1
|
Liu X, Xie S, Jiang X, Song S, Wang L, Li S, Lu D. LUC7L2 accelerates the growth of liver cancer cells by enhancing DNA damage repair via RRAS. Cells Dev 2024; 180:203976. [PMID: 39571735 DOI: 10.1016/j.cdev.2024.203976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 11/03/2024] [Accepted: 11/14/2024] [Indexed: 11/24/2024]
Abstract
BACKGROUND & OBJECTIVES LUC7L2 may be involved in the recognition of non-consensus splice donor sites in association with the U1 snRNP spliceosomal subunit. However, their detailed features and regulatory mechanisms of LUC7L2 in the development of human liver cancer have not been well characterized. RESULTS Herein, our results demonstrate that LUC7L2 promotes the proliferation of liver cancer cells in vitro and xenograft transplantation in vivo. The proliferation ability was significantly increased in the rLV-LUC7L2 group compared to rLV group (24th hour: P = 0.00043; 48th hour: P = 0.000017). The cellular colony formation ability was significantly increased in the rLV-LUC7L2 group compared to rLV group (25.18±6.94 % vs 67.63±9.57 %, P = 0.00009). The weight of transplanted tumors was significantly increased in the rLV-LUC7L2 group compared to rLV group (0.387±0.074 vs 0.958± 0.103 g, P = 0.00004). Moreover, LUC7L2 effects on epigenetic regulation based on H3K4me3 in human liver cancer cells. e,g, RRAS. Furthermore, LUC7L2 affects transcriptome and proteome in liver cancer. In particular, LUC7L2 enhances the modification ability of H3K4me3and RNAPolII on the promoter region of RRAS and then enhances the expression of RRAS in liver cancer. Strikingly, LUC7L2 increases the increases the DNA damage repair ability dependent on RRAS. Although the DNA damage repair ability was significantly increased in the rLV-LUC7L2 group compared to rLV group(1.868±0.181 vs 0.17±0.034, P = 0.0000022), it was not significantly changed in rLV-LUC7L2+rLV-shRNA RRAS group compared with rLV group(1.868±0.181 vs 1.798±0.313, P = 0.317). Importantly, LUC7L2 enhances the carcinogenic function dependent on RRAS. In particular, RRAS increased the DNA damage repair ability by enhancing the formation of DNA damage repair dependent on tri-methylation of histone H3 lysine 36 (H3K36me3). CONCLUSIONS It is implied that LUC7L2's role in liver cancer proliferation is largely dependent on RRAS. The first discovery provides a basis for the prevention and treatment of human liver cancer.
Collapse
Affiliation(s)
- Xinlei Liu
- Shanghai Putuo People's Hospital, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Sijie Xie
- Shanghai Putuo People's Hospital, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Xiaoxue Jiang
- Shanghai Putuo People's Hospital, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Shuting Song
- Shanghai Putuo People's Hospital, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Liyan Wang
- Shanghai Putuo People's Hospital, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Shujie Li
- Shanghai Putuo People's Hospital, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Dongdong Lu
- Shanghai Putuo People's Hospital, School of Life Science and Technology, Tongji University, Shanghai 200092, China.
| |
Collapse
|
2
|
O'Neill K, Pleasance E, Fan J, Akbari V, Chang G, Dixon K, Csizmok V, MacLennan S, Porter V, Galbraith A, Grisdale CJ, Culibrk L, Dupuis JH, Corbett R, Hopkins J, Bowlby R, Pandoh P, Smailus DE, Cheng D, Wong T, Frey C, Shen Y, Lewis E, Paulin LF, Sedlazeck FJ, Nelson JMT, Chuah E, Mungall KL, Moore RA, Coope R, Mungall AJ, McConechy MK, Williamson LM, Schrader KA, Yip S, Marra MA, Laskin J, Jones SJM. Long-read sequencing of an advanced cancer cohort resolves rearrangements, unravels haplotypes, and reveals methylation landscapes. CELL GENOMICS 2024; 4:100674. [PMID: 39406235 PMCID: PMC11605692 DOI: 10.1016/j.xgen.2024.100674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/26/2024] [Accepted: 09/18/2024] [Indexed: 11/16/2024]
Abstract
The Long-Read Personalized OncoGenomics (POG) dataset comprises a cohort of 189 patient tumors and 41 matched normal samples sequenced using the Oxford Nanopore Technologies PromethION platform. This dataset from the POG program and the Marathon of Hope Cancer Centres Network includes DNA and RNA short-read sequence data, analytics, and clinical information. We show the potential of long-read sequencing for resolving complex cancer-related structural variants, viral integrations, and extrachromosomal circular DNA. Long-range phasing facilitates the discovery of allelically differentially methylated regions (aDMRs) and allele-specific expression, including recurrent aDMRs in the cancer genes RET and CDKN2A. Germline promoter methylation in MLH1 can be directly observed in Lynch syndrome. Promoter methylation in BRCA1 and RAD51C is a likely driver behind homologous recombination deficiency where no coding driver mutation was found. This dataset demonstrates applications for long-read sequencing in precision medicine and is available as a resource for developing analytical approaches using this technology.
Collapse
Affiliation(s)
- Kieran O'Neill
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
| | - Erin Pleasance
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
| | - Jeremy Fan
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
| | - Vahid Akbari
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Glenn Chang
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
| | - Katherine Dixon
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
| | - Veronika Csizmok
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
| | - Signe MacLennan
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada; Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Vanessa Porter
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada; Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Andrew Galbraith
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
| | - Cameron J Grisdale
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
| | - Luka Culibrk
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
| | - John H Dupuis
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
| | - Richard Corbett
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
| | - James Hopkins
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
| | - Reanne Bowlby
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
| | - Pawan Pandoh
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
| | - Duane E Smailus
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
| | - Dean Cheng
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
| | - Tina Wong
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
| | - Connor Frey
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Yaoqing Shen
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
| | - Eleanor Lewis
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
| | - Luis F Paulin
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Fritz J Sedlazeck
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Jessica M T Nelson
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
| | - Eric Chuah
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
| | - Karen L Mungall
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
| | - Richard A Moore
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
| | - Robin Coope
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
| | - Andrew J Mungall
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
| | - Melissa K McConechy
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
| | - Laura M Williamson
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
| | - Kasmintan A Schrader
- Hereditary Cancer Program, BC Cancer, Vancouver, BC, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Stephen Yip
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Marco A Marra
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada; Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Janessa Laskin
- Department of Medical Oncology, BC Cancer, Vancouver, BC, Canada
| | - Steven J M Jones
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
3
|
Tan Y, Qiao J, Yang S, Liu H, Wang Q, Liu Q, Feng W, Cui L. H3K4me3-Mediated FOXJ2/SLAMF8 Axis Aggravates Thrombosis and Inflammation in β2GPI/Anti-β2GPI-Treated Monocytes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309140. [PMID: 38639399 PMCID: PMC11199983 DOI: 10.1002/advs.202309140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/31/2024] [Indexed: 04/20/2024]
Abstract
Antiphospholipid syndrome (APS) is characterized by thrombus formation, poor pregnancy outcomes, and a proinflammatory response. H3K4me3-related monocytes activation are key regulators of APS pathogenesis. Therefore, H3K4me3 CUT&Tag and ATAC-seq are performed to examine the epigenetic profiles. The results indicate that the H3K4me3 signal and chromatin accessibility at the FOXJ2 promoter are enhanced in an in vitro monocyte model by stimulation with β2GPI/anti-β2GPI, which mimics APS, and decreases after OICR-9429 administration. Furthermore, FOXJ2 is highly expressed in patients with primary APS (PAPS) and is the highest in patients with triple-positive antiphospholipid antibodies (aPLs). Mechanistically, FOXJ2 directly binds to the SLAMF8 promoter and activates SLAMF8 transcription. SLAMF8 further interacts with TREM1 to stimulate TLR4/NF-κB signaling and prohibit autophagy. Knockdown of FOXJ2, SLAMF8, or TREM1 blocks TLR4/NF-κB and provokes autophagy, subsequently inhibiting the release of inflammatory and thrombotic indicators. A mouse model of vascular APS is established via β2GPI intraperitoneal injection, and the results suggest that OICR-9429 administration attenuates the inflammatory response and thrombus formation by inactivating FOXJ2/SLAMF8/TREM1 signaling. These findings highlight the overexpression of H3K4me3-mediated FOXJ2 in APS, which consequently accelerates APS pathogenesis by triggering inflammation and thrombosis via boosting the SLAMF8/TREM1 axis. Therefore, OICR-9429 is a promising candidate drug for APS therapy.
Collapse
Affiliation(s)
- Yuan Tan
- Institute of Medical TechnologyPeking University Health Science CenterBeijing100191China
- Department of Laboratory MedicinePeking University Third HospitalBeijing100191China
- Core Unit of National Clinical Research Center for Laboratory MedicinePeking University Third HospitalBeijing100191China
| | - Jiao Qiao
- Institute of Medical TechnologyPeking University Health Science CenterBeijing100191China
- Department of Laboratory MedicinePeking University Third HospitalBeijing100191China
- Core Unit of National Clinical Research Center for Laboratory MedicinePeking University Third HospitalBeijing100191China
| | - Shuo Yang
- Department of Laboratory MedicinePeking University Third HospitalBeijing100191China
- Core Unit of National Clinical Research Center for Laboratory MedicinePeking University Third HospitalBeijing100191China
| | - Hongchao Liu
- Department of Laboratory MedicinePeking University Third HospitalBeijing100191China
- Core Unit of National Clinical Research Center for Laboratory MedicinePeking University Third HospitalBeijing100191China
| | - Qingchen Wang
- Department of Laboratory MedicinePeking University Third HospitalBeijing100191China
- Core Unit of National Clinical Research Center for Laboratory MedicinePeking University Third HospitalBeijing100191China
| | - Qi Liu
- Institute of Medical TechnologyPeking University Health Science CenterBeijing100191China
- Department of Laboratory MedicinePeking University Third HospitalBeijing100191China
- Core Unit of National Clinical Research Center for Laboratory MedicinePeking University Third HospitalBeijing100191China
| | - Weimin Feng
- Institute of Medical TechnologyPeking University Health Science CenterBeijing100191China
- Department of Laboratory MedicinePeking University Third HospitalBeijing100191China
- Core Unit of National Clinical Research Center for Laboratory MedicinePeking University Third HospitalBeijing100191China
| | - Liyan Cui
- Institute of Medical TechnologyPeking University Health Science CenterBeijing100191China
- Department of Laboratory MedicinePeking University Third HospitalBeijing100191China
- Core Unit of National Clinical Research Center for Laboratory MedicinePeking University Third HospitalBeijing100191China
| |
Collapse
|
4
|
Wu H, Ye J, Zhang M, Luo H. A concise review of the regulatory, diagnostic, and prognostic implications of HOXB-AS3 in tumors. J Cancer 2024; 15:714-728. [PMID: 38213732 PMCID: PMC10777036 DOI: 10.7150/jca.91033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 11/28/2023] [Indexed: 01/13/2024] Open
Abstract
Recent studies have reported that HOXB-AS3 (HOXB Cluster Antisense RNA 3) is an intriguing molecule with dual functionality as a long noncoding RNA (lncRNA) and putative coding peptide in tumorigenesis and progression. The significant expression alterations of HOXB-AS3 were detected in diverse cancer types and closely correlated with clinical stage and patient survival. Furthermore, HOXB-AS3 was involved in a spectrum of biological processes in solid tumors and hematological malignancies, such as stemness, lipid metabolism, migration, invasion, and tumor growth. This review comprehensively analyzes its clinical relevance for diagnosis and prognosis across human tumors and summarizes its functional role and regulatory mechanisms in different malignant tumors, including liver cancer, acute myeloid leukemia, ovarian cancer, lung cancer, endometrial carcinoma, colon cancer, and oral squamous cell carcinoma. Overall, HOXB-AS3 emerges as a promising biomarker and novel therapeutic target in multiple human tumors.
Collapse
Affiliation(s)
- Hongze Wu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330000, Jiangxi, China
- Department of Traditional Chinese Medicine, Jiujiang Hospital of Traditional Chinese Medicine, Jiujiang 332007, Jiangxi, China
| | - Jiarong Ye
- Nanchang University Queen Mary School, Nanchang 330038, Jiangxi, China
| | - Mengqi Zhang
- The Second Clinical Medical College, Nanchang University, Nanchang 330038, Jiangxi, China
| | - Hongliang Luo
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330000, Jiangxi, China
| |
Collapse
|
5
|
Ramya V, Shyam KP, Angelmary A, Kadalmani B. Lauric acid epigenetically regulates lncRNA HOTAIR by remodeling chromatin H3K4 tri-methylation and modulates glucose transport in SH-SY5Y human neuroblastoma cells: Lipid switch in macrophage activation. Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1869:159429. [PMID: 37967739 DOI: 10.1016/j.bbalip.2023.159429] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/15/2023] [Accepted: 11/10/2023] [Indexed: 11/17/2023]
Abstract
Lauric acid (LA) induces apoptosis in cancer and promotes the proliferation of normal cells by maintaining cellular redox homeostasis. Earlier, we postulated LA-mediated regulation of the NF-κB pathway by an epigenetic mechanism. However, the molecular mechanism and possible epigenetic events remained enigmatic. Herein, taking the lead from the alteration in cellular energetics in cancer cells upon LA exposure, we investigated whether LA exposure can epigenetically influence lncRNA HOTAIR, regulate glucose metabolism, and shift the cellular energetic state. Our results demonstrate LA induced modulation of lncRNA HOTAIR in a dose and time dependent manner. In addition, HOTAIR induces the expression of glucose transporter isoform 1 (GLUT1) and is regulated via NF-κB activation. Silencing HOTAIR by siRNA-mediated knockdown suppressed GLUT1 expression suggesting the key role of HOTAIR in LA-mediated metabolic reprogramming. Further, from our ChIP experiments, we observed that silencing HOTAIR subdues the recruitment of NF-κB on the GLUT1 (SLC2A1) promoter region. In addition, by performing western blot and immunocytochemistry studies, we found a dose dependent increase in Histone 3 Lysine 4 tri-methylation (H3K4me3) in the chromatin landscape. Taken together, our study demonstrates the epigenetic regulation in LA-treated SH-SY5Y cancer cells orchestrated by remodeling chromatin H3K4me3 and modulation of lncRNA HOTAIR that apparently governs the GLUT1 expression and regulates glucose uptake by exerting transcriptional control on NF-κB activation. Our work provides insights into the epigenetic regulation and metabolic reprogramming of LA through modulation of lncRNA HOTAIR, remodeling chromatin H3K4 tri-methylation, and shifting the energy metabolism in SH-SY5Y neuroblastoma cells.
Collapse
Affiliation(s)
- Venkatesan Ramya
- Department of Animal Science, Bharathidasan University, Tiruchirappalli, Tamilnadu 620024, India
| | - Karuppiah Prakash Shyam
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA; Research and Development Division, VVD and Sons Private Limited, Thoothukudi, Tamilnadu 628003, India
| | - Arulanandu Angelmary
- Department of Animal Science, Bharathidasan University, Tiruchirappalli, Tamilnadu 620024, India
| | - Balamuthu Kadalmani
- Department of Animal Science, Bharathidasan University, Tiruchirappalli, Tamilnadu 620024, India.
| |
Collapse
|
6
|
Yin J, Ding N, Yu J, Wang Z, Fu L, Li Y, Li X, Xu J. Systematic analysis of DNA methylation-mediated TF dysregulation on lncRNAs reveals critical roles in tumor immunity. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 34:102058. [PMID: 38028194 PMCID: PMC10630662 DOI: 10.1016/j.omtn.2023.102058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 10/12/2023] [Indexed: 12/01/2023]
Abstract
Emerging evidence suggests that DNA methylation affects transcriptional regulation and expression perturbations of long non-coding RNAs (lncRNAs) in cancer. However, a comprehensive investigation into the transcriptional control of DNA methylation-mediated dysregulation of transcription factors (TFs) on lncRNAs has been lacking. Here, we integrated the transcriptome, methylome, and regulatome across 21 human cancers and systematically identified the transcriptional regulation of DNA methylation-mediated TF dysregulations (DMTDs) on lncRNAs. Our findings reveal that TF regulation of lncRNAs is significantly impacted by DNA methylation. Comparative analysis of DMTDs on mRNAs revealed a conserved pattern of TFs involvement. Pan-cancer Methylation TFs (MethTFs) and Methylation LncRNAs (MethLncRNAs) were identified, and were found to be closely associated with cancer hallmarks and clinical features. In-depth analysis of co-expressed mRNAs with pan-cancer MethLncRNAs unveiled frequent disruptions in cancer immunity, particularly in the context of inflammatory response. Furthermore, we identified five immune-related network modules that contribute to immune cell infiltration in cancer. Immune-related subtypes were subsequently classified, characterized by high levels of immune cell infiltration, expression of immunomodulatory genes, and relevant immune cytolytic activity score, major histocompatibility complex score, response to chemotherapy, and prognosis. Our findings provide valuable insights into cancer immunity from the epigenetic and transcriptional regulation perspective.
Collapse
Affiliation(s)
- Jiaqi Yin
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Na Ding
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Jiaxin Yu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Zishan Wang
- Department of Genetics and Genomic Sciences, Center for Transformative Disease Modeling, Tisch Cancer Institute, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Limei Fu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Yongsheng Li
- School of Interdisciplinary Medicine and Engineering, Harbin Medical University, Harbin 150081, China
| | - Xia Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Juan Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| |
Collapse
|
7
|
Wang J, Wong CH, Zhu Y, Yao X, Ng KKC, Zhou C, To KF, Chen Y. Identification of GRIN2D as a novel therapeutic target in pancreatic ductal adenocarcinoma. Biomark Res 2023; 11:74. [PMID: 37553583 PMCID: PMC10410818 DOI: 10.1186/s40364-023-00514-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 07/26/2023] [Indexed: 08/10/2023] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is a devastating disease with a dismal prognosis, and despite significant advances in our understanding of its genetic drivers, like KRAS, TP53, CDKN2A, and SMAD4, effective therapies remain limited. Here, we identified a new therapeutic target GRIN2D and then explored its functions and mechanisms in PDAC progression. METHODS We performed a genome-wide RNAi screen in a PDAC xenograft model and identified GRIN2D, which encodes the GluN2D subunit of N-methyl-D-aspartate receptors (NMDARs), as a potential oncogene. Western blot, immunohistochemistry, and analysis on Gene Expression Omnibus were used for detecting the expression of GRIN2D in PDAC. Cellular experiments were conducted for exploring the functions of GRIN2D in vitro while subcutaneous and orthotopic injections were used in in vivo study. To clarify the mechanism, we used RNA sequencing and cellular experiments to identify the related signaling pathway. Cellular assays, RT-qPCR, and western blot helped identify the impacts of the NMDAR antagonist memantine. RESULTS We demonstrated that GRIN2D was highly expressed in PDAC cells, and further promoted oncogenic functions. Mechanistically, transcriptome profiling identified GRIN2D-regulated genes in PDAC cells. We found that GRIN2D promoted PDAC progression by activating the p38 MAPK signaling pathway and transcription factor CREB, which in turn promoted the expression of HMGA2 and IL20RB. The upregulated GRIN2D could effectively promote tumor growth and liver metastasis in PDAC. We also investigated the therapeutic potential of NMDAR antagonism in PDAC and found that memantine reduced the expression of GRIN2D and inhibited PDAC progression. CONCLUSION Our results suggested that NMDA receptor GRIN2D plays important oncogenic roles in PDAC and represents a novel therapeutic target.
Collapse
Affiliation(s)
- Jiatong Wang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin NT, Hong Kong
| | - Chi Hin Wong
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin NT, Hong Kong
| | - Yinxin Zhu
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin NT, Hong Kong
| | - Xiaoqiang Yao
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin NT, Hong Kong
| | - Kelvin K C Ng
- Department of Surgery, The Chinese University of Hong Kong, Shatin NT, Hong Kong
| | - Chengzhi Zhou
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ka Fai To
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Yangchao Chen
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin NT, Hong Kong.
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China.
| |
Collapse
|
8
|
Wang Q, Xiong F, Wu G, Liu W, Chen J, Wang B, Chen Y. Gene body methylation in cancer: molecular mechanisms and clinical applications. Clin Epigenetics 2022; 14:154. [PMID: 36443876 PMCID: PMC9706891 DOI: 10.1186/s13148-022-01382-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/18/2022] [Indexed: 11/29/2022] Open
Abstract
DNA methylation is an important epigenetic mechanism that regulates gene expression. To date, most DNA methylation studies have focussed on CpG islands in the gene promoter region, and the mechanism of methylation and the regulation of gene expression after methylation have been clearly elucidated. However, genome-wide methylation studies have shown that DNA methylation is widespread not only in promoters but also in gene bodies. Gene body methylation is widely involved in the expression regulation of many genes and is closely related to the occurrence and progression of malignant tumours. This review focusses on the formation of gene body methylation patterns, its regulation of transcription, and its relationship with tumours, providing clues to explore the mechanism of gene body methylation in regulating gene transcription and its significance and application in the field of oncology.
Collapse
Affiliation(s)
- Qi Wang
- grid.33199.310000 0004 0368 7223Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Road, Wuhan, 430074 Hubei Province China
| | - Fei Xiong
- grid.33199.310000 0004 0368 7223Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Road, Wuhan, 430074 Hubei Province China
| | - Guanhua Wu
- grid.33199.310000 0004 0368 7223Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Road, Wuhan, 430074 Hubei Province China
| | - Wenzheng Liu
- grid.33199.310000 0004 0368 7223Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Road, Wuhan, 430074 Hubei Province China
| | - Junsheng Chen
- grid.33199.310000 0004 0368 7223Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Road, Wuhan, 430074 Hubei Province China
| | - Bing Wang
- grid.33199.310000 0004 0368 7223Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Road, Wuhan, 430074 Hubei Province China
| | - Yongjun Chen
- grid.33199.310000 0004 0368 7223Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Road, Wuhan, 430074 Hubei Province China
| |
Collapse
|
9
|
Park HW, Kim YR, Lee JY, Ko EJ, Kwon MJ, Kim JH, Kim NK. Association of Polymorphisms in the Long Non-Coding RNA HOTAIR with Recurrent Pregnancy Loss in a Korean Population. Genes (Basel) 2022; 13:2138. [PMID: 36421813 PMCID: PMC9690393 DOI: 10.3390/genes13112138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/05/2022] [Accepted: 11/11/2022] [Indexed: 01/21/2024] Open
Abstract
Recurrent pregnancy loss (RPL) affects 1% to 5% of women, with devastating effects on both reproductive health and psychological well-being. Homeobox (HOX) transcript antisense RNA (HOTAIR) is a long non-coding RNA (lncRNA) produced by HOXC; it plays a major role in invasion and development of ovarian and other cancers. The aim of the present study was to analyze effects of HOTAIR polymorphisms (rs4759314 A>G, rs920778 T>C, rs1899663 G>T, and rs7958904 G>C) on RPL in Korean women. A total of 403 women with RPL and 383 healthy women were selected for this study. Genotyping analysis was performed with the polymerase chain reaction, restriction fragment length polymorphism, and the TaqMan genotyping assay. Clinical characteristics were compared using Student's unpaired t-test and the chi-square test for categorical variables. Logistic regression was performed to evaluate associations between single nucleotide polymorphisms and RPL incidence. In all assays, p < 0.05 was considered significant. HOTAIR polymorphisms rs4759314A>G and rs920778T>C were highly associated with increased risk of RPL, specifically the haplotypes rs4759314A>G/rs1899663G>T (G-T) and rs4759314A>G/rs920778 T>C (G-C). These associations were maintained in haplotypes that contained three polymorphisms (rs4759314 A>G, rs920778 T>C, and rs1899663 G>T) A-C-G, G-T-G, and G-T-T, further indicating that the HOTAIR rs4759314 and rs920778 polymorphisms play significant roles in idiopathic RPL in Korean women.
Collapse
Affiliation(s)
- Hyeon Woo Park
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Republic of Korea
| | - Young Ran Kim
- CHA Bundang Medical Center, Department of Obstetrics and Gynecology, School of Medicine, CHA University, Seongnam 13496, Republic of Korea
| | - Jeong Yong Lee
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Republic of Korea
| | - Eun Ju Ko
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Republic of Korea
| | - Min Jung Kwon
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Republic of Korea
| | - Ji Hyang Kim
- CHA Bundang Medical Center, Department of Obstetrics and Gynecology, School of Medicine, CHA University, Seongnam 13496, Republic of Korea
| | - Nam Keun Kim
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Republic of Korea
| |
Collapse
|
10
|
An X, Liu Y. HOTAIR in solid tumors: Emerging mechanisms and clinical strategies. Biomed Pharmacother 2022; 154:113594. [DOI: 10.1016/j.biopha.2022.113594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 11/02/2022] Open
|