1
|
Beaver A, Petersen C, Weary DM, Finlay BB, von Keyserlingk MA. Differences in the fecal microbiota of dairy calves reared with differing sources of milk and levels of maternal contact. JDS COMMUNICATIONS 2021; 2:200-206. [PMID: 36338447 PMCID: PMC9623638 DOI: 10.3168/jdsc.2020-0059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 04/01/2021] [Indexed: 12/28/2022]
Abstract
We compared fecal microbiota in dam-reared and conventionally reared dairy calves, which were fed whole milk and waste milk, respectively. Dairy calves reared with dam contact had higher relative abundance of Lactobacillus. Conventionally reared calves had higher concentrations of taxa such as Bacteroides. Dam-reared calves were predicted to have higher levels of l-tryptophan biosynthesis.
The practice of rearing cows and calves together is gaining popularity on dairy farms, with different systems currently under assessment in mainland Europe, the United Kingdom, and Oceania. Research into the effects of cow–calf rearing has primarily focused on direct health and welfare implications, and little work has examined the role of different rearing paradigms on calf microbiota. We trialed a cow–calf rearing system on a Canadian dairy farm and compared fecal microbiota of these calves with the microbiota of calves reared according to the conventional practice of the same farm (separated from the dam and fed waste milk). At 4 wk, the conventionally reared calves had reduced relative abundance of Lactobacillus and higher relative abundance of other taxa, including Sutterella, Prevotella, and Bacteroides. We also detected predicted functional differences, such as reduced l-tryptophan biosynthesis in conventionally reared calves. These results suggest that maternal contact may influence the calf microbiota, but the observed differences are also likely related to other aspects of the rearing environment independent of maternal contact (e.g., potential exposure to antibiotic residues in waste milk). These findings provide preliminary evidence of the effects of early rearing environments on the establishment of the dairy calf fecal microbiota. This research is needed, given the critical role of the bovine gut microbiome in behavioral, metabolic, and immune development.
Collapse
Affiliation(s)
- Annabelle Beaver
- Animal Welfare Program, Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
- Department of Veterinary Health and Animal Sciences, Harper Adams University, Shropshire, United Kingdom, TF10 8NB
| | - Charisse Petersen
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
| | - Daniel M. Weary
- Animal Welfare Program, Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
| | - B. Brett Finlay
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
| | - Marina A.G. von Keyserlingk
- Animal Welfare Program, Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
- Corresponding author
| |
Collapse
|
2
|
Hauser J, Pisa E, Arias Vásquez A, Tomasi F, Traversa A, Chiodi V, Martin FP, Sprenger N, Lukjancenko O, Zollinger A, Metairon S, Schneider N, Steiner P, Martire A, Caputo V, Macrì S. Sialylated human milk oligosaccharides program cognitive development through a non-genomic transmission mode. Mol Psychiatry 2021; 26:2854-2871. [PMID: 33664475 PMCID: PMC8505264 DOI: 10.1038/s41380-021-01054-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 01/26/2021] [Accepted: 02/12/2021] [Indexed: 12/13/2022]
Abstract
Breastmilk contains bioactive molecules essential for brain and cognitive development. While sialylated human milk oligosaccharides (HMOs) have been implicated in phenotypic programming, their selective role and underlying mechanisms remained elusive. Here, we investigated the long-term consequences of a selective lactational deprivation of a specific sialylated HMO in mice. We capitalized on a knock-out (KO) mouse model (B6.129-St6gal1tm2Jxm/J) lacking the gene responsible for the synthesis of sialyl(alpha2,6)lactose (6'SL), one of the two sources of sialic acid (Neu5Ac) to the lactating offspring. Neu5Ac is involved in the formation of brain structures sustaining cognition. To deprive lactating offspring of 6'SL, we cross-fostered newborn wild-type (WT) pups to KO dams, which provide 6'SL-deficient milk. To test whether lactational 6'SL deprivation affects cognitive capabilities in adulthood, we assessed attention, perseveration, and memory. To detail the associated endophenotypes, we investigated hippocampal electrophysiology, plasma metabolomics, and gut microbiota composition. To investigate the underlying molecular mechanisms, we assessed gene expression (at eye-opening and in adulthood) in two brain regions mediating executive functions and memory (hippocampus and prefrontal cortex, PFC). Compared to control mice, WT offspring deprived of 6'SL during lactation exhibited consistent alterations in all cognitive functions addressed, hippocampal electrophysiology, and in pathways regulating the serotonergic system (identified through gut microbiota and plasma metabolomics). These were associated with a site- (PFC) and time-specific (eye-opening) reduced expression of genes involved in central nervous system development. Our data suggest that 6'SL in maternal milk adjusts cognitive development through a short-term upregulation of genes modulating neuronal patterning in the PFC.
Collapse
Affiliation(s)
- Jonas Hauser
- grid.419905.00000 0001 0066 4948Société des Produits Nestlé SA, Nestlé Research, Lausanne, Switzerland
| | - Edoardo Pisa
- grid.416651.10000 0000 9120 6856Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy ,grid.7841.aDepartment of Physiology and Pharmacology “Vittorio Erspamer”, “Sapienza” University of Rome, Rome, Italy
| | - Alejandro Arias Vásquez
- grid.10417.330000 0004 0444 9382Donders Institute for Brain, Cognition and Behaviour, Departments of Psychiatry and Human Genetics, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Flavio Tomasi
- grid.416651.10000 0000 9120 6856Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - Alice Traversa
- grid.413503.00000 0004 1757 9135Laboratory of Clinical Genomics, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, FG Italy
| | - Valentina Chiodi
- grid.416651.10000 0000 9120 6856National Centre for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Francois-Pierre Martin
- grid.419905.00000 0001 0066 4948Société des Produits Nestlé SA, Nestlé Research, Lausanne, Switzerland
| | - Norbert Sprenger
- grid.419905.00000 0001 0066 4948Société des Produits Nestlé SA, Nestlé Research, Lausanne, Switzerland
| | | | - Alix Zollinger
- grid.419905.00000 0001 0066 4948Société des Produits Nestlé SA, Nestlé Research, Lausanne, Switzerland
| | - Sylviane Metairon
- grid.419905.00000 0001 0066 4948Société des Produits Nestlé SA, Nestlé Research, Lausanne, Switzerland
| | - Nora Schneider
- grid.419905.00000 0001 0066 4948Société des Produits Nestlé SA, Nestlé Research, Lausanne, Switzerland
| | - Pascal Steiner
- grid.419905.00000 0001 0066 4948Société des Produits Nestlé SA, Nestlé Research, Lausanne, Switzerland
| | - Alberto Martire
- grid.416651.10000 0000 9120 6856National Centre for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Viviana Caputo
- grid.7841.aDepartment of Experimental Medicine, “Sapienza” University of Rome, Rome, Italy
| | - Simone Macrì
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy.
| |
Collapse
|
3
|
Does early weaning shape future endocrine and metabolic disorders? Lessons from animal models. J Dev Orig Health Dis 2020; 11:441-451. [PMID: 32487270 DOI: 10.1017/s2040174420000410] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Obesity and its complications occur at alarming rates worldwide. Epidemiological data have associated perinatal conditions, such as malnutrition, with the development of some disorders, such as obesity, dyslipidemia, diabetes, and cardiovascular diseases, in childhood and adulthood. Exclusive breastfeeding has been associated with protection against long-term chronic diseases. However, in humans, the interruption of breastfeeding before the recommended period of 6 months is a common practice and can increase the risk of several metabolic disturbances. Nutritional and environmental changes within a critical window of development, such as pregnancy and breastfeeding, can induce permanent changes in metabolism through epigenetic mechanisms, leading to diseases later in life via a phenomenon known as programming or developmental plasticity. However, little is known regarding the underlying mechanisms by which precocious weaning can result in adipose tissue dysfunction and endocrine profile alterations. Here, the authors give a comprehensive report of the different animal models of early weaning and programming that can result in the development of metabolic syndrome. In rats, for example, pharmacological and nonpharmacological early weaning models are associated with the development of overweight and visceral fat accumulation, leptin and insulin resistance, and neuroendocrine and hepatic changes in adult progeny. Sex-related differences seem to influence this phenotype. Therefore, precocious weaning seems to be obesogenic for offspring. A better understanding of this condition seems essential to reducing the risk for diseases. Additionally, this knowledge can generate new insights into therapeutic strategies for obesity management, improving health outcomes.
Collapse
|
4
|
Daun KA, Fuchigami T, Koyama N, Maruta N, Ikenaka K, Hitoshi S. Early Maternal and Social Deprivation Expands Neural Stem Cell Population Size and Reduces Hippocampus/Amygdala-Dependent Fear Memory. Front Neurosci 2020; 14:22. [PMID: 32063832 PMCID: PMC7000530 DOI: 10.3389/fnins.2020.00022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 01/10/2020] [Indexed: 11/13/2022] Open
Abstract
Early life stress can exert detrimental or beneficial effects on neural development and postnatal behavior depending on the timing, duration, strength, and ability to control the stressors. In this study, we utilized a maternal and social deprivation (MSD) model to investigate the effects of early life stress on neural stem cells (NSCs) and neurogenesis in the adult brain. We found that MSD during the stress-hyporesponsive period (SHRP) (early-MSD), when corticosterone secretion is suppressed, increased the size of the NSC population, whereas the same stress beyond the SHRP abrogated these effects. Early-MSD enhanced neurogenesis not only in the dentate gyrus of the hippocampus, one of the classic neurogenic regions, but also in the amygdala. In addition, mice exposed to early-MSD exhibited a reduction in amygdala/hippocampus-dependent fear memory. These results suggest that animals exposed to early life stress during the SHRP have reinforced stress resilience to cope with perceived stressors to maintain a normal homeostatic state.
Collapse
Affiliation(s)
- Kenny Anak Daun
- Department of Integrative Physiology, Shiga University of Medical Science, Otsu, Japan
| | - Takahiro Fuchigami
- Department of Integrative Physiology, Shiga University of Medical Science, Otsu, Japan
| | - Natsu Koyama
- Department of Integrative Physiology, Shiga University of Medical Science, Otsu, Japan
| | - Noriko Maruta
- Department of Psychiatry, Health Center, Hitotsubashi University, Tokyo, Japan
| | - Kazuhiro Ikenaka
- Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, Okazaki, Japan.,Department of Physiological Sciences, School of Life Sciences, The Graduate University for Advanced Studies, Okazaki, Japan
| | - Seiji Hitoshi
- Department of Integrative Physiology, Shiga University of Medical Science, Otsu, Japan.,Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, Okazaki, Japan.,Department of Physiological Sciences, School of Life Sciences, The Graduate University for Advanced Studies, Okazaki, Japan
| |
Collapse
|
5
|
Accarie A, Vanuytsel T. Animal Models for Functional Gastrointestinal Disorders. Front Psychiatry 2020; 11:509681. [PMID: 33262709 PMCID: PMC7685985 DOI: 10.3389/fpsyt.2020.509681] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 10/22/2020] [Indexed: 12/12/2022] Open
Abstract
Functional gastrointestinal disorders (FGID), such as functional dyspepsia (FD) and irritable bowel syndrome (IBS) are characterized by chronic abdominal symptoms in the absence of an organic, metabolic or systemic cause that readily explains these complaints. Their pathophysiology is still not fully elucidated and animal models have been of great value to improve the understanding of the complex biological mechanisms. Over the last decades, many animal models have been developed to further unravel FGID pathophysiology and test drug efficacy. In the first part of this review, we focus on stress-related models, starting with the different perinatal stress models, including the stress of the dam, followed by a discussion on neonatal stress such as the maternal separation model. We also describe the most commonly used stress models in adult animals which brought valuable insights on the brain-gut axis in stress-related disorders. In the second part, we focus more on models studying peripheral, i.e., gastrointestinal, mechanisms, either induced by an infection or another inflammatory trigger. In this section, we also introduce more recent models developed around food-related metabolic disorders or food hypersensitivity and allergy. Finally, we introduce models mimicking FGID as a secondary effect of medical interventions and spontaneous models sharing characteristics of GI and anxiety-related disorders. The latter are powerful models for brain-gut axis dysfunction and bring new insights about FGID and their comorbidities such as anxiety and depression.
Collapse
Affiliation(s)
- Alison Accarie
- Department of Chronic Diseases, Metabolism and Ageing (ChroMetA), Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
| | - Tim Vanuytsel
- Department of Chronic Diseases, Metabolism and Ageing (ChroMetA), Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium.,Department of Gastroenterology and Hepatology, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|