1
|
Sercia L, Romano O, Marini G, Enzo E, Forcato M, De Rosa L, De Luca M. A cellular disease model toward gene therapy of TGM1-dependent lamellar ichthyosis. Mol Ther Methods Clin Dev 2024; 32:101311. [PMID: 39234443 PMCID: PMC11372595 DOI: 10.1016/j.omtm.2024.101311] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/29/2024] [Indexed: 09/06/2024]
Abstract
Lamellar ichthyosis (LI) is a chronic disease, mostly caused by mutations in the TGM1 gene, marked by impaired skin barrier formation. No definitive therapies are available, and current treatments aim at symptomatic relief. LI mouse models often fail to faithfully replicate the clinical and histopathological features of human skin conditions. To develop advanced therapeutic approaches, such as combined ex vivo cell and gene therapy, we established a human cellular model of LI by efficient CRISPR-Cas9-mediated gene ablation of the TGM1 gene in human primary clonogenic keratinocytes. Gene-edited cells showed complete absence of transglutaminase 1 (TG1) expression and recapitulated a hyperkeratotic phenotype with most of the molecular hallmarks of LI in vitro. Using a self-inactivating γ-retroviral (SINγ-RV) vector expressing transgenic TGM1 under the control of its own promoter, we tested an ex vivo gene therapy approach and validate the model of LI as a platform for pre-clinical evaluation studies. Gene-corrected TGM1-null keratinocytes displayed proper TG1 expression, enzymatic activity, and cornified envelope formation and, hence, restored proper epidermal architecture. Single-cell multiomics analysis demonstrated proviral integrations in holoclone-forming epidermal stem cells, which are crucial for epidermal regeneration. This study serves as a proof of concept for assessing the potential of this therapeutic approach in treating TGM1-dependent LI.
Collapse
Affiliation(s)
- Laura Sercia
- Center for Regenerative Medicine "Stefano Ferrari", Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Oriana Romano
- Department of Molecular Medicine, University of Padova, 35131 Padova, Italy
| | - Grazia Marini
- Center for Regenerative Medicine "Stefano Ferrari", Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Elena Enzo
- Center for Regenerative Medicine "Stefano Ferrari", Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Mattia Forcato
- Department of Molecular Medicine, University of Padova, 35131 Padova, Italy
| | - Laura De Rosa
- Center for Regenerative Medicine "Stefano Ferrari", Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Michele De Luca
- Center for Regenerative Medicine "Stefano Ferrari", Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| |
Collapse
|
2
|
Koutsoukos SA, Bilousova G. Highlights of Gene and Cell Therapy for Epidermolysis Bullosa and Ichthyosis. Dermatol Ther (Heidelb) 2024; 14:2379-2392. [PMID: 39112824 PMCID: PMC11393223 DOI: 10.1007/s13555-024-01239-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/12/2024] [Indexed: 09/13/2024] Open
Abstract
Advancements in the molecular genetics of epidermolysis bullosa (EB) and ichthyosis, two rare inherited skin conditions, have enabled the identification of genetic variants that cause these diseases. Alongside technological advancements in genetic medicine, the identification of variants causal of these rare skin conditions has led to preclinical research and the clinical development of various in vivo and ex vivo gene and cell therapies for their treatment. Gene and cell therapies are considered to be the most advanced forms of personalized medicine, demonstrating safety and efficacy in numerous rare diseases. Although the orphan drug development boom has resulted in regulatory approval of multiple gene and cell therapies for various rare conditions, the application of these modalities to rare inherited skin conditions remains limited. Nonetheless, there are successful examples of both in vivo gene therapy- and ex vivo cell therapy-based approaches developed to treat EB and ichthyosis. This review highlights preclinical research and the clinical development of gene and cell therapies for multiple subtypes of these two devastating congenital skin conditions, including a gene therapy recently approved by the U.S. Food and Drug Administration for the treatment of recessive dystrophic EB.
Collapse
Affiliation(s)
- Stefanos A Koutsoukos
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- Gates Institute, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Ganna Bilousova
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
- Gates Institute, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| |
Collapse
|
3
|
Mattar CN, Chew WL, Lai PS. Embryo and fetal gene editing: Technical challenges and progress toward clinical applications. Mol Ther Methods Clin Dev 2024; 32:101229. [PMID: 38533521 PMCID: PMC10963250 DOI: 10.1016/j.omtm.2024.101229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Gene modification therapies (GMTs) are slowly but steadily making progress toward clinical application. As the majority of rare diseases have an identified genetic cause, and as rare diseases collectively affect 5% of the global population, it is increasingly important to devise gene correction strategies to address the root causes of the most devastating of these diseases and to provide access to these novel therapies to the most affected populations. The main barriers to providing greater access to GMTs continue to be the prohibitive cost of developing these novel drugs at clinically relevant doses, subtherapeutic effects, and toxicity related to the specific agents or high doses required. In vivo strategy and treating younger patients at an earlier course of their disease could lower these barriers. Although currently regarded as niche specialties, prenatal and preconception GMTs offer a robust solution to some of these barriers. Indeed, treating either the fetus or embryo benefits from economy of scale, targeting pre-pathological tissues in the fetus prior to full pathogenesis, or increasing the likelihood of complete tissue targeting by correcting pluripotent embryonic cells. Here, we review advances in embryo and fetal GMTs and discuss requirements for clinical application.
Collapse
Affiliation(s)
- Citra N.Z. Mattar
- Experimental Fetal Medicine Group, Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 12, Singapore, Singapore 119228
- Department of Obstetrics and Gynaecology, National University Health System, Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 12, Singapore, Singapore 119228
| | - Wei Leong Chew
- Genome Institute of Singapore, Agency for Science, Technology and Research (A∗STAR), Singapore, 60 Biopolis St, Singapore, Singapore 138672
| | - Poh San Lai
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 12, Singapore, Singapore 119228
| |
Collapse
|
4
|
Piñón Hofbauer J, Guttmann-Gruber C, Wally V, Sharma A, Gratz IK, Koller U. Challenges and progress related to gene editing in rare skin diseases. Adv Drug Deliv Rev 2024; 208:115294. [PMID: 38527624 DOI: 10.1016/j.addr.2024.115294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/01/2024] [Accepted: 03/21/2024] [Indexed: 03/27/2024]
Abstract
Genodermatoses represent a large group of inherited skin disorders encompassing clinically-heterogeneous conditions that manifest in the skin and other organs. Depending on disease variant, associated clinical manifestations and secondary complications can severely impact patients' quality of life and currently available treatments are transient and not curative. Multiple emerging approaches using CRISPR-based technologies offer promising prospects for therapy. Here, we explore current advances and challenges related to gene editing in rare skin diseases, including different strategies tailored to mutation type and structural organization of the affected gene, considerations for in vivo and ex vivo applications, the critical issue of delivery into the skin, and immune aspects of therapy. Against the backdrop of a landmark FDA approval for the first re-dosable gene replacement therapy for a rare genetic skin disorder, gene editing approaches are inching closer to the clinics and the possibility of a local permanent cure for patients affected by these disorders.
Collapse
Affiliation(s)
- Josefina Piñón Hofbauer
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria
| | - Christina Guttmann-Gruber
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria
| | - Verena Wally
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria
| | - Anshu Sharma
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria; Department of Biosciences and Medical Biology, University of Salzburg, 5020 Salzburg, Austria
| | - Iris K Gratz
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria; Department of Biosciences and Medical Biology, University of Salzburg, 5020 Salzburg, Austria; Center for Tumor Biology and Immunology, University of Salzburg, 5020 Salzburg, Austria
| | - Ulrich Koller
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria.
| |
Collapse
|
5
|
Severino-Freire M, Granier Tournier C, Chiaverini C, Audouze A, Morice-Picard F, Texier H, Dreyfus I, Bing-Lecointe AC, Mallet S, Bodemer C, Fischer J, Jonca N, Mazereeuw-Hautier J. French national protocol for the management of congenital ichthyosis. Ann Dermatol Venereol 2024; 151:103247. [PMID: 38513308 DOI: 10.1016/j.annder.2024.103247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 09/27/2023] [Indexed: 03/23/2024]
Abstract
Congenital ichthyoses (CI) comprise a heterogeneous group of monogenic genetic skin diseases characterized by diffuse scaling, often associated with skin inflammation. Diagnosis of the individual form of ichthyosis is complex and is guided by clinical expertise. CI usually has a major impact on quality of life (QOL) and thus requires lifelong treatment. To date, there are no curative therapies, although various symptomatic treatment options exist. The present protocol for the management of CI has been drawn up in accordance with the recommendations published in 2012 by the French National Authority for Health, based on a literature review, with the help and validation of members of the French network for rare skin diseases (FIMARAD). It provides a summary of evidence and expert-based recommendations and is intended to help clinicians with the management of these rare and often complex diseases.
Collapse
Affiliation(s)
- M Severino-Freire
- University Hospital Center of Toulouse, Reference Centre for Rare Skin Diseases, Department of Dermatology, Larrey Hospital, 24, Chemin de Pouvourville, TSA 30030 Toulouse Cedex 9, France
| | - C Granier Tournier
- University Hospital Center of Toulouse, Reference Centre for Rare Skin Diseases, Department of Dermatology, Larrey Hospital, 24, Chemin de Pouvourville, TSA 30030 Toulouse Cedex 9, France
| | - C Chiaverini
- University Hospital Center of Nice, Department of Dermatology, Archet 2 Hospital, CS 23079, 06202 Nice Cedex 3, France
| | - A Audouze
- Association Ichtyose France, 37 rue du Golf, 03700 Bellerive sur Allier, France
| | - F Morice-Picard
- Department of Dermatology, University Hospital Center of Bordeaux - Hôpital Saint André, 1 Rue Jean Burguet, 33075 Bordeaux Cedex, France
| | - H Texier
- University Hospital Center of Toulouse, Reference Centre for Rare Skin Diseases, Department of Dermatology, Larrey Hospital, 24, Chemin de Pouvourville, TSA 30030 Toulouse Cedex 9, France
| | - I Dreyfus
- University Hospital Center of Toulouse, Reference Centre for Rare Skin Diseases, Department of Dermatology, Larrey Hospital, 24, Chemin de Pouvourville, TSA 30030 Toulouse Cedex 9, France
| | - A-C Bing-Lecointe
- Hospital Annecy-Genevois site Annecy, 1 Avenue De L'hôpital, 74370 Annecy, France
| | - S Mallet
- Department of Dermatology, University Hospital Center of Marseille, 264 rue Saint-Pierre, 13005 Marseille, France
| | - C Bodemer
- Department of Dermatology, Reference Center for Genodermatoses and Rare Skin Diseases (MAGEC), Hôpital Necker-Enfants Malades, AP-HP, 149 Rue de Sèvres, 75743 Paris cedex 15, France
| | - J Fischer
- Institute of Human Genetics, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacher Straße 153, 79110 Freiburg, Germany
| | - N Jonca
- University Hospital Center of Toulouse, Hôpital Purpan, Cell Biology and Cytology Laboratory, Institut Fédératif de Biologie, Toulouse F-31300, France
| | - J Mazereeuw-Hautier
- University Hospital Center of Toulouse, Reference Centre for Rare Skin Diseases, Department of Dermatology, Larrey Hospital, 24, Chemin de Pouvourville, TSA 30030 Toulouse Cedex 9, France.
| |
Collapse
|
6
|
Ivanenko AV, Evtushenko NA, Gurskaya NG. Genome Editing in Therapy of Genodermatoses. Mol Biol 2022. [DOI: 10.1134/s0026893322060085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
7
|
Lu Y, Happi Mbakam C, Song B, Bendavid E, Tremblay JP. Improvements of nuclease and nickase gene modification techniques for the treatment of genetic diseases. Front Genome Ed 2022; 4:892769. [PMID: 35958050 PMCID: PMC9360573 DOI: 10.3389/fgeed.2022.892769] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 07/08/2022] [Indexed: 12/20/2022] Open
Abstract
Advancements in genome editing make possible to exploit the functions of enzymes for efficient DNA modifications with tremendous potential to treat human genetic diseases. Several nuclease genome editing strategies including Meganucleases (MNs), Zinc Finger Nucleases (ZFNs), Transcription Activator-like Effector Nucleases (TALENs) and Clustered Regularly Interspaced Short Palindromic Repeats-CRISPR associated proteins (CRISPR-Cas) have been developed for the correction of genetic mutations. CRISPR-Cas has further been engineered to create nickase genome editing tools including Base editors and Prime editors with much precision and efficacy. In this review, we summarized recent improvements in nuclease and nickase genome editing approaches for the treatment of genetic diseases. We also highlighted some limitations for the translation of these approaches into clinical applications.
Collapse
Affiliation(s)
- Yaoyao Lu
- CHU de Québec Research Center, Laval University, Quebec City, QC, Canada
- Department of Molecular Medicine, Laval University, Quebec City, QC, Canada
| | - Cedric Happi Mbakam
- CHU de Québec Research Center, Laval University, Quebec City, QC, Canada
- Department of Molecular Medicine, Laval University, Quebec City, QC, Canada
| | - Bo Song
- CHU de Québec Research Center, Laval University, Quebec City, QC, Canada
- Department of Molecular Medicine, Laval University, Quebec City, QC, Canada
| | - Eli Bendavid
- CHU de Québec Research Center, Laval University, Quebec City, QC, Canada
- Department of Molecular Medicine, Laval University, Quebec City, QC, Canada
| | - Jacques-P. Tremblay
- CHU de Québec Research Center, Laval University, Quebec City, QC, Canada
- Department of Molecular Medicine, Laval University, Quebec City, QC, Canada
- *Correspondence: Jacques-P. Tremblay,
| |
Collapse
|
8
|
Joosten MDW, Clabbers JMK, Jonca N, Mazereeuw-Hautier J, Gostyński AH. New developments in the molecular treatment of ichthyosis: review of the literature. Orphanet J Rare Dis 2022; 17:269. [PMID: 35840979 PMCID: PMC9287901 DOI: 10.1186/s13023-022-02430-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/30/2022] [Indexed: 11/24/2022] Open
Abstract
Ichthyosis covers a wide spectrum of diseases affecting the cornification of the skin. In recent years, new advances in understanding the pathophysiology of ichthyosis have been made. This knowledge, combined with constant development of pathogenesis-based therapies, such as protein replacement therapy and gene therapy, are rather promising for patients with inherited skin diseases. Several ongoing trials are investigating the potency of these new approaches and various studies have already been published. Furthermore, a lot of case series report that biological therapeutics are effective treatment options, mainly for Netherton syndrome and autosomal recessive congenital ichthyosis. It is expected that some of these new therapies will prove their efficacy and will be incorporated in the treatment of ichthyosis.
Collapse
Affiliation(s)
- M D W Joosten
- Department of Dermatology, The Netherlands and European Reference Network - Skin, Maastricht University Medical Center, Maastricht, The Netherlands.,GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, P. Debyelaan 25, 6229HX, Maastricht, The Netherlands
| | - J M K Clabbers
- Department of Dermatology, The Netherlands and European Reference Network - Skin, Maastricht University Medical Center, Maastricht, The Netherlands.,GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, P. Debyelaan 25, 6229HX, Maastricht, The Netherlands.,Department of Dermatology, Haga Hospital, The Hague, The Netherlands
| | - N Jonca
- Cell Biology and Cytology Laboratory, CNRS, Inserm, UPS, European Reference Network - Skin, University Hospital Center of Toulouse and Infinity, Federal Biology Institute, Toulouse University, Toulouse, France
| | - J Mazereeuw-Hautier
- Department of Dermatology, European Reference Network - Skin, University Hospital Center of Toulouse, Toulouse, France
| | - A H Gostyński
- Department of Dermatology, The Netherlands and European Reference Network - Skin, Maastricht University Medical Center, Maastricht, The Netherlands. .,GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, P. Debyelaan 25, 6229HX, Maastricht, The Netherlands.
| |
Collapse
|