1
|
Pitetzis D, Frantzidis C, Psoma E, Ketseridou SN, Deretzi G, Kalogera-Fountzila A, Bamidis PD, Spilioti M. The Pre-Interictal Network State in Idiopathic Generalized Epilepsies. Brain Sci 2023; 13:1671. [PMID: 38137119 PMCID: PMC10741409 DOI: 10.3390/brainsci13121671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 11/24/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023] Open
Abstract
Generalized spike wave discharges (GSWDs) are the typical electroencephalographic findings of Idiopathic Generalized Epilepsies (IGEs). These discharges are either interictal or ictal and recent evidence suggests differences in their pathogenesis. The aim of this study is to investigate, through functional connectivity analysis, the pre-interictal network state in IGEs, which precedes the formation of the interictal GSWDs. A high-density electroencephalogram (HD-EEG) was recorded in twenty-one patients with IGEs, and cortical connectivity was analyzed based on lagged coherence and individual anatomy. Graph theory analysis was used to estimate network features, assessed using the characteristic path length and clustering coefficient. The functional connectivity analysis identified two distinct networks during the pre-interictal state. These networks exhibited reversed connectivity attributes, reflecting synchronized activity at 3-4 Hz (delta2), and desynchronized activity at 8-10.5 Hz (alpha1). The delta2 network exhibited a statistically significant (p < 0.001) decrease in characteristic path length and an increase in the mean clustering coefficient. In contrast, the alpha1 network showed opposite trends in these features. The nodes influencing this state were primarily localized in the default mode network (DMN), dorsal attention network (DAN), visual network (VIS), and thalami. In conclusion, the coupling of two networks defined the pre-interictal state in IGEs. This state might be considered as a favorable condition for the generation of interictal GSWDs.
Collapse
Affiliation(s)
- Dimitrios Pitetzis
- Department of Neurology, Papageorgiou General Hospital, 56403 Thessaloniki, Greece;
- Lab of Medical Physics and Digital Innovation, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (C.F.); (S.N.K.); (P.D.B.)
| | - Christos Frantzidis
- Lab of Medical Physics and Digital Innovation, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (C.F.); (S.N.K.); (P.D.B.)
- School of Computer Science, University of Lincoln, Lincoln LN6 7TS, UK
| | - Elizabeth Psoma
- Department of Radiology, AHEPA General Hospital, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (E.P.); (A.K.-F.)
| | - Smaranda Nafsika Ketseridou
- Lab of Medical Physics and Digital Innovation, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (C.F.); (S.N.K.); (P.D.B.)
| | - Georgia Deretzi
- Department of Neurology, Papageorgiou General Hospital, 56403 Thessaloniki, Greece;
| | - Anna Kalogera-Fountzila
- Department of Radiology, AHEPA General Hospital, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (E.P.); (A.K.-F.)
| | - Panagiotis D. Bamidis
- Lab of Medical Physics and Digital Innovation, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (C.F.); (S.N.K.); (P.D.B.)
| | - Martha Spilioti
- 1st Department of Neurology, AHEPA General Hospital, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece;
| |
Collapse
|
2
|
How Functional Connectivity Measures Affect the Outcomes of Global Neuronal Network Characteristics in Patients with Schizophrenia Compared to Healthy Controls. Brain Sci 2023; 13:brainsci13010138. [PMID: 36672119 PMCID: PMC9856389 DOI: 10.3390/brainsci13010138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/24/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Modern computational solutions used in the reconstruction of the global neuronal network arrangement seem to be particularly valuable for research on neuronal disconnection in schizophrenia. However, the vast number of algorithms used in these analyses may be an uncontrolled source of result inconsistency. Our study aimed to verify to what extent the characteristics of the global network organization in schizophrenia depend on the inclusion of a given type of functional connectivity measure. Resting-state EEG recordings from schizophrenia patients and healthy controls were collected. Based on these data, two identical procedures of graph-theory-based network arrangements were computed twice using two different functional connectivity measures (phase lag index, PLI, and phase locking value, PLV). Two series of between-group comparisons regarding global network parameters calculated on the basis of PLI or PLV gave contradictory results. In many cases, the values of a given network index based on PLI were higher in the patients, and the results based on PLV were lower in the patients than in the controls. Additionally, selected network measures were significantly different within the patient group when calculated from PLI or PLV. Our analysis shows that the selection of FC measures significantly affects the parameters of graph-theory-based neuronal network organization and might be an important source of disagreement in network studies on schizophrenia.
Collapse
|
3
|
Zhang J, Villringer A, Nikulin VV. Dopaminergic Modulation of Local Non-oscillatory Activity and Global-Network Properties in Parkinson's Disease: An EEG Study. Front Aging Neurosci 2022; 14:846017. [PMID: 35572144 PMCID: PMC9106139 DOI: 10.3389/fnagi.2022.846017] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/31/2022] [Indexed: 11/13/2022] Open
Abstract
Dopaminergic medication for Parkinson's disease (PD) modulates neuronal oscillations and functional connectivity (FC) across the basal ganglia-thalamic-cortical circuit. However, the non-oscillatory component of the neuronal activity, potentially indicating a state of excitation/inhibition balance, has not yet been investigated and previous studies have shown inconsistent changes of cortico-cortical connectivity as a response to dopaminergic medication. To further elucidate changes of regional non-oscillatory component of the neuronal power spectra, FC, and to determine which aspects of network organization obtained with graph theory respond to dopaminergic medication, we analyzed a resting-state electroencephalography (EEG) dataset including 15 PD patients during OFF and ON medication conditions. We found that the spectral slope, typically used to quantify the broadband non-oscillatory component of power spectra, steepened particularly in the left central region in the ON compared to OFF condition. In addition, using lagged coherence as a FC measure, we found that the FC in the beta frequency range between centro-parietal and frontal regions was enhanced in the ON compared to the OFF condition. After applying graph theory analysis, we observed that at the lower level of topology the node degree was increased, particularly in the centro-parietal area. Yet, results showed no significant difference in global topological organization between the two conditions: either in global efficiency or clustering coefficient for measuring global and local integration, respectively. Interestingly, we found a close association between local/global spectral slope and functional network global efficiency in the OFF condition, suggesting a crucial role of local non-oscillatory dynamics in forming the functional global integration which characterizes PD. These results provide further evidence and a more complete picture for the engagement of multiple cortical regions at various levels in response to dopaminergic medication in PD.
Collapse
Affiliation(s)
- Juanli Zhang
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Department of Neurology, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Arno Villringer
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Department of Cognitive Neurology, University Hospital Leipzig, Leipzig, Germany
| | - Vadim V. Nikulin
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Neurophysics Group, Department of Neurology, Charité – Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|