1
|
Zhao T, Fang Y, Qin S, Gong W, Xu S, Xu F, Wang W. Rational Engineering of a Dynamic, Enzyme-Driven DNA Walker for Intracellular Dual-Enzyme Activity Sequentially Monitoring and Imaging. ACS APPLIED BIO MATERIALS 2025; 8:341-347. [PMID: 39642265 DOI: 10.1021/acsabm.4c01296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2024]
Abstract
Monitoring enzyme activity is crucial in both scientific research and clinical applications. However, abnormalities in a single enzyme's activity can indicate multiple diseases, limiting the specificity of single enzyme activity monitoring in clinical diagnosis. We developed a dynamic DNA walker that can be sequentially activated by two enzymes, enabling the monitoring and imaging of both enzyme activities within cells. Initially, the DNA walker contains a site for apurinic/apyrimidinic endonuclease 1 (APE1). Upon APE1 activation, the DNA walker forms specific structures recognized and cleaved by Flap endonuclease 1 (FEN1). The temporal disparity between the activities of APE1 and FEN1 allows for the sequential monitoring and imaging of both enzymes, reducing the likelihood of false-positive results. To enhance local concentration and decrease reaction time, the DNA walk sequence was attached to the surface of gold nanoparticles (AuNPs). The fruition of this endeavor will facilitate the investigation and advancement of multiple enzyme activity monitoring and imaging methods and technologies, while simultaneously broadening the domains of application for DNA nanotechnology.
Collapse
Affiliation(s)
- Tingting Zhao
- Shandong Province Key Laboratory of Detection Technology for Tumor Makers, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, P.R. China
| | - Yi Fang
- Shandong Province Key Laboratory of Detection Technology for Tumor Makers, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, P.R. China
| | - Shuolin Qin
- Shandong Province Key Laboratory of Detection Technology for Tumor Makers, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, P.R. China
| | - Wei Gong
- Shandong Province Key Laboratory of Detection Technology for Tumor Makers, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, P.R. China
| | - Sheng Xu
- Shandong Province Key Laboratory of Detection Technology for Tumor Makers, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, P.R. China
| | - Fan Xu
- Shandong Province Key Laboratory of Detection Technology for Tumor Makers, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, P.R. China
| | - Wenxiao Wang
- Shandong Province Key Laboratory of Detection Technology for Tumor Makers, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, P.R. China
| |
Collapse
|
2
|
Li G, Wang Y, Wang W, Lv G, Li X, Wang J, Liu X, Yuan D, Deng S, You D. BIRC5 as a prognostic and diagnostic biomarker in pan-cancer: an integrated analysis of expression, immune subtypes, and functional networks. Front Genet 2024; 15:1509342. [PMID: 39703228 PMCID: PMC11655497 DOI: 10.3389/fgene.2024.1509342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 11/19/2024] [Indexed: 12/21/2024] Open
Abstract
Introduction BIRC5 (Survivin) is a crucial anti-apoptotic protein overexpressed in various cancers, promoting tumor growth and treatment resistance. This study investigates its expression across 33 cancer types and explores its diagnostic, prognostic, and immune-related significance. Methods We analyzed RNA-seq data from TCGA and protein expression data from the Human Protein Atlas. Expression levels were compared between tumor and normal tissues. Correlations with molecular and immune subtypes were explored using TISIDB. Prognostic significance was evaluated through survival analysis, Cox regression, and ROC curve analysis. The PPI network was constructed using STRING. Results BIRC5 was significantly overexpressed in tumor tissues across 33 cancer types, with higher expression levels observed in tumors compared to normal tissues. The protein expression analysis revealed a similar trend. BIRC5 expression was significantly correlated with various molecular and immune subtypes in multiple cancer types. Survival analysis indicated that high BIRC5 expression was associated with poor prognosis across multiple cancers, including lung adenocarcinoma (LUAD) and kidney renal clear cell carcinoma (KIRC). ROC analysis showed that BIRC5 exhibited strong diagnostic potential, with high AUC values (>0.9) in several cancers. The PPI network analysis identified key interacting proteins involved in the cell cycle and tumor progression, further supporting BIRC5's role in cancer biology. Functional experiments in lung adenocarcinoma (LUAD) revealed that BIRC5 upregulation enhances cell proliferation, migration, and invasion, while its knockdown suppresses these activities. Discussion BIRC5 is a promising diagnostic and prognostic biomarker in multiple cancers. Its association with immune subtypes suggests a potential role in the tumor immune microenvironment. These findings support BIRC5 as a therapeutic target for cancer treatment.
Collapse
Affiliation(s)
- Guoyu Li
- Department of Colorectal Surgery, Yunnan Cancer Hospital, Kunming, Yunnan, China
| | - Yanghao Wang
- Department of Pathology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Weizhou Wang
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Guodong Lv
- Clinical College, Kunming Medical University, Kunming, Yunnan, China
| | - Xiang Li
- Clinical College, Kunming Medical University, Kunming, Yunnan, China
| | - Jingying Wang
- Clinical College, Kunming Medical University, Kunming, Yunnan, China
| | - Xiuyu Liu
- Clinical College, Kunming Medical University, Kunming, Yunnan, China
| | - Daolang Yuan
- Clinical College, Kunming Medical University, Kunming, Yunnan, China
| | - Shoujun Deng
- Department of Thoracic Surgery, Yanan Hospital Affiliated to Kunming Medical University, Kunming, Yunnan, China
| | - Dingyun You
- School of Public Health, Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
3
|
Huang X, Yi P, Gou W, Zhang R, Wu C, Liu L, He Y, Jiang X, Feng J. Neddylation signaling inactivation by tetracaine hydrochloride suppresses cell proliferation and alleviates vemurafenib-resistance of melanoma. Cell Biol Toxicol 2024; 40:81. [PMID: 39297891 PMCID: PMC11413085 DOI: 10.1007/s10565-024-09916-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 09/04/2024] [Indexed: 09/21/2024]
Abstract
Tetracaine, a local anesthetic, exhibits potent cytotoxic effects on multiple cancer; however, the precise underlying mechanisms of its anti-cancer activity remain uncertain. The anti-cancer activity of tetracaine was found to be the most effective among commonly used local anesthetics in this study. After tetracaine treatment, the differentially expressed genes in melanoma cells were identified by the RNAseq technique and enriched in the lysosome signaling pathway, cullin family protein binding, and proteasome signaling pathway through Kyoto Encyclopedia of Genes and Genomes. Additionally, the ubiquitin-like neddylation signaling pathway, which is hyperactivated in melanoma, could be abrogated due to decreased NAE2 expression after tetracaine treatment. The neddylation of the pro-oncogenic Survivin, which enhances its stability, was significantly reduced following treatment with tetracaine. The activation of neddylation signaling by NEDD8 overexpression could reduce the antitumor efficacy of tetracaine in vivo and in vitro. Furthermore, vemurafenib-resistant melanoma cells showed higher level of neddylation, and potential substrate proteins undergoing neddylation modification were identified through immunoprecipitation and mass spectrometry. The tetracaine treatment could reduce drug resistance via neddylation signaling pathway inactivation in melanoma cells. These findings demonstrate that tetracaine effectively inhibits cell proliferation and alleviates vemurafenib resistance in melanoma by suppressing the neddylation signaling pathway, providing a promising avenue for controlling cancer progression.
Collapse
Affiliation(s)
- Xiang Huang
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, Sichuan Province, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, Sichuan Province, China
- Department of Anesthesiology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou Province, China
| | - Peng Yi
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, Sichuan Province, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, Sichuan Province, China
| | - Wanrong Gou
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, Sichuan Province, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, Sichuan Province, China
| | - Ran Zhang
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, Sichuan Province, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, Sichuan Province, China
| | - Chunlin Wu
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, Sichuan Province, China
| | - Li Liu
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, Sichuan Province, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, Sichuan Province, China
| | - Yijing He
- Laboratory of Nervous System Disease and Brain Functions, Clinical Research Institute, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan Province, China
| | - Xian Jiang
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, Sichuan Province, China
- Department of Anesthesiology, Luzhou People's Hospital, Luzhou, 646000, Sichuan Province, China
| | - Jianguo Feng
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, Sichuan Province, China.
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, Sichuan Province, China.
| |
Collapse
|
4
|
Tyagi A, Karapurkar JK, Colaco JC, Sarodaya N, Antao AM, Kaushal K, Haq S, Chandrasekaran AP, Das S, Singh V, Hong SH, Suresh B, Kim KS, Ramakrishna S. USP19 Negatively Regulates p53 and Promotes Cervical Cancer Progression. Mol Biotechnol 2024; 66:2032-2045. [PMID: 37572221 DOI: 10.1007/s12033-023-00814-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 06/29/2023] [Indexed: 08/14/2023]
Abstract
p53 is a tumor suppressor gene activated in response to cellular stressors that inhibits cell cycle progression and induces pro-apoptotic signaling. The protein level of p53 is well balanced by the action of several E3 ligases and deubiquitinating enzymes (DUBs). Several DUBs have been reported to negatively regulate and promote p53 degradation in tumors. In this study, we identified USP19 as a negative regulator of p53 protein level. We demonstrate a direct interaction between USP19 and p53 by pull down assay. The overexpression of USP19 promoted ubiquitination of p53 and reduced its protein half-life. We also demonstrate that CRISPR/Cas9-mediated knockout of USP19 in cervical cancer cells elevates p53 protein levels, resulting in reduced colony formation, cell migration, and cell invasion. Overall, our results indicate that USP19 negatively regulates p53 protein levels in cervical cancer progression.
Collapse
Affiliation(s)
- Apoorvi Tyagi
- Graduate School of Biomedical Science and Engineering, Hanyang University, 04763, Seoul, South Korea
| | | | - Jencia Carminha Colaco
- Graduate School of Biomedical Science and Engineering, Hanyang University, 04763, Seoul, South Korea
| | - Neha Sarodaya
- Graduate School of Biomedical Science and Engineering, Hanyang University, 04763, Seoul, South Korea
| | - Ainsley Mike Antao
- Graduate School of Biomedical Science and Engineering, Hanyang University, 04763, Seoul, South Korea
| | - Kamini Kaushal
- Graduate School of Biomedical Science and Engineering, Hanyang University, 04763, Seoul, South Korea
| | - Saba Haq
- Department of Life Science, College of Natural Sciences, Hanyang University, 04763, Seoul, South Korea
| | | | - Soumyadip Das
- Graduate School of Biomedical Science and Engineering, Hanyang University, 04763, Seoul, South Korea
| | - Vijai Singh
- Department of Biosciences, School of Science, Rajpur, Indrashil University, 382715, Mehsana, Gujarat, India
| | - Seok-Ho Hong
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Bharathi Suresh
- Graduate School of Biomedical Science and Engineering, Hanyang University, 04763, Seoul, South Korea.
| | - Kye-Seong Kim
- Graduate School of Biomedical Science and Engineering, Hanyang University, 04763, Seoul, South Korea.
- College of Medicine, Hanyang University, 04763, Seoul, South Korea.
| | - Suresh Ramakrishna
- Graduate School of Biomedical Science and Engineering, Hanyang University, 04763, Seoul, South Korea
- College of Medicine, Hanyang University, 04763, Seoul, South Korea
| |
Collapse
|
5
|
Wang R, Li X, Gan Y, Liao J, Han S, Li W, Deng G. Dioscin inhibits non-small cell lung cancer cells and activates apoptosis by downregulation of Survivin. J Cancer 2024; 15:1366-1377. [PMID: 38356707 PMCID: PMC10861826 DOI: 10.7150/jca.89831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/22/2023] [Indexed: 02/16/2024] Open
Abstract
Human malignancies exhibit elevated levels of survivin, and have been linked to poor prognosis. Targeting survivin expression is a promising therapeutic strategy against cancer cells. Natural compounds have become a hot topic in research due to their non-toxic, non-invasive, and efficient treatment of multiple diseases. In this current investigation, it was discovered that Dioscin, as a natural compound, exerted profound antitumor activity against NSCLC cell lines, inhibiting NSCLC cell viability and promoting apoptosis. Further mechanistic studies showed that Dioscin promoted ubiquitination-mediated survivin degradation via strengthening the interaction between survivin and the E3 ubiquitin ligase Fbxl7. Furthermore, Dioscin exhibited a strong tumor suppressive effect in xenograft tumor models, and Dioscin treatment led to a notable decrease in tumor volume and weight. Based on our findings, Dioscin is expected to be a potential antitumor agent for non-small cell lung cancer treatment.
Collapse
Affiliation(s)
- Ruirui Wang
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, China
| | - Xiaoying Li
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, China
| | - Yu Gan
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, China
| | - Jinzhuang Liao
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, China
| | - Shuangze Han
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, China
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Wei Li
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, China
| | - Gaoyan Deng
- Department of Thoracic Surgery, Hunan Chest Hospital, Changsha 410013, Hunan, China
| |
Collapse
|
6
|
Liao J, Qing X, Li X, Gan Y, Wang R, Han S, Li W, Song W. TRAF4 regulates ubiquitination-modulated survivin turnover and confers radioresistance. Int J Biol Sci 2024; 20:182-199. [PMID: 38164179 PMCID: PMC10750280 DOI: 10.7150/ijbs.87180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 10/09/2023] [Indexed: 01/03/2024] Open
Abstract
Nasopharyngeal carcinoma (NPC) is the most common cancer originating in the nasopharynx. Despite continuous improvement in treatment strategies, recurrence or persistence of cancer after radiotherapy is still inevitable, highlighting the need to identify therapeutic resistance factors and develop effective methods for NPC treatment. Herein, we found that TRAF4 is overexpressed in NPC cells and tissues. Knockdown TRAF4 significantly increased the radiosensitivity of NPC cells, possibly by inhibiting the Akt/Wee1/CDK1 axis, thereby suppressing survivin phosphorylation and promoting its degradation by FBXL7. TRAF4 is positively correlated with p-Akt and survivin in NPC tissues. High protein levels of TRAF4 were observed in acquired radioresistant NPC cells, and knockdown of TRAF4 overcomes radioresistant in vitro and the xenograft mouse model. Altogether, our study highlights the TRAF4-survivin axis as a potential therapeutic target for radiosensitization in NPC.
Collapse
Affiliation(s)
- Jinzhuang Liao
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, China
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, China
| | - Xiang Qing
- Department of Otolaryngology Head and Neck Surgery, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, China
| | - Xiaoying Li
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, China
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, China
| | - Yu Gan
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, China
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, China
| | - Ruirui Wang
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, China
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, China
| | - Shuangze Han
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, China
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, China
| | - Wei Li
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, China
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, China
| | - Wei Song
- Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, 410005, China
| |
Collapse
|
7
|
Li X, Liang Q, Zhou L, Deng G, Xiao Y, Gan Y, Han S, Liao J, Wang R, Qing X, Li W. Survivin degradation by bergenin overcomes pemetrexed resistance. Cell Oncol (Dordr) 2023; 46:1837-1853. [PMID: 37542022 DOI: 10.1007/s13402-023-00850-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2023] [Indexed: 08/06/2023] Open
Abstract
PURPOSE Chemoresistance is a primary factor for treatment failure and tumor recurrence in non-small cell lung cancer (NSCLC) patients. The oncoprotein survivin is commonly upregulated in human malignancies and is associated with poor prognosis, but its effect on carcinogenesis and chemoresistance in NSCLC is not yet evident, and to explore an effective inhibitor targeting survivin expression is urgently needed. METHODS The protumor characteristics of survivin and antitumor activities of bergenin in NSCLC cells were examined by MTS, colony formation assays, immunoblot, immunohistochemistry, and in vivo xenograft development. RESULTS Survivin was upregulated in non-small cell lung cancer (NSCLC) tissues, while its depletion inhibited NSCLC tumorigenesis. The current study focused on bergenin, identifying its effective antitumor effect on NSCLC cells both in vivo and in vitro. The results showed that bergenin could inhibit cell proliferation and induce the intrinsic pathway of apoptosis via downregulating survivin. Mechanistically, bergenin reduced the phosphorylation of survivin via inhibiting the Akt/Wee1/CDK1 signaling pathway, thus resulting in enhanced interaction between survivin and E3 ligase Fbxl7 to promote survivin ubiquitination and degradation. Furthermore, bergenin promoted chemoresistance in NSCLC cells re-sensitized to pemetrexed treatment. CONCLUSIONS Survivin overexpression is required for maintaining multiple malignant phenotypes of NSCLC cells. Bergenin exerts a potent antitumor effect on NSCLC via targeting survivin, rendering it a promising agent for the treatment of NSCLC.
Collapse
Affiliation(s)
- Xiaoying Li
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, People's Republic of China
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, People's Republic of China
| | - Qi Liang
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, People's Republic of China
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, People's Republic of China
| | - Li Zhou
- Department of Pathology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, People's Republic of China
| | - Gaoyan Deng
- Department of Thoracic Surgery, Hunan Chest Hospital, Changsha, Hunan, 410006, People's Republic of China
| | - Yeqing Xiao
- Department of Ultrasonography, Hunan Chest Hospital, Changsha, Hunan, 410006, People's Republic of China
| | - Yu Gan
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, People's Republic of China
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, People's Republic of China
| | - Shuangze Han
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, People's Republic of China
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, People's Republic of China
| | - Jinzhuang Liao
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, People's Republic of China
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, People's Republic of China
| | - Ruirui Wang
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, People's Republic of China
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, People's Republic of China
| | - Xiang Qing
- Department of Otolaryngology Head and Neck Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, People's Republic of China.
| | - Wei Li
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, People's Republic of China.
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, People's Republic of China.
| |
Collapse
|
8
|
Chen H, Xu N, Xu J, Zhang C, Li X, Xu H, Zhu W, Li J, Liang D, Zhou W. A risk signature based on endoplasmic reticulum stress-associated genes predicts prognosis and immunity in pancreatic cancer. Front Mol Biosci 2023; 10:1298077. [PMID: 38106991 PMCID: PMC10721979 DOI: 10.3389/fmolb.2023.1298077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/15/2023] [Indexed: 12/19/2023] Open
Abstract
Introduction: The involvement of endoplasmic reticulum (ER) stress in cancer biology is increasingly recognized, yet its role in pancreatic cancer (PC) remains unclear. This study aims to elucidate the impact of ER stress on prognosis and biological characteristics in PC patients. Methods: A bioinformatic analysis was conducted using RNA-seq data and clinicopathological information from PC patients in the TCGA and ICGC databases. The ER stress-associated gene sets were extracted from MSigDB. ER stress-associated genes closely linked with overall survival (OS) of PC patients were identified via log-rank test and univariate Cox analysis, and further narrowed by LASSO method. A risk signature associated with ER stress was formulated using multivariate Cox regression and assessed through Kaplan-Meier curves, receiver operating characteristic (ROC) analyses, and Harrell's concordance index. External validation was performed with the ICGC cohort. The single-sample gene-set enrichment analysis (ssGSEA) algorithm appraised the immune cell infiltration landscape. Results: Worse OS in PC patients with high-risk signature score was observed. Multivariate analysis underscored our ER stress-associated signature as a valuable and independent predictor of prognosis. Importantly, these results based on TCGA were further validated in ICGC dataset. In addition, our risk signature was closely associated with homeostasis, protein secretion, and immune regulation in PC patients. In particular, PC microenvironment in the high-risk cluster exhibited a more immunosuppressive status. At last, we established a nomogram model by incorporating the risk signature and clinicopathological parameters, which behaves better in predicting prognosis of PC patients. Discussion: This comprehensive molecular analysis presents a new predictive model for the prognosis of PC patients, highlighting ER stress as a potential therapeutic target. Besides, the findings indicate that ER stress can have effect modulating PC immune responses.
Collapse
Affiliation(s)
- Haofei Chen
- The Second Clinical Medical School, Lanzhou University, Lanzhou, China
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, China
| | - Ning Xu
- The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jia Xu
- Wuhan Blood Center, Wuhan, China
| | - Cheng Zhang
- The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xin Li
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, China
| | - Hao Xu
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China
| | - Weixiong Zhu
- The Second Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Jinze Li
- Department of Gastrointestinal Surgery, The Third People’s Hospital of Hubei Province, Wuhan, China
| | - Daoming Liang
- The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Wence Zhou
- The Second Clinical Medical School, Lanzhou University, Lanzhou, China
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
9
|
Tian Z, Xu C, He W, Lin Z, Zhang W, Tao K, Ding R, Zhang X, Dou K. The deubiquitinating enzyme USP19 facilitates hepatocellular carcinoma progression through stabilizing YAP. Cancer Lett 2023; 577:216439. [PMID: 37832781 DOI: 10.1016/j.canlet.2023.216439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/29/2023] [Accepted: 10/05/2023] [Indexed: 10/15/2023]
Abstract
Hippo pathway plays a crucial role in the progression of hepatocellular carcinoma (HCC), and yes-associated protein (YAP) is one of the major factors of the Hippo pathway. However, the mechanism of abnormal YAP activation in HCC has not been well elucidated. Here, we screened a Deubiquitinating enzymes' (DUB) siRNA library targeting DUBs, and identified Ubiquitin Specific Peptidase 19 (USP19) as a specific deubiquitinating enzyme of YAP in HCC, which could stabilize YAP at K76 and K90 sites via removing the K48- and K11-linked ubiquitin chains. USP19 knockdown decreased the expression of YAP protein and its target gene (CTGF, CYR61, ANKRD1) expression. Through substantial in vivo and in vitro experiments, we prove that USP19 facilities the proliferation and migration of HCC. More importantly, we found that USP19 was upregulated in HCC tissues and associated with poor prognosis. In general, our research revealed a novel post-translational mechanism between USP19 and YAP in HCC, suggesting that USP19 may be a pivotal therapeutic target for HCC treatment.
Collapse
Affiliation(s)
- Zelin Tian
- Department of Hepatobiliary Surgery, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Chen Xu
- Department of Hepatobiliary Surgery, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Weixiang He
- Department of Urology, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Zhibin Lin
- Department of Hepatobiliary Surgery, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Wenjie Zhang
- Department of Hepatobiliary Surgery, Xijing Hospital, Air Force Medical University, Xi'an, China; Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi'an, China
| | - Kaishan Tao
- Department of Hepatobiliary Surgery, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Rui Ding
- Department of Hepatobiliary Surgery, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Xuan Zhang
- Department of Hepatobiliary Surgery, Xijing Hospital, Air Force Medical University, Xi'an, China.
| | - Kefeng Dou
- Department of Hepatobiliary Surgery, Xijing Hospital, Air Force Medical University, Xi'an, China.
| |
Collapse
|
10
|
Liang K, Wang Q, Qiu L, Gong X, Chen Z, Zhang H, Ding K, Liu Y, Wei J, Lin S, Fu S, Du H. Combined Inhibition of UBE2C and PLK1 Reduce Cell Proliferation and Arrest Cell Cycle by Affecting ACLY in Pan-Cancer. Int J Mol Sci 2023; 24:15658. [PMID: 37958642 PMCID: PMC10650476 DOI: 10.3390/ijms242115658] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Various studies have shown that the cell-cycle-related regulatory proteins UBE2C, PLK1, and BIRC5 promote cell proliferation and migration in different types of cancer. However, there is a lack of in-depth and systematic research on the mechanism of these three as therapeutic targets. In this study, we found a positive correlation between the expression of UBE2C and PLK1/BIRC5 in the Cancer Genome Atlas (TCGA) database, revealing a potential combination therapy candidate for pan-cancer. Quantitative real-time PCR (qRT-PCR), Western blotting (WB), cell phenotype detection, and RNA-seq techniques were used to evidence the effectiveness of the combination candidate. We found that combined interference of UBE2C with PLK1 and UBE2C with BIRC5 affected metabolic pathways by significantly downregulating the mRNA expression of IDH1 and ACLY, which was related to the synthesis of acetyl-CoA. By combining the PLK1 inhibitor volasertib and the ACLY inhibitor bempedoic acid, it showed a higher synergistic inhibition of cell viability and higher synergy scores in seven cell lines, compared with those of other combination treatments. Our study reveals the potential mechanisms through which cell-cycle-related genes regulate metabolism and proposes a potential combined targeted therapy for patients with higher PLK1 and ACLY expression in pan-cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Hongli Du
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; (K.L.); (Q.W.); (L.Q.); (X.G.); (Z.C.); (H.Z.); (K.D.); (Y.L.); (J.W.); (S.L.); (S.F.)
| |
Collapse
|
11
|
Liao J, Qing X, Deng G, Xiao Y, Fu Y, Han S, Li X, Gan Y, Li W. Gastrodin destabilizes survivin and overcomes pemetrexed resistance. Cell Signal 2023; 110:110851. [PMID: 37586466 DOI: 10.1016/j.cellsig.2023.110851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/01/2023] [Accepted: 08/13/2023] [Indexed: 08/18/2023]
Abstract
Survivin is a bifunctional protein that plays crucial roles in tumorigenesis. In the present study, we discovered that the natural product gastrodin suppressed the cell viability and colony formation of non-small cell lung cancer (NSCLC) cell lines A549, HCC827, and H460 in a dose-dependent manner. In addition, gastrodin enhanced the protein levels of cleaved-caspase 3 by activating the endogenous mitochondrial apoptosis pathway. Gastrodin inhibits protein kinase B (Akt)/WEE1/cyclin-dependent kinase 1 (CDK1) signaling to downregulate survivin Thr34 phosphorylation. Survivin Thr34 dephosphorylation caused by gastrodin interfered with the binding of ubiquitin-specific protease 19 (USP19), which eventually destabilized survivin. We revealed that the growth of NSCLC xenograft tumors was markedly suppressed by gastrodin in vivo. Furthermore, gastrodin overcomes pemetrexed resistance in vivo or in vitro. Our results suggest that gastrodin is a potential antitumor agent by reducing survivin in NSCLC.
Collapse
Affiliation(s)
- Jinzhuang Liao
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China; Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xiang Qing
- Department of Otolaryngology Head and Neck Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, China
| | - Gaoyan Deng
- Department of Thoracic Surgery, Hunan Chest Hospital, Changsha, Hunan, China
| | - Yeqing Xiao
- Department of Ultrasonography, Hunan Chest Hospital, Changsha, Hunan, China
| | - Yaqian Fu
- Xiangya Nursing School, Central South University, Changsha, Hunan, China
| | - Shuangze Han
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China; Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xiaoying Li
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China; Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yu Gan
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China; Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Wei Li
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China; Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China.
| |
Collapse
|
12
|
Lee TG, Woo SM, Seo SU, Kim S, Park JW, Chang YC, Kwon TK. Inhibition of USP2 Enhances TRAIL-Mediated Cancer Cell Death through Downregulation of Survivin. Int J Mol Sci 2023; 24:12816. [PMID: 37628997 PMCID: PMC10454696 DOI: 10.3390/ijms241612816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Ubiquitin-specific protease 2 (USP2) is a deubiquitinase belonging to the USPs subfamily. USP2 has been known to display various biological effects including tumorigenesis and inflammation. Therefore, we aimed to examine the sensitization effect of USP2 in TRAIL-mediated apoptosis. The pharmacological inhibitor (ML364) and siRNA targeting USP2 enhanced TNF-related apoptosis-inducing ligand (TRAIL)-induced cancer cell death, but not normal cells. Mechanistically, USP2 interacted with survivin, and ML364 degraded survivin protein expression by increasing the ubiquitination of survivin. Overexpression of survivin or USP2 significantly prevented apoptosis through cotreatment with ML364 and TRAIL, whereas a knockdown of USP2 increased sensitivity to TRAIL. Taken together, our data suggested that ML364 ubiquitylates and degrades survivin, thereby increasing the reactivity to TRAIL-mediated apoptosis in cancer cells.
Collapse
Affiliation(s)
- Tak Gyeom Lee
- Department of Immunology, School of Medicine, Keimyung University, Daegu 42601, Republic of Korea; (T.G.L.); (S.M.W.); (S.U.S.); (S.K.); (J.-W.P.)
| | - Seon Min Woo
- Department of Immunology, School of Medicine, Keimyung University, Daegu 42601, Republic of Korea; (T.G.L.); (S.M.W.); (S.U.S.); (S.K.); (J.-W.P.)
| | - Seung Un Seo
- Department of Immunology, School of Medicine, Keimyung University, Daegu 42601, Republic of Korea; (T.G.L.); (S.M.W.); (S.U.S.); (S.K.); (J.-W.P.)
| | - Shin Kim
- Department of Immunology, School of Medicine, Keimyung University, Daegu 42601, Republic of Korea; (T.G.L.); (S.M.W.); (S.U.S.); (S.K.); (J.-W.P.)
| | - Jong-Wook Park
- Department of Immunology, School of Medicine, Keimyung University, Daegu 42601, Republic of Korea; (T.G.L.); (S.M.W.); (S.U.S.); (S.K.); (J.-W.P.)
| | - Young-Chae Chang
- Research Institute of Biomedical Engineering and Department of Cell Biology, School of Medicine, Catholic University of Daegu, Daegu 42472, Republic of Korea;
| | - Taeg Kyu Kwon
- Department of Immunology, School of Medicine, Keimyung University, Daegu 42601, Republic of Korea; (T.G.L.); (S.M.W.); (S.U.S.); (S.K.); (J.-W.P.)
- Center for Forensic Pharmaceutical Science, Keimyung University, Daegu 42601, Republic of Korea
| |
Collapse
|
13
|
Li M, Zhao Q, Liao J, Wang X, Liu L, Zhang X, Liu L, Liu H, Zhang S. Dioscin inhibiting EGFR-mediated Survivin expression promotes apoptosis in oral squamous cell carcinoma cells. J Cancer 2023; 14:2027-2038. [PMID: 37497406 PMCID: PMC10367921 DOI: 10.7150/jca.85011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/10/2023] [Indexed: 07/28/2023] Open
Abstract
Overexpression of survivin plays a crucial role in tumorigenesis and correlates with poor prognosis in human malignancies, including oral squamous cell carcinoma (OSCC). Thus, survivin has been proposed as an attractive target for new antitumor interventions. In the present study, we found that a natural compound, Dioscin, inhibited OSCC cells by reducing the survivin protein level and activating apoptotic signaling. Dioscin inhibits survivin expression by interrupting EGFR binding to the AT-rich sequences (ATRSs) at the survivin promoter, eventually promoting survivin-mediated cell apoptosis. The in vivo study showed that Dioscin suppressed the tumor development of SCC25 cells. Furthermore, the immunohistochemistry (IHC) results revealed that treated with Dioscin reduced the protein levels of EGFR and survivin in SCC25 xenograft tumors. Overall, our findings indicate that targeting the EGFR-survivin axis might be a promising OSCC treatment strategy.
Collapse
Affiliation(s)
- Ming Li
- Changsha Stomatological Hospital, Changsha, Hunan 410004, China
- School of Stomatology, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Qin Zhao
- Changsha Stomatological Hospital, Changsha, Hunan 410004, China
- School of Stomatology, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Jinzhuang Liao
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, China
| | - Xiaocong Wang
- Changsha Stomatological Hospital, Changsha, Hunan 410004, China
- School of Stomatology, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Lulu Liu
- Changsha Stomatological Hospital, Changsha, Hunan 410004, China
- School of Stomatology, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Xiaoyue Zhang
- Changsha Stomatological Hospital, Changsha, Hunan 410004, China
- School of Stomatology, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Lijun Liu
- Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Haidan Liu
- Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Shusheng Zhang
- Changsha Stomatological Hospital, Changsha, Hunan 410004, China
- School of Stomatology, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| |
Collapse
|
14
|
Karapurkar JK, Kim MS, Colaco JC, Suresh B, Sarodaya N, Kim DH, Park CH, Hong SH, Kim KS, Ramakrishna S. CRISPR/Cas9-based genome-wide screening of the deubiquitinase subfamily identifies USP3 as a protein stabilizer of REST blocking neuronal differentiation and promotes neuroblastoma tumorigenesis. J Exp Clin Cancer Res 2023; 42:121. [PMID: 37170124 PMCID: PMC10176696 DOI: 10.1186/s13046-023-02694-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 05/01/2023] [Indexed: 05/13/2023] Open
Abstract
BACKGROUND The repressor element-1 silencing transcription factor (REST), a master transcriptional repressor, is essential for maintenance, self-renewal, and differentiation in neuroblastoma. An elevated expression of REST is associated with impaired neuronal differentiation, which results in aggressive neuroblastoma formation. E3 ligases are known to regulate REST protein abundance through the 26 S proteasomal degradation pathway in neuroblastoma. However, deubiquitinating enzymes (DUBs), which counteract the function of E3 ligase-mediated REST protein degradation and their impact on neuroblastoma tumorigenesis have remained unexplored. METHODS We employed a CRISPR/Cas9 system to perform a genome-wide knockout of ubiquitin-specific proteases (USPs) and used western blot analysis to screen for DUBs that regulate REST protein abundance. The interaction between USP3 and REST was confirmed by immunoprecipitation and Duolink in situ proximity assays. The deubiquitinating effect of USP3 on REST protein degradation, half-life, and neuronal differentiation was validated by immunoprecipitation, in vitro deubiquitination, protein-turnover, and immunostaining assays. The correlation between USP3 and REST expression was assessed using patient neuroblastoma datasets. The USP3 gene knockout in neuroblastoma cells was performed using CRISPR/Cas9, and the clinical relevance of USP3 regulating REST-mediated neuroblastoma tumorigenesis was confirmed by in vitro and in vivo oncogenic experiments. RESULTS We identified a deubiquitinase USP3 that interacts with, stabilizes, and increases the half-life of REST protein by counteracting its ubiquitination in neuroblastoma. An in silico analysis showed a correlation between USP3 and REST in multiple neuroblastoma cell lines and identified USP3 as a prognostic marker for overall survival in neuroblastoma patients. Silencing of USP3 led to a decreased self-renewal capacity and promoted retinoic acid-induced differentiation in neuroblastoma. A loss of USP3 led to attenuation of REST-mediated neuroblastoma tumorigenesis in a mouse xenograft model. CONCLUSION The findings of this study indicate that USP3 is a critical factor that blocks neuronal differentiation, which can lead to neuroblastoma. We envision that targeting USP3 in neuroblastoma tumors might provide an effective therapeutic differentiation strategy for improved survival rates of neuroblastoma patients.
Collapse
Affiliation(s)
| | - Min-Seong Kim
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, 04763, South Korea
| | - Jencia Carminha Colaco
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, 04763, South Korea
| | - Bharathi Suresh
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, 04763, South Korea
| | - Neha Sarodaya
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, 04763, South Korea
| | - Dong-Ho Kim
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, 04763, South Korea
| | - Chang-Hwan Park
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, 04763, South Korea
- College of Medicine, Hanyang University, Seoul, 04763, South Korea
| | - Seok-Ho Hong
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Kye-Seong Kim
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, 04763, South Korea.
- College of Medicine, Hanyang University, Seoul, 04763, South Korea.
| | - Suresh Ramakrishna
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, 04763, South Korea.
- College of Medicine, Hanyang University, Seoul, 04763, South Korea.
| |
Collapse
|