1
|
Zhao X, Du Y, Yao Y, Dai W, Yin Y, Wang G, Li Y, Zhang L. Psilocybin promotes neuroplasticity and induces rapid and sustained antidepressant-like effects in mice. J Psychopharmacol 2024; 38:489-499. [PMID: 38680011 DOI: 10.1177/02698811241249436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
BACKGROUND Psilocybin offers new hope for treating mood disorders due to its rapid and sustained antidepressant effects, as standard medications require weeks or months to exert their effects. However, the mechanisms underlying this action of psilocybin have not been identified. AIMS To investigate whether psilocybin has rapid and sustained antidepressant-like effects in mice and investigate whether its potential mechanisms of action are related to promoted neuroplasticity. METHODS We first examined the antidepressant-like effects of psilocybin in normal mice by the forced swimming test and in chronic corticosterone (CORT)-exposed mice by the sucrose preference test and novelty-suppressed feeding test. Furthermore, to explore the role of neuroplasticity in mediating the antidepressant-like effects of psilocybin, we measured structural neuroplasticity and neuroplasticity-associated protein levels in the prefrontal cortex (PFC) and hippocampus. RESULTS We observed that a single dose of psilocybin had rapid and sustained antidepressant-like effects in both healthy mice and chronic CORT-exposed mice. Moreover, psilocybin ameliorated chronic CORT exposure-induced inhibition of neuroplasticity in the PFC and hippocampus, including by increasing neuroplasticity (total number of dendritic branches and dendritic spine density), synaptic protein (p-GluA1, PSD95 and synapsin-1) levels, BDNF-mTOR signalling pathway activation (BDNF, TrkB and mTOR levels), and promoting neurogenesis (number of DCX-positive cells). CONCLUSIONS Our results demonstrate that psilocybin elicits robust, rapid and sustained antidepressant-like effects which is accompanied by the promotion of neuroplasticity in the PFC and hippocampus.
Collapse
Affiliation(s)
- Xiangting Zhao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
- Inner Mongolia Traditional Chinese and Mongolian Medical Research Institute, Hohhot, China
| | - Yingjie Du
- Department of Anaesthesiology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Yishan Yao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Wei Dai
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Yongyu Yin
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Guyan Wang
- Department of Anaesthesiology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Yunfeng Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Liming Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| |
Collapse
|
2
|
Ngoupaye GT, Mokgokong M, Madlala T, Mabandla MV. Alteration of the α5 GABA receptor and 5HTT lead to cognitive deficits associated with major depressive-like behaviors in a 14-day combined stress rat model. Int J Neurosci 2023; 133:959-976. [PMID: 34937496 DOI: 10.1080/00207454.2021.2019033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 07/13/2021] [Accepted: 12/08/2021] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Current models used to study the pathophysiology of major depressive disorder (MDD) are laborious and time consuming. This study examined the effect of a 14-day combined stress model (CS; corticosterone injection and restraint stress) in male Sprague-Dawley rats and also compare the effect of CS versus 28-day corticosterone treatment on depressive-like behaviour and cognitive deficits. MATERIEL AND METHODS Depressive-like behaviours and cognitive deficits were assessed in the forced swim test (FST), sucrose preference (SPT), Morris water maze (MWM) and novel object recognition (NORT) tests. Real-time PCR and ELISA were respectively used to detect expression of the serotonin transporter (5-HTT), serotonin 1 A receptor (5-HT1A), α5 GABAA receptor, and the concentrations of corticosterone (plasma), GABA and acetylcholinesterase (AChE) in the hippocampus and Prefrontal cortex (PFC).Results CS group showed increased immobility time in the FST, time to reach the MWM platform, higher corticosterone level, and increased expressions of hippocampal and PFC 5-HT1A and α5 GABAA receptors, and AChE compared to their control groups. In contrast, reductions in SPT ratio, discrimination index in NORT, time in target quadrant, and hippocampal 5-HTT expression was noted relative to their control group. Compared to the 28-day corticosterone only group, PFC 5-HT1A, Hippocampal 5-HTT were reduced, while PFC 5-HTT, Hippocampal α5 GABAA receptors, and AChE concentrations were higher in the CS group. CONCLUSION Our CS model induced depressive-like behaviour with early cognitive deficits in rats affecting both hippocampus and PFC. The CS model may be useful in investigating new and comprehensive treatment strategies for MDD.
Collapse
Affiliation(s)
- Gwladys Temkou Ngoupaye
- Discipline of Human Physiology, School of Laboratory Medicine & Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
- Department of Animal Biology, Faculty of Science, University of Dschang, Dschang, Cameroon
| | - Makwena Mokgokong
- Discipline of Human Physiology, School of Laboratory Medicine & Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Thobeka Madlala
- Discipline of Human Physiology, School of Laboratory Medicine & Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Musa Vuyisile Mabandla
- Discipline of Human Physiology, School of Laboratory Medicine & Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
3
|
Mendez-David I, David DJ, Deloménie C, Tritschler L, Beaulieu JM, Colle R, Corruble E, Gardier AM, Hen R. A complex relation between levels of adult hippocampal neurogenesis and expression of the immature neuron marker doublecortin. Hippocampus 2023; 33:1075-1093. [PMID: 37421207 DOI: 10.1002/hipo.23568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 05/08/2023] [Accepted: 06/20/2023] [Indexed: 07/10/2023]
Abstract
We investigated the mechanisms underlying the effects of the antidepressant fluoxetine on behavior and adult hippocampal neurogenesis (AHN). After confirming our earlier report that the signaling molecule β-arrestin-2 (β-Arr2) is required for the antidepressant-like effects of fluoxetine, we found that the effects of fluoxetine on proliferation of neural progenitors and survival of adult-born granule cells are absent in the β-Arr2 knockout (KO) mice. To our surprise, fluoxetine induced a dramatic upregulation of the number of doublecortin (DCX)-expressing cells in the β-Arr2 KO mice, indicating that this marker can be increased even though AHN is not. We discovered two other conditions where a complex relationship occurs between the number of DCX-expressing cells compared to levels of AHN: a chronic antidepressant model where DCX is upregulated and an inflammation model where DCX is downregulated. We concluded that assessing the number of DCX-expressing cells alone to quantify levels of AHN can be complex and that caution should be applied when label retention techniques are unavailable.
Collapse
Affiliation(s)
- Indira Mendez-David
- Université Paris-Saclay, UVSQ, Centre de recherche en Epidémiologie et Santé des Populations (CESP), UMR 1018, CESP-Inserm, Team Moods, Faculté de Pharmacie, Bâtiment Henri MOISSAN, Orsay, France
- Department of Psychiatry, Columbia University, New York, New York, USA
- Division of Integrative Neuroscience, New York State Psychiatric Institute, New York, New York, USA
| | - Denis Joseph David
- Université Paris-Saclay, UVSQ, Centre de recherche en Epidémiologie et Santé des Populations (CESP), UMR 1018, CESP-Inserm, Team Moods, Faculté de Pharmacie, Bâtiment Henri MOISSAN, Orsay, France
- Department of Psychiatry, Columbia University, New York, New York, USA
- Division of Integrative Neuroscience, New York State Psychiatric Institute, New York, New York, USA
| | - Claudine Deloménie
- UMS-IPSIT ACTAGen, Inserm, CNRS, Ingénierie et Plateformes au Service de l'Innovation Thérapeutique, Université Paris-Saclay, Bâtiment Henri MOISSAN, Orsay, France
| | - Laurent Tritschler
- Université Paris-Saclay, UVSQ, Centre de recherche en Epidémiologie et Santé des Populations (CESP), UMR 1018, CESP-Inserm, Team Moods, Faculté de Pharmacie, Bâtiment Henri MOISSAN, Orsay, France
| | - Jean-Martin Beaulieu
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Romain Colle
- CESP, MOODS Team, INSERM UMR 1018, Faculté de Médecine, Univ Paris-Saclay, Le Kremlin Bicêtre, France
- Service Hospitalo-Universitaire de Psychiatrie de Bicêtre, Hôpitaux Universitaires Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Hôpital de Bicêtre, Le Kremlin Bicêtre, France
| | - Emmanuelle Corruble
- CESP, MOODS Team, INSERM UMR 1018, Faculté de Médecine, Univ Paris-Saclay, Le Kremlin Bicêtre, France
- Service Hospitalo-Universitaire de Psychiatrie de Bicêtre, Hôpitaux Universitaires Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Hôpital de Bicêtre, Le Kremlin Bicêtre, France
| | - Alain Michel Gardier
- Université Paris-Saclay, UVSQ, Centre de recherche en Epidémiologie et Santé des Populations (CESP), UMR 1018, CESP-Inserm, Team Moods, Faculté de Pharmacie, Bâtiment Henri MOISSAN, Orsay, France
| | - René Hen
- Department of Psychiatry, Columbia University, New York, New York, USA
- Division of Integrative Neuroscience, New York State Psychiatric Institute, New York, New York, USA
| |
Collapse
|
4
|
Ramadan B, Cabeza L, Cramoisy S, Houdayer C, Andrieu P, Millot JL, Haffen E, Risold PY, Peterschmitt Y. Beneficial effects of prolonged 2-phenylethyl alcohol inhalation on chronic distress-induced anxio-depressive-like phenotype in female mice. Biomed Pharmacother 2022; 151:113100. [PMID: 35597115 DOI: 10.1016/j.biopha.2022.113100] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/10/2022] [Accepted: 05/10/2022] [Indexed: 11/02/2022] Open
Abstract
Chronic distress-induced hypothalamic-pituitary-adrenal axis deregulations have been associated with the development of neuropsychiatric disorders such as anxiety and depression. Currently available drugs treating such pathological conditions have limited efficacy and diverse side effects, revealing the need of new safer strategies. Aromatic plant-based compounds are largely used in herbal medicine due to their therapeutic properties on mood, physiology, and general well-being. The purpose of this study was to investigate the effects of 2-phenylethyl alcohol (PEA), one of the pharmacologically active constituents of rose essential oil, on chronic corticosterone (CORT)-induced behavioral and neurobiological changes in female mice. Animals followed a prolonged PEA inhalation exposure (30 min per day) for 15 consecutive days prior to behavioral evaluation with open-field, forced swim and novelty-suppressed feeding tests. CORT treatment induced an anxio-depressive-like phenotype, evidenced by a reduced locomotor activity in the open-field, and an increased latency to feed in the novelty-suppressed feeding paradigms. To elucidate the neural correlates of our behavioral results, immunohistochemistry was further performed to provide a global map of neural activity based on cerebral cFos expression. The altered feeding behavior was accompanied by a significant decrease in the number of cFos-positive cells in the olfactory bulb, and altered functional brain connectivity as shown by cross-correlation-based network analysis. CORT-induced behavioral and neurobiological alterations were reversed by prolonged PEA inhalation, suggesting a therapeutic action that allows regulating the activity of neural circuits involved in sensory, emotional and feeding behaviors. These findings might contribute to better understand the therapeutic potential of PEA on anxio-depressive symptoms.
Collapse
Affiliation(s)
- Bahrie Ramadan
- Laboratoire de Recherches Intégratives en Neurosciences et Psychologie Cognitive UR-LINC 481, Université de Franche-Comté, Université de B ourgogne - Franche-Comté, Besançon, France.
| | - Lidia Cabeza
- Laboratoire de Recherches Intégratives en Neurosciences et Psychologie Cognitive UR-LINC 481, Université de Franche-Comté, Université de B ourgogne - Franche-Comté, Besançon, France
| | - Stéphanie Cramoisy
- Laboratoire de Recherches Intégratives en Neurosciences et Psychologie Cognitive UR-LINC 481, Université de Franche-Comté, Université de B ourgogne - Franche-Comté, Besançon, France
| | - Christophe Houdayer
- Laboratoire de Recherches Intégratives en Neurosciences et Psychologie Cognitive UR-LINC 481, Université de Franche-Comté, Université de B ourgogne - Franche-Comté, Besançon, France
| | - Patrice Andrieu
- Laboratoire de Recherches Intégratives en Neurosciences et Psychologie Cognitive UR-LINC 481, Université de Franche-Comté, Université de B ourgogne - Franche-Comté, Besançon, France
| | - Jean-Louis Millot
- Laboratoire de Recherches Intégratives en Neurosciences et Psychologie Cognitive UR-LINC 481, Université de Franche-Comté, Université de B ourgogne - Franche-Comté, Besançon, France
| | - Emmanuel Haffen
- Laboratoire de Recherches Intégratives en Neurosciences et Psychologie Cognitive UR-LINC 481, Université de Franche-Comté, Université de B ourgogne - Franche-Comté, Besançon, France; Service de Psychiatrie de l'Adulte, Centre Hospitalier Universitaire de Besançon CHU, Besançon, France; Centre d'Investigation Clinique, CIC-INSERM-1431, Centre Hospitalier Universitaire de Besançon CHU, Besançon, France
| | - Pierre-Yves Risold
- Laboratoire de Recherches Intégratives en Neurosciences et Psychologie Cognitive UR-LINC 481, Université de Franche-Comté, Université de B ourgogne - Franche-Comté, Besançon, France
| | - Yvan Peterschmitt
- Laboratoire de Recherches Intégratives en Neurosciences et Psychologie Cognitive UR-LINC 481, Université de Franche-Comté, Université de B ourgogne - Franche-Comté, Besançon, France.
| |
Collapse
|
5
|
Chen X, Cui W, Liu Z, Ma W, Yang X, Tian T, Yang Y, Xie Y, Liu Y, Lin Y. Positive Neuroplastic Effect of DNA Framework Nucleic Acids on Neuropsychiatric Diseases. ACS MATERIALS LETTERS 2022. [DOI: 10.1021/acsmaterialslett.2c00021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Xingyu Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Weitong Cui
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Zhiqiang Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Wenjuan Ma
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xiao Yang
- Psychiatric Laboratory and Mental Health Centre, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Taoran Tian
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yuting Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yu Xie
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yuhao Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
6
|
Podgorny OV, Gulyaeva NV. Glucocorticoid-mediated mechanisms of hippocampal damage: Contribution of subgranular neurogenesis. J Neurochem 2020; 157:370-392. [PMID: 33301616 DOI: 10.1111/jnc.15265] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/09/2020] [Accepted: 11/30/2020] [Indexed: 12/19/2022]
Abstract
A comprehensive overview of the interplay between glucocorticoids (GCs) and adult hippocampal neurogenesis (AHN) is presented, particularly, in the context of a diseased brain. The effectors of GCs in the dentate gyrus neurogenic niche of the hippocampal are reviewed, and the consequences of the GC signaling on the generation and integration of new neurons are discussed. Recent findings demonstrating how GC signaling mediates impairments of the AHN in various brain pathologies are overviewed. GC-mediated effects on the generation and integration of adult-born neurons in the hippocampal dentate gyrus depend on the nature, severity, and duration of the acting stress factor. GCs realize their effects on the AHN primarily via specific glucocorticoid and mineralocorticoid receptors. Disruption of the reciprocal regulation between the hypothalamic-pituitary-adrenal (HPA) axis and the generation of the adult-born granular neurons is currently considered to be a key mechanism implicating the AHN into the pathogenesis of numerous brain diseases, including those without a direct hippocampal damage. These alterations vary from reduced proliferation of stem and progenitor cells to increased cell death and abnormalities in morphology, connectivity, and localization of young neurons. Although the involvement of the mutual regulation between the HPA axis and the AHN in the pathogenesis of cognitive deficits and mood impairments is evident, several unresolved critical issues are stated. Understanding the details of GC-mediated mechanisms involved in the alterations in AHN could enable the identification of molecular targets for ameliorating pathology-induced imbalance in the HPA axis/AHN mutual regulation to conquer cognitive and psychiatric disturbances.
Collapse
Affiliation(s)
- Oleg V Podgorny
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, Russia.,Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | - Natalia V Gulyaeva
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia.,Research and Clinical Center for Neuropsychiatry of Moscow Healthcare Department, Moscow, Russia
| |
Collapse
|
7
|
Antidepressant and anti-amnesic effects of the aqueous lyophilisate of the leaves of Leptadenia arborea on an animal model of cognitive deficit associated depression. Biomed Pharmacother 2020; 130:110603. [PMID: 34321164 DOI: 10.1016/j.biopha.2020.110603] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 07/25/2020] [Accepted: 08/02/2020] [Indexed: 12/28/2022] Open
Abstract
Leptadenia arborea (Asclepiadaceae) is a plant used in traditional medicine to treat syphilis, migraine, and mental illnesses. The aim of our study was to investigate possible antidepressant and anti-amnesic effects of the aqueous lyophilisate of the leaves of Leptadenia arborea in an animal model of cognitive deficit associated depression. Swiss albino adult mice of both sexes were used for this study. A 14-day combined stress model was used to induce depression with early cognitive deficits. The forced swimming test, the open field test and plasma corticosterone level were used to assess antidepressant-like effect. The novel object recognition task (NORT), the Morris Water Maze (MWM) and neurochemical analysis of hippocampal acetylcholinesterase activity was also carried out to assess memory integrity. The aqueous lyophelisate of L. arborea increased swimming time and decreased immobility time in the forced swimming test. In the open field test they was no difference in the number of lines crossed between groups, and the lyophilisate-treated mice spent more time in the centre compared to the control. The lyophilisate decreased the plasma level of corticosterone compared to the control. The lyophilisate decreased the latency to reach the hidden platform and increased the time spent in the target quadrant in the MWM. The lyophilisate also increased the time of exploration of the novel object in the NORT and decreased the acetylcholinesterase activity in the hippocampus. L. arborea effects were decreased when it was co-administered with pCPA. Results suggest that the aqueous lyophilisate of the leaves of L. arborea possess antidepressant-like and anti-amnesic effects.
Collapse
|
8
|
Comparison of high-intensity interval training and moderate-intensity continuous training in their effects on behavioral functions and CORT levels in streptozotocin-induced diabetic mice. SPORT SCIENCES FOR HEALTH 2020. [DOI: 10.1007/s11332-020-00661-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
9
|
Liu Y, Zou GJ, Tu BX, Hu ZL, Luo C, Cui YH, Xu Y, Li F, Dai RP, Bi FF, Li CQ. Corticosterone Induced the Increase of proBDNF in Primary Hippocampal Neurons Via Endoplasmic Reticulum Stress. Neurotox Res 2020; 38:370-384. [PMID: 32378057 DOI: 10.1007/s12640-020-00201-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 03/28/2020] [Accepted: 04/01/2020] [Indexed: 12/13/2022]
Abstract
Major depression disorder is one of the most common psychiatric disorders that greatly threaten the mental health of a large population worldwide. Previous studies have shown that endoplasmic reticulum (ER) stress plays an important role in the pathophysiology of depression, and current research suggests that brain-derived neurotrophic factor precursor (proBDNF) is involved in the development of depression. However, the relationship between ER and proBDNF in the pathophysiology of depression is not well elucidated. Here, we treated primary hippocampal neurons of mice with corticosterone (CORT) and evaluated the relationship between proBDNF and ERS. Our results showed that CORT induced ERS and upregulated the expression of proBDNF and its receptor, Follistatin-like protein 4 (FSTL4), which contributed to significantly decreased neuronal viability and expression of synaptic-related proteins including NR2A, PSD95, and SYN. Anti-proBDNF neutralization and ISRIB (an inhibitor of the ERS) treatment, respective ly, protected neuronal viabilities and increased the expression of synaptic-related proteins in corticosterone-exposed neurons. ISRIB treatment reduced the expression of proBDNF and FSTL4, whereas anti-proBDNF treatment did not affect ERS markers (Grp78, p-PERK, ATF4) expression. Our study presented evidence that CORT-induced ERS negatively regulated the neuronal viability and the level of synaptic-related protein of primary neurons via the proBDNF/FSTL4 pathway.
Collapse
Affiliation(s)
- Yu Liu
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Tongzipo Road 172, Changsha, 410013, Hunan, China
| | - Guang-Jing Zou
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Tongzipo Road 172, Changsha, 410013, Hunan, China
| | - Bo-Xuan Tu
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Tongzipo Road 172, Changsha, 410013, Hunan, China
| | - Zhao-Lan Hu
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Cong Luo
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Yan-Hui Cui
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Tongzipo Road 172, Changsha, 410013, Hunan, China
| | - Yang Xu
- Institute of Neuroscience, Medical College, University of South China, Hengyang, 421001, Hunan, China
| | - Fang Li
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Tongzipo Road 172, Changsha, 410013, Hunan, China
| | - Ru-Ping Dai
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Fang-Fang Bi
- Department of Neurology, Xiang Ya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - Chang-Qi Li
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Tongzipo Road 172, Changsha, 410013, Hunan, China.
| |
Collapse
|
10
|
Vester AI, Chen M, Marsit CJ, Caudle WM. A Neurodevelopmental Model of Combined Pyrethroid and Chronic Stress Exposure. TOXICS 2019; 7:toxics7020024. [PMID: 31052489 PMCID: PMC6630986 DOI: 10.3390/toxics7020024] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/26/2019] [Accepted: 04/30/2019] [Indexed: 12/14/2022]
Abstract
Attention-deficit hyperactivity disorder (ADHD) is one of the most common neurodevelopmental disorders of childhood and previous studies indicate the dopamine system plays a major role in ADHD pathogenesis. Two environmental exposures independently associated with dopaminergic dysfunction and ADHD risk include exposure to deltamethrin, a pyrethroid insecticide, and chronic stress. We hypothesized that combined neurodevelopmental exposure to both deltamethrin and corticosterone (CORT), the major stress hormone in rodents, would result in additive changes within the dopamine system. To study this, we developed a novel dual exposure paradigm and exposed pregnant C57BL/6 dams to 3 mg/kg deltamethrin through gestation and weaning, and their offspring to 25 μg/mL CORT dissolved in the drinking water through adulthood. Midbrain RNA expression as well as striatal and cortical protein expression of key dopaminergic components were investigated, in addition to ADHD-like behavioral tasks and electrochemical dopamine dynamics via fast-scan cyclic voltammetry. Given the well-described sexual dimorphism of ADHD, males and females were assessed separately. Males exposed to deltamethrin had significantly decreased midbrain Pitx3 expression, decreased cortical tyrosine hydroxylase (TH) expression, increased activity in the Y maze, and increased dopamine uptake rate in the dorsal striatum. These effects did not occur in males exposed to CORT only, or in males exposed to both deltamethrin and CORT, suggesting that CORT may attenuate these effects. Additionally, deltamethrin- and CORT-exposed females did not display these dopaminergic features, which indicates these changes are sex-specific. Our results show dopaminergic changes from the RNA through the functional level. Moreover, these data illustrate the importance of testing multiple environmental exposures together to better understand how combined exposures that occur in certain vulnerable populations could affect similar neurodevelopmental systems, as well as the importance of studying sex differences of these alterations.
Collapse
Affiliation(s)
- Aimée I Vester
- Department of Environmental Health Sciences, Emory University Rollins School of Public Health, Atlanta, GA 30329, USA.
| | - Merry Chen
- Department of Environmental Health Sciences, Emory University Rollins School of Public Health, Atlanta, GA 30329, USA.
| | - Carmen J Marsit
- Department of Environmental Health Sciences, Emory University Rollins School of Public Health, Atlanta, GA 30329, USA.
| | - W Michael Caudle
- Department of Environmental Health Sciences, Emory University Rollins School of Public Health, Atlanta, GA 30329, USA.
- Center for Neurodegenerative Disease, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
11
|
Nicolas S, Debayle D, Béchade C, Maroteaux L, Gay AS, Bayer P, Heurteaux C, Guyon A, Chabry J. Adiporon, an adiponectin receptor agonist acts as an antidepressant and metabolic regulator in a mouse model of depression. Transl Psychiatry 2018; 8:159. [PMID: 30115912 PMCID: PMC6095913 DOI: 10.1038/s41398-018-0210-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 04/11/2018] [Accepted: 05/11/2018] [Indexed: 01/16/2023] Open
Abstract
Major depression is a psychiatric disorder with complex etiology. About 30% of depressive patients are resistant to antidepressants that are currently available, likely because they only target the monoaminergic systems. Thus, identification of novel antidepressants with a larger action spectrum is urgently required. Epidemiological data indicate high comorbidity between metabolic and psychiatric disorders, particularly obesity and depression. We used a well-characterized anxiety/depressive-like mouse model consisting of continuous input of corticosterone for seven consecutive weeks. A panel of reliable behavioral tests were conducted to assessing numerous facets of the depression-like state, including anxiety, resignation, reduced motivation, loss of pleasure, and social withdrawal. Furthermore, metabolic features including weight, adiposity, and plasma biological parameters (lipids, adipokines, and cytokines) were investigated in corticosterone-treated mice. Our data show that chronic administration of corticosterone induced the parallel onset of metabolic and behavioral dysfunctions in mice. AdipoRon, a potent adiponectin receptor agonist, prevented the corticosterone-induced early onset of moderate obesity and metabolic syndromes. Moreover, in all the behavioral tests, daily treatment with AdipoRon successfully reversed the corticosterone-induced depression-like state in mice. AdipoRon exerted its pleiotropic actions on various systems including hippocampal neurogenesis, serotonergic neurotransmission, neuroinflammation, and the tryptophan metabolic pathway, which can explain its antidepressant properties. Our study highlights the pivotal role of the adiponergic system in the development of both metabolic and psychiatric disorders. AdipoRon may constitute a promising novel antidepressant.
Collapse
Affiliation(s)
- Sarah Nicolas
- 0000 0004 0638 0649grid.429194.3Université Côte d’Azur, Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275 CNRS, 660 Route des lucioles, Sophia Antipolis 06560 Valbonne, France
| | - Delphine Debayle
- Physicochemical Characterization of Biomolecules CAPABIO platform, UMR 7275 CNRS, 660 Route des lucioles, Sophia Antipolis 06560 Valbonne, France
| | - Catherine Béchade
- 0000 0001 1955 3500grid.5805.8Institut du Fer à Moulin UMR-S U839 Inserm, Université Pierre & Marie Curie, 17 Rue du Fer à Moulin, 75005 Paris, France
| | - Luc Maroteaux
- 0000 0001 1955 3500grid.5805.8Institut du Fer à Moulin UMR-S U839 Inserm, Université Pierre & Marie Curie, 17 Rue du Fer à Moulin, 75005 Paris, France
| | - Anne-Sophie Gay
- Physicochemical Characterization of Biomolecules CAPABIO platform, UMR 7275 CNRS, 660 Route des lucioles, Sophia Antipolis 06560 Valbonne, France
| | - Pascale Bayer
- Centre Hospitalier Universitaire de Nice, Hôpital Pasteur, Service de Biochimie, 30 Voie Romaine, 06000 Nice, France
| | - Catherine Heurteaux
- 0000 0004 0638 0649grid.429194.3Université Côte d’Azur, Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275 CNRS, 660 Route des lucioles, Sophia Antipolis 06560 Valbonne, France
| | - Alice Guyon
- 0000 0004 0638 0649grid.429194.3Université Côte d’Azur, Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275 CNRS, 660 Route des lucioles, Sophia Antipolis 06560 Valbonne, France
| | - Joëlle Chabry
- Université Côte d'Azur, Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275 CNRS, 660 Route des lucioles, Sophia Antipolis, 06560, Valbonne, France.
| |
Collapse
|
12
|
Ngoupaye GT, Yassi FB, Bahane DAN, Bum EN. Combined corticosterone treatment and chronic restraint stress lead to depression associated with early cognitive deficits in mice. Metab Brain Dis 2018; 33:421-431. [PMID: 29199383 DOI: 10.1007/s11011-017-0148-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 11/14/2017] [Indexed: 12/28/2022]
Abstract
Many models, such as chronic mild stress, chronic stress or chronic corticosterone injections are used to induce depression associated with cognitive deficits. However, the induction period in these different models is still long and face constraints when it is short such as in the chronic mild stress done in a minimum period of 21 days. This study aimed to characterize a model of depression with early onset cognitive deficit. 14 days combined chronic injection of corticosterone followed by 2 h restraint stress using a restrainer was used to induce depression with early cognitive deficit onset. The forced swim test, sucrose test and plasma corticosterone concentration were used to assess depression-like characteristics. The Morris water maze, novel object recognition task, as well as hippocampal acetylcholinesterase activity were used to assess cognitive deficit. The combined corticosterone injection + chronic restraint stress group presented with marked depression-like behaviour and a higher plasma corticosterone concentration compared to corticosterone injection alone and restraint stress alone. It also showed an alteration in the learning process, memory deficit as well as increased acetylcholinesterase activity compared to corticosterone injection and restraint stress alone groups. These findings suggest that the combined corticosterone administration and chronic restraint stress can be used not only as an animal model for severe depression, but also for depression with early onset cognitive deficit.
Collapse
Affiliation(s)
- Gwladys Temkou Ngoupaye
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, 4000, South Africa.
- Department of Animal Biology, University of Dschang, Dschang, 67, Cameroon.
| | - Francis Bray Yassi
- Department of Biological Science, University of Ngaoundéré, Ngaoundéré, 454, Cameroon
| | | | - Elisabeth Ngo Bum
- Department of Biological Science, University of Ngaoundéré, Ngaoundéré, 454, Cameroon
- Institute of Mines and Petroleum Industries, University of Maroua, Maroua, 46, Cameroon
| |
Collapse
|