Immunotherapy. Cancers (Basel) 2023; 15:5877. [PMID: 38136421 PMCID: PMC10742252 DOI: 10.3390/cancers15245877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Regulatory T cells (Tregs) are fundamental to maintaining immune homeostasis by inhibiting immune responses to self-antigens and preventing the excessive activation of the immune system. Their functions extend beyond immune surveillance and subpopulations of tissue-resident Treg cells can also facilitate tissue repair and homeostasis. The unique ability to regulate aberrant immune responses has generated the concept of harnessing Tregs as a new cellular immunotherapy approach for reshaping undesired immune reactions in autoimmune diseases and allo-responses in transplantation to ultimately re-establish tolerance. However, a number of issues limit the broad clinical applicability of Treg adoptive immunotherapy, including the lack of antigen specificity, heterogeneity within the Treg population, poor persistence, functional Treg impairment in disease states, and in vivo plasticity that results in the loss of suppressive function. Although the early-phase clinical trials of Treg cell therapy have shown the feasibility and tolerability of the approach in several conditions, its efficacy has remained questionable. Leveraging the smart tools and platforms that have been successfully developed for primary T cell engineering in cancer, the field has now shifted towards "next-generation" adoptive Treg immunotherapy, where genetically modified Treg products with improved characteristics are being generated, as regards antigen specificity, function, persistence, and immunogenicity. Here, we review the state of the art on Treg adoptive immunotherapy and progress beyond it, while critically evaluating the hurdles and opportunities towards the materialization of Tregs as a living drug therapy for various inflammation states and the broad clinical translation of Treg therapeutics.
Collapse
Affiliation(s)
- Panayiota Christofi
- Gene and Cell Therapy Center, Hematopoietic Cell Transplantation Unit, Hematology Department, George Papanikolaou Hospital, 57010 Thessaloniki, Greece; (P.C.); (C.P.); (I.S.); (E.Y.)
- University General Hospital of Patras, 26504 Rio, Greece
| | - Chrysoula Pantazi
- Gene and Cell Therapy Center, Hematopoietic Cell Transplantation Unit, Hematology Department, George Papanikolaou Hospital, 57010 Thessaloniki, Greece; (P.C.); (C.P.); (I.S.); (E.Y.)
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
- Institute of Applied Biosciences (INAB), Centre for Research and Technology Hellas (CERTH), 57001 Thessaloniki, Greece
| | - Nikoleta Psatha
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Ioanna Sakellari
- Gene and Cell Therapy Center, Hematopoietic Cell Transplantation Unit, Hematology Department, George Papanikolaou Hospital, 57010 Thessaloniki, Greece; (P.C.); (C.P.); (I.S.); (E.Y.)
| | - Evangelia Yannaki
- Gene and Cell Therapy Center, Hematopoietic Cell Transplantation Unit, Hematology Department, George Papanikolaou Hospital, 57010 Thessaloniki, Greece; (P.C.); (C.P.); (I.S.); (E.Y.)
- Department of Medicine, University of Washington, Seattle, WA 98195-7710, USA
| | - Anastasia Papadopoulou
- Gene and Cell Therapy Center, Hematopoietic Cell Transplantation Unit, Hematology Department, George Papanikolaou Hospital, 57010 Thessaloniki, Greece; (P.C.); (C.P.); (I.S.); (E.Y.)
| |
Collapse
|
8
|
Muhammad S, Fan T, Hai Y, Gao Y, He J. Reigniting hope in cancer treatment: the promise and pitfalls of IL-2 and IL-2R targeting strategies. Mol Cancer 2023; 22:121. [PMID: 37516849 PMCID: PMC10385932 DOI: 10.1186/s12943-023-01826-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/18/2023] [Indexed: 07/31/2023] Open
Abstract
Interleukin-2 (IL-2) and its receptor (IL-2R) are essential in orchestrating immune responses. Their function and expression in the tumor microenvironment make them attractive targets for immunotherapy, leading to the development of IL-2/IL-2R-targeted therapeutic strategies. However, the dynamic interplay between IL-2/IL-2R and various immune cells and their dual roles in promoting immune activation and tolerance presents a complex landscape for clinical exploitation. This review discusses the pivotal roles of IL-2 and IL-2R in tumorigenesis, shedding light on their potential as diagnostic and prognostic markers and their therapeutic manipulation in cancer. It underlines the necessity to balance the anti-tumor activity with regulatory T-cell expansion and evaluates strategies such as dose optimization and selective targeting for enhanced therapeutic effectiveness. The article explores recent advancements in the field, including developing genetically engineered IL-2 variants, combining IL-2/IL-2R-targeted therapies with other cancer treatments, and the potential benefits of a multidimensional approach integrating molecular profiling, immunological analyses, and clinical data. The review concludes that a deeper understanding of IL-2/IL-2R interactions within the tumor microenvironment is crucial for realizing the full potential of IL-2-based therapies, heralding the promise of improved outcomes for cancer patients.
Collapse
Affiliation(s)
- Shan Muhammad
- Department of Thoracic Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Laboratory of Translational Medicine, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Department of Colorectal Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
- Department of Colorectal Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Tao Fan
- Department of Thoracic Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Laboratory of Translational Medicine, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yang Hai
- Department of Children's and Adolescent Health, Public Health College of Harbin Medical University, 157 Baojian Road, Harbin, 150081, China
| | - Yibo Gao
- Department of Thoracic Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- Laboratory of Translational Medicine, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- Central Laboratory & Shenzhen Key Laboratory of Epigenetics and Precision Medicine for Cancers, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China.
| | - Jie He
- Department of Thoracic Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- Laboratory of Translational Medicine, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- Central Laboratory & Shenzhen Key Laboratory of Epigenetics and Precision Medicine for Cancers, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China.
| |
Collapse
|
9
|
Aquino A, Bianchi N, Terrazzan A, Franzese O. Protein Kinase C at the Crossroad of Mutations, Cancer, Targeted Therapy and Immune Response. BIOLOGY 2023; 12:1047. [PMID: 37626933 PMCID: PMC10451643 DOI: 10.3390/biology12081047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/18/2023] [Accepted: 07/21/2023] [Indexed: 08/27/2023]
Abstract
The frequent PKC dysregulations observed in many tumors have made these enzymes natural targets for anticancer applications. Nevertheless, this considerable interest in the development of PKC modulators has not led to the expected therapeutic benefits, likely due to the complex biological activities regulated by PKC isoenzymes, often playing ambiguous and protective functions, further driven by the occurrence of mutations. The structure, regulation and functions of PKCs have been extensively covered in other publications. Herein, we focused on PKC alterations mostly associated with complete functional loss. We also addressed the modest yet encouraging results obtained targeting PKC in selected malignancies and the more frequent negative clinical outcomes. The reported observations advocate the need for more selective molecules and a better understanding of the involved pathways. Furthermore, we underlined the most relevant immune mechanisms controlled by PKC isoforms potentially impacting the immune checkpoint inhibitor blockade-mediated immune recovery. We believe that a comprehensive examination of the molecular features of the tumor microenvironment might improve clinical outcomes by tailoring PKC modulation. This approach can be further supported by the identification of potential response biomarkers, which may indicate patients who may benefit from the manipulation of distinctive PKC isoforms.
Collapse
Affiliation(s)
- Angelo Aquino
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy;
| | - Nicoletta Bianchi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (N.B.); (A.T.)
| | - Anna Terrazzan
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (N.B.); (A.T.)
- Laboratory for Advanced Therapy Technologies (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Ornella Franzese
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy;
| |
Collapse
|
10
|
Morin SM, Gregory KJ, Medeiros B, Terefe T, Hoshyar R, Alhusseiny A, Chen S, Schwartz RC, Jerry DJ, Vandenberg LN, Schneider SS. Benzophenone-3 exposure alters composition of tumor infiltrating immune cells and increases lung seeding of 4T1 breast cancer cells. ADVANCES IN CANCER BIOLOGY - METASTASIS 2023; 7:100080. [PMID: 37593105 PMCID: PMC10434833 DOI: 10.1016/j.adcanc.2022.100080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Environmental chemicals are a persistent and pervasive part of everyday life. A subset of environmental chemicals are xenoestrogens, compounds that bind to the estrogen receptor (ER) and drive estrogen-related processes. One such chemical, benzophenone-3 (BP3), is a common chemical in sunscreen. It is a potent UV protectant but also is quickly absorbed through the skin. While it has been approved by the FDA, there is a renewed interest in the safety of BP3, particularly in relation to breast cancer. The focus of this study was to examine the impact that BP3 has on triple negative breast cancer (TNBC) through alterations to cells in the immune microenvironment. In this study, we exposed female mice to one of two doses of BP3 before injecting them with a TNBC cell line. Several immune endpoints were examined both in the primary tissues and from in vitro studies of T cell behavior. Our studies revealed that in the lung tumor microenvironment, exposure to BP3 not only increased the number of metastases, but also the total area of tumor coverage. We also found that BP3 caused alterations in immune populations in a tissue-dependent manner, particularly in T cells. Taken together, our data suggest that while BP3 may not directly affect the proliferation of TNBC, growth and metastasis of TNBC-derived tumors can be altered by BP3 exposures via the alterations in the immune populations of the tumor microenvironment.
Collapse
Affiliation(s)
- Stephanie M. Morin
- Pioneer Valley Life Sciences Institute, Springfield, MA, 01199, USA
- Dept of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, 01003, USA
| | - Kelly J. Gregory
- Pioneer Valley Life Sciences Institute, Springfield, MA, 01199, USA
| | - Brenda Medeiros
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, Amherst, 01003, USA
| | - Tigist Terefe
- Pioneer Valley Life Sciences Institute, Springfield, MA, 01199, USA
| | - Reyhane Hoshyar
- Breast Cancer and the Environment Research Program, Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - Ahmed Alhusseiny
- University of Massachusetts Chan Medical School-Baystate, Department of Pathology, Springfield, MA, 01199, USA
| | - Shiuan Chen
- Department of Cancer Biology and Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Richard C. Schwartz
- Breast Cancer and the Environment Research Program, Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - D. Joseph Jerry
- Dept of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, 01003, USA
| | - Laura N. Vandenberg
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, Amherst, 01003, USA
| | - Sallie S. Schneider
- Pioneer Valley Life Sciences Institute, Springfield, MA, 01199, USA
- Dept of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, 01003, USA
- University of Massachusetts Chan Medical School-Baystate, Department of Surgery, Springfield, MA, 01199, USA
| |
Collapse
|
11
|
McCallion O, Bilici M, Hester J, Issa F. Regulatory T-cell therapy approaches. Clin Exp Immunol 2023; 211:96-107. [PMID: 35960852 PMCID: PMC10019137 DOI: 10.1093/cei/uxac078] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 07/26/2022] [Accepted: 08/10/2022] [Indexed: 11/13/2022] Open
Abstract
Regulatory T cells (Tregs) have enormous therapeutic potential to treat a variety of immunopathologies characterized by aberrant immune activation. Adoptive transfer of ex vivo expanded autologous Tregs continues to progress through mid- to late-phase clinical trials in several disease spaces and has generated promising preliminary safety and efficacy signals to date. However, the practicalities of this strategy outside of the clinical trial setting remain challenging. Here, we review the current landscape of regulatory T-cell therapy, considering emergent approaches and technologies presenting novel ways to engage Tregs, and reflect on the progress necessary to deliver their therapeutic potential to patients.
Collapse
Affiliation(s)
- Oliver McCallion
- Translational Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Merve Bilici
- Translational Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Joanna Hester
- Translational Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Fadi Issa
- Correspondence. Fadi Issa, Translational Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK.
| |
Collapse
|
12
|
Koch KC, Tew GN. Functional antibody delivery: Advances in cellular manipulation. Adv Drug Deliv Rev 2023; 192:114586. [PMID: 36280179 DOI: 10.1016/j.addr.2022.114586] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/10/2022] [Accepted: 10/18/2022] [Indexed: 02/03/2023]
Abstract
The current therapeutic antibody market in the U.S. consists of 100 antibody-based products and their market value is expected to explode beyond $300 billion by 2025. These therapies are presently limited to extracellular targets due to the innate inability of antibodies to transverse membranes. To expand the number of accessible therapeutic targets, intracellular antibody delivery is necessary. Many delivery vehicles for antibodies have been used with some promising results, such as nanoparticles and cell penetrating polymers. Despite the success of these delivery platforms using model antibody cargo, there is a surprisingly small number of studies that focus on functional antibody delivery into the cytosol that also measures a cellular response. Antibodies can be designed for essentially unlimited targets, including proteins and DNA, that will ultimately control cell function once delivered inside cells. Advancement in cellular manipulation depends on the application of intracellularly delivering functional antibodies to achieve a desired result. This review focuses on the emerging field of functional antibody delivery which enables various cellular responses and cell manipulation.
Collapse
Affiliation(s)
- Kayla C Koch
- Department of Polymer Science & Engineering, University of Massachusetts, Amherst, MA 01003, United States
| | - Gregory N Tew
- Department of Polymer Science & Engineering, University of Massachusetts, Amherst, MA 01003, United States; Molecular & Cellular Biology Program, University of Massachusetts, Amherst, MA 01003, United States; Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, MA 01003, United States.
| |
Collapse
|
13
|
Davis HC, Pan X, Kirsch ZJ, Vachet RW, Tew GN. Covalent Labeling-Mass Spectrometry Provides a Molecular Understanding of Noncovalent Polymer-Protein Complexation. ACS Biomater Sci Eng 2022; 8:2489-2499. [PMID: 35608244 PMCID: PMC9205173 DOI: 10.1021/acsbiomaterials.2c00125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The delivery of functional proteins to the intracellular space offers tremendous advantages for the development of new therapeutics but is limited by the passage of these large polar biomacromolecules through the cell membrane. Noncovalent polymer-protein binding that is driven by strong carrier-cargo interactions, including electrostatics and hydrophobicity, has previously been explored in the context of delivery of functional proteins. Appropriately designed polymer-based carriers can take advantage of the heterogeneous surface of protein cargoes, where multiple types of physical binding interactions with polymers can occur. Traditional methods of assessing polymer-protein binding, including dynamic light scattering, circular dichroism spectroscopy, and fluorescence-based assays, are useful in the study of new polymer-based carriers but face a number of limitations. We implement for the first time the method of covalent labeling-mass spectrometry (CL-MS) to probe intermolecular surface interactions within noncovalent polymer-protein complexes. We demonstrate the utility of CL-MS for establishing binding of an amphiphilic block copolymer to negatively charged and hydrophobic surface patches of a model protein, superfolder green fluorescent protein (sfGFP), using diethylpyrocarbonate as a pseudo-specific labeling reagent. In addition, we utilize this method to explore differences at the intermolecular surface as the ratio of polymer to protein increases, particularly in the context of defining effective protein delivery regimes. By promoting an understanding of the intermolecular interactions in polymer-protein binding and identifying sites where polymers bind to protein surfaces, noncovalent polymer carriers can be more effectively designed for protein delivery applications.
Collapse
Affiliation(s)
- Hazel C Davis
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Xiao Pan
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Zachary J Kirsch
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Richard W Vachet
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Gregory N Tew
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| |
Collapse
|
14
|
Zorko M, Jones S, Langel Ü. Cell-penetrating peptides in protein mimicry and cancer therapeutics. Adv Drug Deliv Rev 2022; 180:114044. [PMID: 34774552 DOI: 10.1016/j.addr.2021.114044] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 10/29/2021] [Accepted: 11/04/2021] [Indexed: 12/14/2022]
Abstract
Extensive research has been undertaken in the pursuit of anticancer therapeutics. Many anticancer drugs require specificity of delivery to cancer cells, whilst sparing healthy tissue. Cell-penetrating peptides (CPPs), now well established as facilitators of intracellular delivery, have in recent years advanced to incorporate target specificity and thus possess great potential for the targeted delivery of anticancer cargoes. Though none have yet been approved for clinical use, this novel technology has already entered clinical trials. In this review we present CPPs, discuss their classification, mechanisms of cargo internalization and highlight strategies for conjugation to anticancer moieties including their incorporation into therapeutic proteins. As the mainstay of this review, strategies to build specificity into tumor targeting CPP constructs through exploitation of the tumor microenvironment and the use of tumor homing peptides are discussed, whilst acknowledging the extensive contribution made by CPP constructs to target specific protein-protein interactions integral to intracellular signaling pathways associated with tumor cell survival and progression. Finally, antibody/antigen CPP conjugates and their potential roles in cancer immunotherapy and diagnostics are considered. In summary, this review aims to harness the potential of CPP-aided drug delivery for future cancer therapies and diagnostics whilst highlighting some of the most recent achievements in selective delivery of anticancer drugs, including cytostatic drugs, to a range of tumor cells both in vitro and in vivo.
Collapse
Affiliation(s)
- Matjaž Zorko
- University of Ljubljana, Medical Faculty, Institute of Biochemistry and Molecular Genetics, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Sarah Jones
- University of Wolverhampton, School of Pharmacy, Faculty of Science & Engineering, Wulfruna Street, Wolverhampton WV1 1LY, UK.
| | - Ülo Langel
- University of Stockholm, Department of Biochemistry and Biophysics, Svante Arrhenius väg 16, 106 91 Stockholm, Sweden; Institute of Technology, University of Tartu, Nooruse 1, Tartu, Estonia 50411, Estonia.
| |
Collapse
|
15
|
Hango CR, Davis HC, Uddin EA, Minter LM, Tew GN. Increased block copolymer length improves intracellular availability of protein cargo. Polym Chem 2022. [DOI: 10.1039/d2py00017b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Amphiphilic protein transduction domain mimics (PTDMs) of various lengths were used for protein delivery in Jurkat T cells. Although longer PTDMs facilitated greater cargo internalization, shorter PTDMs yielded greater cargo activity.
Collapse
Affiliation(s)
- Christopher R. Hango
- Department of Polymer Science & Engineering, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, USA
| | - Hazel C. Davis
- Department of Polymer Science & Engineering, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, USA
| | - Esha A. Uddin
- Department of Polymer Science & Engineering, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, USA
| | - Lisa M. Minter
- Molecular and Cellular Biology Program, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, USA
- Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, USA
| | - Gregory N. Tew
- Department of Polymer Science & Engineering, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, USA
- Molecular and Cellular Biology Program, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, USA
- Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, USA
| |
Collapse
|
16
|
Davis HC, Posey ND, Tew GN. Protein Binding and Release by Polymeric Cell-Penetrating Peptide Mimics. Biomacromolecules 2021; 23:57-66. [PMID: 34879198 DOI: 10.1021/acs.biomac.1c00929] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
There is significant potential in exploiting antibody specificity to develop new therapeutic treatments. However, intracellular protein delivery is a paramount challenge because of the difficulty in transporting large, polar molecules across cell membranes. Cell-penetrating peptide mimics (CPPMs) are synthetic polymers that are versatile materials for intracellular delivery of biological molecules, including nucleic acids and proteins, with superior performance compared to their natural counterparts and commercially available peptide-based reagents. Studies have demonstrated that noncovalent complexation with these synthetic carriers is necessary for the delivery of proteins, but the fundamental interactions dominating CPPM-protein complexation are not well understood. Beyond these interactions, the mechanism of release for many noncovalent carriers is not well established. Herein, interactions expected to be critical in CPPM-protein binding and unbinding were explored, including hydrogen bonding, electrostatics, and hydrophobic interactions. Despite the guanidinium-rich functionality of these polymeric carriers, hydrogen bonding was shown not to be a dominant interaction in CPPM-protein binding. Fluorescence quenching assays were used to decouple the effect of electrostatic and hydrophobic interactions between amphiphilic CPPMs and proteins. Furthermore, by conducting competition assays with other proteins, unbinding of protein cargoes from CPPM-protein complexes was demonstrated and provided insight into mechanisms of protein release. This work offers understanding toward the role of carrier and cargo binding and unbinding in intracellular outcomes. In turn, an improved fundamental understanding of noncovalent polymer-protein complexation will enable more effective methods for intracellular protein delivery.
Collapse
Affiliation(s)
- Hazel C Davis
- Department of Polymer Science & Engineering, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Nicholas D Posey
- Department of Polymer Science & Engineering, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Gregory N Tew
- Department of Polymer Science & Engineering, University of Massachusetts, Amherst, Massachusetts 01003, United States.,Molecular and Cellular Biology Program, University of Massachusetts, Amherst, Massachusetts 01003, United States.,Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
17
|
Ozay EI, Shanthalingam S, Torres JA, Osborne BA, Tew GN, Minter LM. Protein Kinase C Theta Modulates PCMT1 through hnRNPL to Regulate FOXP3 Stability in Regulatory T Cells. Mol Ther 2020; 28:2220-2236. [PMID: 32592691 DOI: 10.1016/j.ymthe.2020.06.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/21/2020] [Accepted: 06/10/2020] [Indexed: 10/24/2022] Open
Abstract
T cell receptor signaling, together with cytokine-induced signals, can differentially regulate RNA processing to influence T helper versus regulatory T cell fate. Protein kinase C family members have been shown to function in alternative splicing and RNA processing in various cell types. T cell-specific protein kinase C theta, a molecular regulator of T cell receptor downstream signaling, has been shown to phosphorylate splicing factors and affect post-transcriptional control of T cell gene expression. In this study, we explored how using a synthetic cell-penetrating peptide mimic for intracellular anti-protein kinase C theta delivery fine-tunes differentiation of induced regulatory T cells through its differential effects on RNA processing. We identified protein kinase C theta signaling as a critical modulator of two key RNA regulatory factors, heterogeneous nuclear ribonucleoprotein L (hnRNPL) and protein-l-isoaspartate O-methyltransferase-1 (PCMT1), and loss of protein kinase C theta function initiated a "switch" in post-transcriptional organization in induced regulatory T cells. More interestingly, we discovered that protein-l-isoaspartate O- methyltransferase-1 acts as an instability factor in induced regulatory T cells, by methylating the forkhead box P3 (FOXP3) promoter. Targeting protein-l-isoaspartate O-methyltransferase-1 using a cell-penetrating antibody revealed an efficient means of modulating RNA processing to confer a stable regulatory T cell phenotype.
Collapse
Affiliation(s)
- E Ilker Ozay
- Graduate Program in Molecular and Cellular Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Sudarvili Shanthalingam
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Joe A Torres
- Graduate Program in Molecular and Cellular Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Barbara A Osborne
- Graduate Program in Molecular and Cellular Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA; Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Gregory N Tew
- Graduate Program in Molecular and Cellular Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA; Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA 01003, USA; Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Lisa M Minter
- Graduate Program in Molecular and Cellular Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA; Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA 01003, USA.
| |
Collapse
|