1
|
Brown BA, Myers PJ, Adair SJ, Pitarresi JR, Sah-Teli SK, Campbell LA, Hart WS, Barbeau MC, Leong K, Seyler N, Kane W, Lee KE, Stelow E, Jones M, Simon MC, Koivunen P, Bauer TW, Stanger BZ, Lazzara MJ. A Histone Methylation-MAPK Signaling Axis Drives Durable Epithelial-Mesenchymal Transition in Hypoxic Pancreatic Cancer. Cancer Res 2024; 84:1764-1780. [PMID: 38471099 DOI: 10.1158/0008-5472.can-22-2945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/10/2023] [Accepted: 03/01/2024] [Indexed: 03/14/2024]
Abstract
The tumor microenvironment in pancreatic ductal adenocarcinoma (PDAC) plays a key role in tumor progression and response to therapy. The dense PDAC stroma causes hypovascularity, which leads to hypoxia. Here, we showed that hypoxia drives long-lasting epithelial-mesenchymal transition (EMT) in PDAC primarily through a positive-feedback histone methylation-MAPK signaling axis. Transformed cells preferentially underwent EMT in hypoxic tumor regions in multiple model systems. Hypoxia drove a cell autonomous EMT in PDAC cells, which, unlike EMT in response to growth factors, could last for weeks. Furthermore, hypoxia reduced histone demethylase KDM2A activity, suppressed PP2 family phosphatase expression, and activated MAPKs to post-translationally stabilize histone methyltransferase NSD2, leading to an H3K36me2-dependent EMT in which hypoxia-inducible factors played only a supporting role. Hypoxia-driven EMT could be antagonized in vivo by combinations of MAPK inhibitors. Collectively, these results suggest that hypoxia promotes durable EMT in PDAC by inducing a histone methylation-MAPK axis that can be effectively targeted with multidrug therapies, providing a potential strategy for overcoming chemoresistance. SIGNIFICANCE Integrated regulation of histone methylation and MAPK signaling by the low-oxygen environment of pancreatic cancer drives long-lasting EMT that promotes chemoresistance and shortens patient survival and that can be pharmacologically inhibited. See related commentary by Wirth and Schneider, p. 1739.
Collapse
Affiliation(s)
- Brooke A Brown
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia
| | - Paul J Myers
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia
| | - Sara J Adair
- Department of Surgery, University of Virginia, Charlottesville, Virginia
| | - Jason R Pitarresi
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Shiv K Sah-Teli
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Logan A Campbell
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia
| | - William S Hart
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia
| | | | - Kelsey Leong
- Engineering Science, University of Virginia, Charlottesville, Virginia
| | - Nicholas Seyler
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia
| | - William Kane
- Department of Surgery, University of Virginia, Charlottesville, Virginia
| | - Kyoung Eun Lee
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan
| | - Edward Stelow
- Department of Pathology, University of Virginia, Charlottesville, Virginia
| | - Marieke Jones
- Claude Moore Health Sciences Library, University of Virginia, Charlottesville, Virginia
| | - M Celeste Simon
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Peppi Koivunen
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Todd W Bauer
- Department of Surgery, University of Virginia, Charlottesville, Virginia
| | - Ben Z Stanger
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Matthew J Lazzara
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
2
|
Epiregulin increases stemness-associated genes expression and promotes chemoresistance of non-small cell lung cancer via ERK signaling. Stem Cell Res Ther 2022; 13:197. [PMID: 35551652 PMCID: PMC9102725 DOI: 10.1186/s13287-022-02859-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 04/19/2022] [Indexed: 11/16/2022] Open
Abstract
Background Chemoresistance often causes the failure of treatment and death of patients with advanced non-small-cell lung cancer. However, there is still no resistance genes signature and available enriched signaling derived from a comprehensive RNA-Seq data analysis of lung cancer patients that could act as a therapeutic target to re-sensitize the acquired resistant cancer cells to chemo-drugs. Hence, in this study, we aimed to identify the resistance signature for clinical lung cancer patients and explore the regulatory mechanism.
Method Analysis of RNA-Seq data from clinical lung cancer patients was conducted in R studio to identify the resistance signature. The resistance signature was validated by survival time of lung cancer patients and qPCR in chemo-resistant cells. Cytokine application, small-interfering RNA and pharmacological inhibition approaches were applied to characterize the function and molecular mechanism of EREG and downstream signaling in chemoresistance regulation via stemness. Results The RTK and vitamin D signaling were enriched among resistance genes, where 6 genes were validated as resistance signature and associated with poor survival in patients. EREG/ERK signaling was activated by chemo-drugs in NSCLC cells. EREG protein promoted the NSCLC resistance to chemo-drugs by increasing stemness genes expression. Additionally, inhibition of EREG/ErbB had downregulated ERK signaling, resulting in decreased expression of stemness-associated genes and subsequently re-sensitized the resistant NSCLC cells and spheres to chemo-drugs. Conclusions These findings revealed 6 resistance genes signature and proved that EREG/ErbB regulated the stemness to maintain chemoresistance of NSCLC via ERK signaling. Therefore, targeting EREG/ErbB might significantly and effectively resolve the chemoresistance issue. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02859-3.
Collapse
|
3
|
Casalino L, Talotta F, Cimmino A, Verde P. The Fra-1/AP-1 Oncoprotein: From the "Undruggable" Transcription Factor to Therapeutic Targeting. Cancers (Basel) 2022; 14:cancers14061480. [PMID: 35326630 PMCID: PMC8946526 DOI: 10.3390/cancers14061480] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/04/2022] [Accepted: 03/10/2022] [Indexed: 02/06/2023] Open
Abstract
The genetic and epigenetic changes affecting transcription factors, coactivators, and chromatin modifiers are key determinants of the hallmarks of cancer. The acquired dependence on oncogenic transcriptional regulators, representing a major determinant of cancer cell vulnerability, points to transcription factors as ideal therapeutic targets. However, given the unavailability of catalytic activities or binding pockets for small-molecule inhibitors, transcription factors are generally regarded as undruggable proteins. Among components of the AP-1 complex, the FOS-family transcription factor Fra-1, encoded by FOSL1, has emerged as a prominent therapeutic target. Fra-1 is overexpressed in most solid tumors, in response to the BRAF-MAPK, Wnt-beta-catenin, Hippo-YAP, IL-6-Stat3, and other major oncogenic pathways. In vitro functional analyses, validated in onco-mouse models and corroborated by prognostic correlations, show that Fra-1-containing dimers control tumor growth and disease progression. Fra-1 participates in key mechanisms of cancer cell invasion, Epithelial-to-Mesenchymal Transition, and metastatic spreading, by driving the expression of EMT-inducing transcription factors, cytokines, and microRNAs. Here we survey various strategies aimed at inhibiting tumor growth, metastatic dissemination, and drug resistance by interfering with Fra-1 expression, stability, and transcriptional activity. We summarize several tools aimed at the design and tumor-specific delivery of Fra-1/AP-1-specific drugs. Along with RNA-based therapeutics targeting the FOSL1 gene, its mRNA, or cognate regulatory circRNAs, we will examine the exploitation of blocking peptides, small molecule inhibitors, and innovative Fra-1 protein degraders. We also consider the possible caveats concerning Fra-1 inhibition in specific therapeutic contexts. Finally, we discuss a recent suicide gene therapy-based approach, aimed at selectively killing the Fra-1-overexpressing neoplastic cells.
Collapse
Affiliation(s)
- Laura Casalino
- Institute of Genetics and Biophysics “Adriano Buzzati Traverso”, Consiglio Nazionale dele Ricerche (CNR), 80131 Naples, Italy;
- Correspondence: (L.C.); (P.V.)
| | | | - Amelia Cimmino
- Institute of Genetics and Biophysics “Adriano Buzzati Traverso”, Consiglio Nazionale dele Ricerche (CNR), 80131 Naples, Italy;
| | - Pasquale Verde
- Institute of Genetics and Biophysics “Adriano Buzzati Traverso”, Consiglio Nazionale dele Ricerche (CNR), 80131 Naples, Italy;
- Correspondence: (L.C.); (P.V.)
| |
Collapse
|