1
|
Wang A, Liu Y, Yan Y, Jiang Y, Shi S, Wang J, Qiao K, Yang L, Wang S, Li S, Gui W. Chlorpyrifos Influences Tadpole Development by Disrupting Thyroid Hormone Signaling Pathways. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39718545 DOI: 10.1021/acs.est.4c07890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
Chlorpyrifos (CPF) is a widely used organophosphate insecticide with serious toxicological effects on aquatic animals. Although extensively studied for neurotoxicity and endocrine disruption, its stage-specific effects on amphibian metamorphosis and receptor-level interactions remain unclear. This study investigated the effects of CPF on Xenopus laevis metamorphosis at environmentally relevant concentrations (1.8 and 18 μg/L) across key developmental stages, with end points including premetamorphic progression, thyroid hormone (TH)-responsive gene expression, and levels of triiodothyronine (T3) and thyroxine (T4). Additionally, molecular docking, surface plasmon resonance (SPR), and luciferase reporter gene assays were employed to elucidate CPF's interaction with the thyroid hormone receptor alpha (TRα). CPF accelerated premetamorphic development and upregulated TH-responsive genes but delayed later-stage metamorphosis. After 21 days of exposure to 18 μg/L CPF, T3 and T4 levels were reduced by 28% and 39.4%, respectively, compared to controls. Cotreatment with T3 and CPF slowed tadpole development, indicating that CPF affects thyroid signaling in a stage-dependent manner. CPF competed with T3 for TRα binding and stimulated TRα-mediated luciferase activity when administered alone, but this activity decreased when CPF was coexposed to T3. These findings suggest that CPF functions as a partial agonist of TRα, disrupting thyroid signaling and adversely affecting amphibian development.
Collapse
Affiliation(s)
- Aoxue Wang
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, P. R. China
| | - Yuanyuan Liu
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, P. R. China
| | - Yujia Yan
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, P. R. China
| | - Yuyao Jiang
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, P. R. China
| | - Shiyao Shi
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, P. R. China
| | - Jie Wang
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, P. R. China
| | - Kun Qiao
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, P. R. China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, P. R. China
| | - Long Yang
- Guizhou Institute of Subtropical Crops, Guizhou 562400, P. R. China
| | - Shuting Wang
- Hangzhou Center for Disease Control and Prevention, Hangzhou Health Supervision Institution, Zhejiang 310016, P. R. China
| | - Shuying Li
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, P. R. China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou 310058, P. R. China
| | - Wenjun Gui
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, P. R. China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou 310058, P. R. China
| |
Collapse
|
2
|
Peña SVDF, Brodeur JC. Effects of anthranilic diamide insecticides on metamorphosis in the common toad Rhinella arenarum (Hensel, 1867) at concentrations found in aquatic environments. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2024; 87:1015-1029. [PMID: 39340788 DOI: 10.1080/15287394.2024.2407479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/30/2024]
Abstract
Anthranilic diamides (AD) are a modern class of insecticides used as alternatives to pyrethroids and neonicotinoids, particularly against lepidopteran pests. Despite their widespread use and presence in surface waters, little is known regarding their effects on amphibians. The aim of this study was to examine the effects of environmentally-relevant concentrations of AD insecticides chlorantraniliprole (CHLO) and cyantraniliprole (CYAN) on metamorphosis of the toad Rhinella arenarum. Tadpoles were exposed to CHLO or CYAN at concentrations ranging from 5 and 5000 µg/L from stage 27 until metamorphosis completion. Both insecticides produced a non-monotonic acceleration of the time required for individuals to progress through development and a decrease in the proportion of individuals completing metamorphosis, although a delay in metamorphosis was also observed at 5 µg/L of CHLO. Snout-vent length and body weight of metamorphosed toads were not markedly affected by either insecticide. CHLO was more toxic than CYAN, with a lowest observed effect concentration (LOEC) for CHLO on time to metamorphosis defined as 5 µg/L compared to 5000 µg/L for CYAN. The LOEC for reduced metamorphic success defined as 50 µg/L for CHLO compared to 500 µg/L for CYAN. As most effects occurred after stage 39, when metamorphosis depends upon thyroid hormones, it is conceivable that that AD insecticides act as endocrine disruptors. These findings suggest that contamination of surface waters with CHLO and CYAN may disrupt amphibian development in the wild and warrant further research to investigate the possibility of endocrine-disruption by ADs.
Collapse
Affiliation(s)
- Shirley Vivian Daniela Fonseca Peña
- Instituto de Recursos Biológicos, Centro de Investigaciones de Recursos Naturales (CIRN), Instituto Nacional de Tecnología Agropecuaria (INTA), Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Julie Céline Brodeur
- Instituto de Recursos Biológicos, Centro de Investigaciones de Recursos Naturales (CIRN), Instituto Nacional de Tecnología Agropecuaria (INTA), Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
3
|
Ganeyan A, Ganesh CB. Exposure to chronic stress impedes seasonal and gonadotropin-induced ovarian recrudescence in the gecko Hemidactylus frenatus. Reprod Biol 2024; 24:100957. [PMID: 39378728 DOI: 10.1016/j.repbio.2024.100957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/21/2024] [Accepted: 09/21/2024] [Indexed: 10/10/2024]
Abstract
The neuroendocrine regulation of the stress-reproductive axis in reptiles is complex due to the diverse reproductive strategies adopted by these animals. Consequently, the underlying mechanisms by which stress can affect the reproductive axis remain opaque in reptiles. In the present study, we examined the effect of stress on the seasonal and FSH-induced ovarian recrudescence during the breeding and non-breeding phases of the cycle in the tropical and subtropical house gecko Hemidactylus frenatus. During the recrudescence phase of the ovarian cycle, exposure of lizards to various stressors (handling, confinement, chasing, and noise) caused a significant increase in the percentage of corticotropin-releasing hormone (CRH) and adrenocorticotropic hormone (ACTH)-immunoreactive (ir) content in the median eminence (ME) and/or pars distalis of the pituitary gland (PD), concomitant with a significant decrease in the release of gonadotropin-releasing hormone (GnRH)-ir content into the ME and PD, and number of oogonia in the germinal bed and absence of the stage IV and V (vitellogenic) follicles in the ovary compared to experimental controls. During the non-breeding phase, treatment of stressed lizards with FSH did not stimulate the development of stage IV and V follicles, in contrast to their appearance in FSH-only-treated lizards. Collectively, these findings suggest that exposure to stressors prevents the seasonal ovarian recrudescence, possibly mediated through the suppression of hypothalamic GnRH release into the ME and PD and/or directly at the level of the ovary.
Collapse
Affiliation(s)
- Ananya Ganeyan
- Neuroendocrinology Research Laboratory, Department of Studies in Zoology, Karnatak University, Dharwad 580003, India
| | - C B Ganesh
- Neuroendocrinology Research Laboratory, Department of Studies in Zoology, Karnatak University, Dharwad 580003, India.
| |
Collapse
|
4
|
Sinai N, Eterovick PC, Kruger N, Oetken B, Ruthsatz K. Living in a multi-stressor world: nitrate pollution and thermal stress interact to affect amphibian larvae. J Exp Biol 2024; 227:jeb247629. [PMID: 39422187 DOI: 10.1242/jeb.247629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 10/11/2024] [Indexed: 10/19/2024]
Abstract
The interaction of widespread stressors such as nitrate pollution and increasing temperatures associated with climate change is likely to affect aquatic ectotherms such as amphibians. The metamorphic and physiological traits of amphibian larvae during the critical onset of metamorphosis are particularly susceptible to these stressors. We used a crossed experimental design subjecting Rana temporaria larvae to four constant rearing temperatures (18, 22, 26, 28°C) crossed with three environmentally relevant nitrate concentrations (0, 50, 100 mg l-1) to investigate the interactive and individual effects of these stressors on metamorphic (i.e. growth and development) and physiological traits (i.e. metabolism and heat tolerance) at the onset of metamorphosis. Larvae exposed to elevated nitrate concentrations and thermal stress displayed increased metabolic rates but decreased developmental rate, highlighting interactive effects of these stressors. However, nitrate pollution alone had no effect on either metamorphic or physiological traits, suggesting that detoxification processes were sufficient to maintain homeostasis but not in combination with increased rearing temperatures. Furthermore, larvae exposed to nitrate displayed diminished abilities to exhibit temperature-induced plasticity in metamorphosis timing and heat tolerance, as well as reduced acclimation capacity in heat tolerance and an increased thermal sensitivity of metabolic rate to higher temperatures. These results highlight the importance of considering the exposure to multiple stressors when investigating how natural populations respond to global change.
Collapse
Affiliation(s)
- Noa Sinai
- Institute of Cell and System Biology, Universität Hamburg, Martin-Luther-King-Platz 3, 20146 Hamburg, Germany
| | - Paula C Eterovick
- Zoological Institute, Technische Universität Braunschweig, Mendelssohnstraße 4, 38106 Braunschweig, Germany
| | - Natasha Kruger
- Animal Behaviour and Wildlife Conservation Group, School of Life Sciences, University of Wolverhampton, Wolverhampton WV1 1LY, UK
| | - Ben Oetken
- Zoological Institute, Technische Universität Braunschweig, Mendelssohnstraße 4, 38106 Braunschweig, Germany
| | - Katharina Ruthsatz
- Zoological Institute, Technische Universität Braunschweig, Mendelssohnstraße 4, 38106 Braunschweig, Germany
| |
Collapse
|
5
|
Bushong A, Sepúlveda M, Scherer M, Valachovic AC, Neill CM, Horn S, Choi Y, Lee LS, Baloni P, Hoskins T. Effects of Perfluorinated Alkyl Substances (PFAS) on Amphibian Body and Liver Conditions: Is Lipid Metabolism Being Perturbed throughout Metamorphosis? TOXICS 2024; 12:732. [PMID: 39453152 PMCID: PMC11510839 DOI: 10.3390/toxics12100732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/29/2024] [Accepted: 10/03/2024] [Indexed: 10/26/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) may interact with peroxisome proliferator activated receptors (PPARs) and alter lipid homeostasis. Using Xenopus laevis, we investigated the effect of PFAS on (a) lipid homeostasis and whether this correlated to changes in body and hepatic condition; (b) the expression of hepatic genes regulated by PPAR; and (c) the hepatic lipidome. We chronically exposed tadpoles to 0.5 µg/L of either PFOS, PFHxS, PFOA, PFHxA, a binary mixture of PFOS and PFHxS (0.5 µg/L of each), or a control, from NF stage 52 through metamorphic climax. Growth, development, and survival were not affected, but we detected a sex-specific decrease in body condition at NF 66 (6.8%) and in hepatic condition (16.6%) across metamorphic climax for male tadpoles exposed to PFOS. We observed weak evidence for the transient downregulation of apolipoprotein-V (apoa5) at NF 62 in tadpoles exposed to PFHxA. Acyl-CoA oxidase 1 (acox1) was downregulated only in males exposed to PFHxS (Ln(Fold Change) = -0.54). We detected PFAS-specific downregulation of structural glycerophospholipids, while semi-quantitative profiling detected the upregulation in numerous glycerophospholipids, sphingomyelins, and diglycerides. Overall, our findings indicate that PFAS can induce sex-specific effects that change across larval development and metamorphosis. We demonstrate that PFAS alter lipid metabolism at environmentally relevant concentrations through divergent mechanisms that may not be related to PPARs, with an absence of effects on body condition, demonstrating the need for more molecular studies to elucidate mechanisms of PFAS-induced lipid dysregulation in amphibians and in other taxa.
Collapse
Affiliation(s)
- Anna Bushong
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN 47907, USA; (M.S.)
| | - Maria Sepúlveda
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN 47907, USA; (M.S.)
- Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370146, Chile
| | - Meredith Scherer
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN 47907, USA; (M.S.)
| | - Abigail C. Valachovic
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN 47907, USA; (M.S.)
| | - C. Melman Neill
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN 47907, USA; (M.S.)
| | - Sophia Horn
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN 47907, USA; (M.S.)
| | - Youn Choi
- Department of Agronomy and Environmental & Ecological Engineering, Interdisciplinary Ecological Sciences and Engineering, Purdue University, West Lafayette, IN 47907, USA; (Y.C.); (L.S.L.)
| | - Linda S. Lee
- Department of Agronomy and Environmental & Ecological Engineering, Interdisciplinary Ecological Sciences and Engineering, Purdue University, West Lafayette, IN 47907, USA; (Y.C.); (L.S.L.)
| | - Priyanka Baloni
- College of Health Sciences, Purdue University, West Lafayette, IN 47907, USA;
| | - Tyler Hoskins
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN 47907, USA; (M.S.)
| |
Collapse
|
6
|
Huerlimann R, Roux N, Maeda K, Pilieva P, Miura S, Chen HC, Izumiyama M, Laudet V, Ravasi T. The transcriptional landscape underlying larval development and metamorphosis in the Malabar grouper ( Epinephelus malabaricus). eLife 2024; 13:RP94573. [PMID: 39120998 PMCID: PMC11315451 DOI: 10.7554/elife.94573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2024] Open
Abstract
Most teleost fishes exhibit a biphasic life history with a larval oceanic phase that is transformed into morphologically and physiologically different demersal, benthic, or pelagic juveniles. This process of transformation is characterized by a myriad of hormone-induced changes, during the often abrupt transition between larval and juvenile phases called metamorphosis. Thyroid hormones (TH) are known to be instrumental in triggering and coordinating this transformation but other hormonal systems such as corticoids, might be also involved as it is the case in amphibians. In order to investigate the potential involvement of these two hormonal pathways in marine fish post-embryonic development, we used the Malabar grouper (Epinephelus malabaricus) as a model system. We assembled a chromosome-scale genome sequence and conducted a transcriptomic analysis of nine larval developmental stages. We studied the expression patterns of genes involved in TH and corticoid pathways, as well as four biological processes known to be regulated by TH in other teleost species: ossification, pigmentation, visual perception, and metabolism. Surprisingly, we observed an activation of many of the same pathways involved in metamorphosis also at an early stage of the larval development, suggesting an additional implication of these pathways in the formation of early larval features. Overall, our data brings new evidence to the controversial interplay between corticoids and thyroid hormones during metamorphosis as well as, surprisingly, during the early larval development. Further experiments will be needed to investigate the precise role of both pathways during these two distinct periods and whether an early activation of both corticoid and TH pathways occurs in other teleost species.
Collapse
Affiliation(s)
- Roger Huerlimann
- Marine Climate Change Unit, Okinawa Institute of Science and Technology Graduate UniversityOnna-sonJapan
- Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook UniversityTownsvilleAustralia
| | - Natacha Roux
- Computational Neuroethology Unit, Okinawa Institute of Science and Technology Graduate UniversityOnna-sonJapan
| | - Ken Maeda
- Marine Eco-Evo-Devo Unit, Okinawa Institute of Science and Technology Graduate UniversityOnna-sonJapan
| | - Polina Pilieva
- Marine Eco-Evo-Devo Unit, Okinawa Institute of Science and Technology Graduate UniversityOnna-sonJapan
| | - Saori Miura
- Marine Eco-Evo-Devo Unit, Okinawa Institute of Science and Technology Graduate UniversityOnna-sonJapan
| | - Hsiao-chian Chen
- Marine Climate Change Unit, Okinawa Institute of Science and Technology Graduate UniversityOnna-sonJapan
- Marine Eco-Evo-Devo Unit, Okinawa Institute of Science and Technology Graduate UniversityOnna-sonJapan
| | - Michael Izumiyama
- Marine Climate Change Unit, Okinawa Institute of Science and Technology Graduate UniversityOnna-sonJapan
| | - Vincent Laudet
- Marine Eco-Evo-Devo Unit, Okinawa Institute of Science and Technology Graduate UniversityOnna-sonJapan
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia SinicaJiau ShiTaiwan
| | - Timothy Ravasi
- Marine Climate Change Unit, Okinawa Institute of Science and Technology Graduate UniversityOnna-sonJapan
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook UniversityTownsvilleAustralia
| |
Collapse
|
7
|
Kijanović A, Vukov T, Mirč M, Mitrović A, Prokić MD, Petrović TG, Radovanović TB, Gavrilović BR, Despotović SG, Gavrić JP, Tomašević Kolarov N. The role of phenotypic plasticity and corticosterone in coping with pond drying conditions in yellow-bellied toad (Bombina variegata, Linnaeus 1758) tadpoles. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2024; 341:753-765. [PMID: 38651613 DOI: 10.1002/jez.2819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 03/29/2024] [Accepted: 04/09/2024] [Indexed: 04/25/2024]
Abstract
Amphibian larvae inhabiting temporary ponds often exhibit the capacity to accelerate development and undergo metamorphosis in challenging conditions like desiccation. However, not all species exhibit this ability, the yellow-bellied toad (Bombina variegata) is one such example. The underlying mechanisms behind the inability to accelerate development under desiccation remain largely unexplored. The hypothalamic-pituitary-interrenal (HPI) axis and corticosterone (CORT), which act synergistically with thyroid hormone, are thought to facilitate metamorphosis in response to desiccation stress. In this study, we aimed to investigate whether modification in the HPI axis, particularly CORT levels, contributes to the absence of adaptive plasticity in B. variegata under desiccation stress. The study design included four treatments: high water level, high water level with exogenous CORT, low water level, and low water level with metyrapone (a CORT synthesis inhibitor). The main objective was to evaluate the effects of these treatments on whole-body corticosterone levels, life history, morphological traits, and oxidative stress parameters during the prometamorphic and metamorphic climax developmental stages. While low water level had no effect on total corticosterone levels, larval period, body condition index, and metamorphic body shape, it negatively affected metamorph size, mass, and growth rate. Our findings suggest that constant exposure to desiccation stress over generations may have led to modifications in the HPI axis activity in B. variegata, resulting in adaptation to changes in water level, evident through the absence of stress response. Consequently, CORT may not be a relevant stress indicator in desiccation conditions for this species.
Collapse
Affiliation(s)
- Ana Kijanović
- Department of Evolutionary Biology, Institute for Biological Research "Siniša Stanković"-National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Tanja Vukov
- Department of Evolutionary Biology, Institute for Biological Research "Siniša Stanković"-National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Marko Mirč
- Department of Evolutionary Biology, Institute for Biological Research "Siniša Stanković"-National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Aleksandar Mitrović
- Institute for the Application of Nuclear Energy, University of Belgrade, Belgrade, Serbia
| | - Marko D Prokić
- Department of Physiology, Institute for Biological Research "Siniša Stanković"-National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Tamara G Petrović
- Department of Physiology, Institute for Biological Research "Siniša Stanković"-National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Tijana B Radovanović
- Department of Physiology, Institute for Biological Research "Siniša Stanković"-National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Branka R Gavrilović
- Department of Physiology, Institute for Biological Research "Siniša Stanković"-National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Svetlana G Despotović
- Department of Physiology, Institute for Biological Research "Siniša Stanković"-National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Jelena P Gavrić
- Department of Physiology, Institute for Biological Research "Siniša Stanković"-National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Nataša Tomašević Kolarov
- Department of Evolutionary Biology, Institute for Biological Research "Siniša Stanković"-National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
8
|
Brown ER, Gettler LT, Rosenbaum S. Effects of social environments on male primate HPG and HPA axis developmental programming. Dev Psychobiol 2024; 66:e22491. [PMID: 38698633 DOI: 10.1002/dev.22491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 03/05/2024] [Accepted: 04/07/2024] [Indexed: 05/05/2024]
Abstract
Developmental plasticity is particularly important for humans and other primates because of our extended period of growth and maturation, during which our phenotypes adaptively respond to environmental cues. The hypothalamus-pituitary-gonadal (HPG) and hypothalamus-pituitary-adrenal (HPA) axes are likely to be principal targets of developmental "programming" given their roles in coordinating fitness-relevant aspects of the phenotype, including sexual development, adult reproductive and social strategies, and internal responses to the external environment. In social animals, including humans, the social environment is believed to be an important source of cues to which these axes may adaptively respond. The effects of early social environments on the HPA axis have been widely studied in humans, and to some extent, in other primates, but there are still major gaps in knowledge specifically relating to males. There has also been relatively little research examining the role that social environments play in developmental programming of the HPG axis or the HPA/HPG interface, and what does exist disproportionately focuses on females. These topics are likely understudied in males in part due to the difficulty of identifying developmental milestones in males relative to females and the general quiescence of the HPG axis prior to maturation. However, there are clear indicators that early life social environments matter for both sexes. In this review, we examine what is known about the impact of social environments on HPG and HPA axis programming during male development in humans and nonhuman primates, including the role that epigenetic mechanisms may play in this programming. We conclude by highlighting important next steps in this research area.
Collapse
Affiliation(s)
- Ella R Brown
- Department of Anthropology, University of Michigan, Ann Arbor, Michigan, USA
| | - Lee T Gettler
- Department of Anthropology, University of Notre Dame, Notre Dame, Indiana, USA
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, USA
| | - Stacy Rosenbaum
- Department of Anthropology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
9
|
Mayne GB, Ghidei L. The impact of devaluing Women of Color: stress, reproduction, and justice. Birth 2024; 51:245-252. [PMID: 38695278 DOI: 10.1111/birt.12825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 04/11/2024] [Indexed: 05/18/2024]
Abstract
This commentary is in response to the Call for Papers put forth by the Critical Midwifery Studies Collective (June 2022). We argue that due to a long and ongoing history of gendered racism, Women of Color are devalued in U.S. society. Devaluing Women of Color leads maternal healthcare practitioners to miss and even dismiss distress in Women of Color. The result is systematic underdiagnosis, undertreatment, and the delivery of poorer care to Women of Color, which negatively affects reproductive outcomes generally and birth outcomes specifically. These compounding effects exacerbate distress in Women of Color leading to greater distress. Stress physiology is ancient and intricately interwoven with healthy pregnancy physiology, and this relationship is a highly conserved reproductive strategy. Thus, where there is disproportionate or excess stress (distress), unsurprisingly, there are disproportionate and excess rates of poorer reproductive outcomes. Stress physiology and reproductive physiology collide with social injustices (i.e., racism, discrimination, and anti-Blackness), resulting in pernicious racialized maternal health disparities. Accordingly, the interplay between stress and reproduction is a key social justice issue and an important site for theoretical inquiry and birth equity efforts. Fortunately, both stress physiology and pregnancy physiology are highly plastic-responsive to the benefits of increased social support and respectful maternity care. Justice means valuing Women of Color and valuing their right to have a healthy, respected, and safe life.
Collapse
Affiliation(s)
- Gabriella B Mayne
- Department of Health and Behavioral Sciences, University of Colorado, Denver, Colorado, USA
| | - Luwam Ghidei
- Reproductive Specialists of the Carolinas, Charlotte, North Carolina, USA
| |
Collapse
|
10
|
Beale DJ, Nguyen TV, Bose U, Shah R, Nelis JLD, Stockwell S, Broadbent JA, Nilsson S, Rane R, Court L, Lettoof DC, Pandey G, Walsh TK, Shaw S, Llinas J, Limpus D, Limpus C, Braun C, Baddiley B, Vardy S. Metabolic disruptions and impaired reproductive fitness in wild-caught freshwater turtles (Emydura macquarii macquarii) exposed to elevated per- and polyfluoroalkyl substances (PFAS). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171743. [PMID: 38494020 DOI: 10.1016/j.scitotenv.2024.171743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/14/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
Per- and poly-fluoroalkyl substances (PFAS) pose a threat to organisms and ecosystems due to their persistent nature. Ecotoxicology endpoints used in regulatory guidelines may not reflect multiple, low-level but persistent stressors. This study examines the biological effects of PFAS on Eastern short-necked turtles in Queensland, Australia. In this study, blood samples were collected and analysed for PFAS, hormone levels, and functional omics endpoints. High levels of PFAS were found in turtles at the impacted site, with PFOS being the dominant constituent. The PFAS profiles of males and females differed, with males having higher PFAS concentrations. Hormone concentrations differed between impacted and reference sites in male turtles, with elevated testosterone and corticosterone indicative of stress. Further, energy utilisation, nucleotide synthesis, nitrogen metabolism, and amino acid synthesis were altered in both male and female turtles from PFAS-impacted sites. Both sexes show similar metabolic responses to environmental stressors from the PFAS-contaminated site, which may adversely affect their reproductive fitness. Purine metabolism, caffeine metabolism, and ferroptosis pathway changes in turtles can cause gout, cell death, and overall health problems. Further, the study showed that prolonged exposure to elevated PFAS levels in the wild could compromise turtle reproductive fitness by disrupting reproductive steroids and metabolic pathways.
Collapse
Affiliation(s)
- David J Beale
- Environment, Commonwealth Scientific and Industrial Research Organisation, Ecosciences Precinct, Dutton Park, Qld 4102, Australia.
| | - Thao V Nguyen
- Environment, Commonwealth Scientific and Industrial Research Organisation, Ecosciences Precinct, Dutton Park, Qld 4102, Australia
| | - Utpal Bose
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Queensland Bioscience Precinct, St Lucia, Qld 4067, Australia
| | - Rohan Shah
- Environment, Commonwealth Scientific and Industrial Research Organisation, Ecosciences Precinct, Dutton Park, Qld 4102, Australia; School of Health and Biomedical Sciences, STEM College, RMIT University, Bundoora West, Vic 3083, Australia; Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn Vic 3122, Australia
| | - Joost Laurus Dinant Nelis
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Queensland Bioscience Precinct, St Lucia, Qld 4067, Australia
| | - Sally Stockwell
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Queensland Bioscience Precinct, St Lucia, Qld 4067, Australia
| | - James A Broadbent
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Queensland Bioscience Precinct, St Lucia, Qld 4067, Australia
| | - Sandra Nilsson
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Woolloongabba, Qld 4102, Australia
| | - Rahul Rane
- Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation, Parkville, Vic 3052, Australia
| | - Leon Court
- Environment, Commonwealth Scientific and Industrial Research Organisation, CSIRO Black Mountain Laboratories, Acton, ACT 2602, Australia
| | - Damian C Lettoof
- Environment, Commonwealth Scientific and Industrial Research Organisation, CSIRO Centre for Environment and Life Sciences, Floreat, WA 6014, Australia
| | - Gunjan Pandey
- Environment, Commonwealth Scientific and Industrial Research Organisation, CSIRO Black Mountain Laboratories, Acton, ACT 2602, Australia
| | - Thomas K Walsh
- Environment, Commonwealth Scientific and Industrial Research Organisation, CSIRO Black Mountain Laboratories, Acton, ACT 2602, Australia
| | - Stephanie Shaw
- Wildlife and Threatened Species Operations, Department of Environment and Science, Queensland Government, Moggill, Qld 4070, Australia
| | - Josh Llinas
- The Unusual Pet Vets Jindalee, Veterinarian, Jindalee, Qld 4074, Australia
| | - Duncan Limpus
- Aquatic Threatened Species, Wildlife and Threatened Species Operations, Department of Environment and Science, Queensland Government, Dutton Park, Qld 4102, Australia
| | - Colin Limpus
- Aquatic Threatened Species, Wildlife and Threatened Species Operations, Department of Environment and Science, Queensland Government, Dutton Park, Qld 4102, Australia
| | - Christoph Braun
- Water Quality and Investigations, Science and Technology Division, Department of Environment and Science, Queensland Government, Dutton Park, Qld 4102, Australia
| | - Brenda Baddiley
- Water Quality and Investigations, Science and Technology Division, Department of Environment and Science, Queensland Government, Dutton Park, Qld 4102, Australia
| | - Suzanne Vardy
- Water Quality and Investigations, Science and Technology Division, Department of Environment and Science, Queensland Government, Dutton Park, Qld 4102, Australia
| |
Collapse
|
11
|
Alves-Ferreira G, Fortunato DS, Katzenberger M, Fava FG, Solé M. Effects of temperature on growth, development, and survival of amphibian larvae: macroecological and evolutionary patterns. AN ACAD BRAS CIENC 2024; 96:e20230671. [PMID: 38747789 DOI: 10.1590/0001-3765202420230671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 02/23/2024] [Indexed: 05/25/2024] Open
Abstract
Temperature affects the rate of biochemical and physiological processes in amphibians, influencing metamorphic traits. Temperature patterns, as those observed in latitudinal and altitudinal clines, may impose different challenges on amphibians depending on how species are geographically distributed. Moreover, species' response to environmental temperatures may also be phylogenetically constrained. Here, we explore the effects of acclimation to higher temperatures on tadpole survival, development, and growth, using a meta-analytical approach. We also evaluate whether the latitude and climatic variables at each collection site can explain differences in species' response to increasing temperature and whether these responses are phylogenetically conserved. Our results show that species that develop at relatively higher temperatures reach metamorphosis faster. Furthermore, absolute latitude at each collection site may partially explain heterogeneity in larval growth rate. Phylogenetic signal of traits in response to temperature indicates a non-random process in which related species resemble each other less than expected under Brownian motion evolution (BM) in all traits, except survival. The integration of studies in a meta-analytic framework allowed us to explore macroecological and macroevolutionary patterns and provided a better understanding of the effects of climate change on amphibians.
Collapse
Affiliation(s)
- Gabriela Alves-Ferreira
- Universidade Estadual de Santa Cruz, Tropical Herpetology Lab, Programa de Pós-Graduação em Ecologia e Conservação da Biodiversidade, Departamento de Ciências Biológicas, Rodovia Jorge Amado, Km 16, Salobrinho, 45662-900 Ilhéus, BA, Brazil
| | - Danilo S Fortunato
- Universidade Federal de Goiás, DTI Program, Instituto Nacional de Ciência Tecnologia (EECBio), Instituto de Ciências Biológicas, Campus II (Samambaia), 74690-900 Goiânia, GO, Brazil
| | - Marco Katzenberger
- Universidade Federal de Pernambuco, Laboratório de Bioinformática e Biologia Evolutiva, Departamento de Genética, Av. Prof. Moraes Rego, 1235, Cidade Universitária, 50670-901 Recife, PE, Brazil
| | - Fernanda G Fava
- Universidade Estadual de Santa Cruz, Tropical Herpetology Lab, Programa de Pós-Graduação em Ecologia e Conservação da Biodiversidade, Departamento de Ciências Biológicas, Rodovia Jorge Amado, Km 16, Salobrinho, 45662-900 Ilhéus, BA, Brazil
| | - Mirco Solé
- Universidade Estadual de Santa Cruz, Tropical Herpetology Lab, Programa de Pós-Graduação em Ecologia e Conservação da Biodiversidade, Departamento de Ciências Biológicas, Rodovia Jorge Amado, Km 16, Salobrinho, 45662-900 Ilhéus, BA, Brazil
- Herpetology Section, Zoologisches Forschungsmuseum Alexander Koenig, Adenauerallee 160, 53113, Bonn, North Rhine-Westphalia, Germany
| |
Collapse
|
12
|
Cochrane MM, Addis BR, Lowe WH. Stage-Specific Demographic Effects of Hydrologic Variation in a Stream Salamander. Am Nat 2024; 203:E175-E187. [PMID: 38635365 DOI: 10.1086/729466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
AbstractWe lack a strong understanding of how organisms with complex life histories respond to climate variation. Many stream-associated species have multistage life histories that are likely to influence the demographic consequences of floods and droughts. However, tracking stage-specific demographic responses requires high-resolution, long-term data that are rare. We used 8 years of capture-recapture data for the headwater stream salamander Gyrinophilus porphyriticus to quantify the effects of flooding and drying magnitude on stage-specific vital rates and population growth. Drying reduced larval recruitment but increased the probability of metamorphosis (i.e., adult recruitment). Flooding reduced adult recruitment but had no effect on larval recruitment. Larval and adult survival declined with flooding but were unaffected by drying. Annual population growth rates (λ) declined with flooding and drying. Lambda also declined over the study period (2012-2021), although mean λ was 1.0 over this period. Our results indicate that G. porphyriticus populations are resilient to hydrologic variation because of compensatory effects on recruitment of larvae versus adults (i.e., reproduction vs. metamorphosis). Complex life cycles may enable this resilience to climate variation by creating opportunities for compensatory demographic responses across stages. However, more frequent and intense hydrologic variation in the latter half of this study contributed to a decline in λ over time, suggesting that increasing environmental variability poses a threat even when demographic compensation occurs.
Collapse
|
13
|
Zwahlen J, Gairin E, Vianello S, Mercader M, Roux N, Laudet V. The ecological function of thyroid hormones. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220511. [PMID: 38310932 PMCID: PMC10838650 DOI: 10.1098/rstb.2022.0511] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/22/2023] [Indexed: 02/06/2024] Open
Abstract
Thyroid hormones (TH) are central hormonal regulators, orchestrating gene expression and complex biological processes vital for growth and reproduction in variable environments by triggering specific developmental processes in response to external cues. TH serve distinct roles in different species: inducing metamorphosis in amphibians or teleost fishes, governing metabolic processes in mammals, and acting as effectors of seasonality. These multifaceted roles raise questions about the underlying mechanisms of TH action. Recent evidence suggests a shared ecological role of TH across vertebrates, potentially extending to a significant portion of bilaterian species. According to this model, TH ensure that ontogenetic transitions align with environmental conditions, particularly in terms of energy expenditure, helping animals to match their ontogenetic transition with available resources. This alignment spans post-embryonic developmental transitions common to all vertebrates and more subtle adjustments during seasonal changes. The underlying logic of TH function is to synchronize transitions with the environment. This review briefly outlines the fundamental mechanisms of thyroid signalling and shows various ways in which animals use this hormonal system in natural environments. Lastly, we propose a model linking TH signalling, environmental conditions, ontogenetic trajectory and metabolism. This article is part of the theme issue 'Endocrine responses to environmental variation: conceptual approaches and recent developments'.
Collapse
Affiliation(s)
- Jann Zwahlen
- Marine Eco-Evo-Devo Unit, Okinawa Institute of Science and Technology, Onna, Okinawa 904-0495, Japan
| | - Emma Gairin
- Marine Eco-Evo-Devo Unit, Okinawa Institute of Science and Technology, Onna, Okinawa 904-0495, Japan
| | - Stefano Vianello
- Marine Research Station, Institute of Cellular and Organismic Biology (ICOB), Academia Sinica, Taipei, Lan 262, Taiwan
| | - Manon Mercader
- Marine Eco-Evo-Devo Unit, Okinawa Institute of Science and Technology, Onna, Okinawa 904-0495, Japan
| | - Natacha Roux
- Computational Neuroethology Unit, Okinawa Institute of Science and Technology, Onna, Okinawa 904-0495, Japan
| | - Vincent Laudet
- Marine Eco-Evo-Devo Unit, Okinawa Institute of Science and Technology, Onna, Okinawa 904-0495, Japan
- Marine Research Station, Institute of Cellular and Organismic Biology (ICOB), Academia Sinica, Taipei, Lan 262, Taiwan
| |
Collapse
|
14
|
Rutkoski CF, Grott SC, Israel NG, Guerreiro FDC, Carneiro FE, Bitschinski D, Warsneski A, Horn PA, Lima D, Bastolla CLV, Mattos JJ, Bainy ACD, da Silva EB, de Albuquerque CAC, Alves TC, de Almeida EA. Prednisone and prednisolone effects on development, blood, biochemical and histopathological markers of Aquarana catesbeianus tadpoles. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 268:106869. [PMID: 38387247 DOI: 10.1016/j.aquatox.2024.106869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/31/2024] [Accepted: 02/17/2024] [Indexed: 02/24/2024]
Abstract
Synthetic glucocorticoids are often found in surface waters and can cause harmful effects to aquatic organisms such as amphibians. In this work we evaluated the effects of the drugs prednisone (PD) and prednisolone (PL) on developmental, molecular, blood, biochemical and histological markers. Aquarana catesbeianus tadpoles were exposed for 16 days to environmentally relevant concentrations of 0, 0.1, 1 and 10 µg/L of both drugs. PD increased the transcript levels of the enzyme deiodinase III (Dio3), the hormones cortisol and T4 and delayed development. Changes in the thyroid gland occurred after tadpoles were exposed to both drugs, with a reduction in the diameter and number of follicles and an increase/or decrease in area. Also, both drugs caused a decrease in lymphocytes (L) and an increase in neutrophils (N), thrombocytes, the N:L ratio and lobed and notched erythrocytes. Increased activity of the enzymes superoxide dismutase, glutathione S-transferase and glucose 6-phosphate dehydrogenase was observed after exposure to PD. Furthermore, both drugs caused an increase in the activity of the enzymes catalase and glutathione peroxidase. However, only PD caused oxidative stress in exposed tadpoles, evidenced by increased levels of malondialdehyde and carbonyl proteins. Both drugs caused an increase in inflammatory infiltrates, blood cells and melanomacrophages in the liver. Our results indicate that PD was more toxic than PL, affecting development and causing oxidative stress.
Collapse
Affiliation(s)
- Camila Fatima Rutkoski
- Environmental Engineering Post-Graduation Program, University of Blumenau, Blumenau, SC, Brazil
| | - Suelen Cristina Grott
- Environmental Engineering Post-Graduation Program, University of Blumenau, Blumenau, SC, Brazil
| | - Nicole Grasmuk Israel
- Environmental Engineering Post-Graduation Program, University of Blumenau, Blumenau, SC, Brazil
| | | | | | - Daiane Bitschinski
- Biodiversity Post-Graduation Program, University of Blumenau, Blumenau, SC, Brazil
| | - Aline Warsneski
- Environmental Engineering Post-Graduation Program, University of Blumenau, Blumenau, SC, Brazil
| | - Priscila Aparecida Horn
- Environmental Engineering Post-Graduation Program, University of Blumenau, Blumenau, SC, Brazil
| | - Daína Lima
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry, Department of Biochemistry, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil
| | - Camila Lisarb Velasquez Bastolla
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry, Department of Biochemistry, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil
| | - Jacó Joaquim Mattos
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry, Department of Biochemistry, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil
| | - Afonso Celso Dias Bainy
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry, Department of Biochemistry, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil
| | | | | | - Thiago Caique Alves
- Environmental Engineering Post-Graduation Program, University of Blumenau, Blumenau, SC, Brazil
| | | |
Collapse
|
15
|
Yagound B, Sarma RR, Edwards RJ, Richardson MF, Rodriguez Lopez CM, Crossland MR, Brown GP, DeVore JL, Shine R, Rollins LA. Is developmental plasticity triggered by DNA methylation changes in the invasive cane toad ( Rhinella marina)? Ecol Evol 2024; 14:e11127. [PMID: 38450317 PMCID: PMC10917582 DOI: 10.1002/ece3.11127] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 03/08/2024] Open
Abstract
Many organisms can adjust their development according to environmental conditions, including the presence of conspecifics. Although this developmental plasticity is common in amphibians, its underlying molecular mechanisms remain largely unknown. Exposure during development to either 'cannibal cues' from older conspecifics, or 'alarm cues' from injured conspecifics, causes reduced growth and survival in cane toad (Rhinella marina) tadpoles. Epigenetic modifications, such as changes in DNA methylation patterns, are a plausible mechanism underlying these developmental plastic responses. Here we tested this hypothesis, and asked whether cannibal cues and alarm cues trigger the same DNA methylation changes in developing cane toads. We found that exposure to both cannibal cues and alarm cues was associated with local changes in DNA methylation patterns. These DNA methylation changes affected genes putatively involved in developmental processes, but in different genomic regions for different conspecific-derived cues. Genetic background explains most of the epigenetic variation among individuals. Overall, the molecular mechanisms triggered by exposure to cannibal cues seem to differ from those triggered by alarm cues. Studies linking epigenetic modifications to transcriptional activity are needed to clarify the proximate mechanisms that regulate developmental plasticity in cane toads.
Collapse
Affiliation(s)
- Boris Yagound
- Evolution & Ecology Research Centre, Biological, Earth and Environmental SciencesUniversity of New South WalesSydneyNew South WalesAustralia
| | - Roshmi R. Sarma
- Evolution & Ecology Research Centre, Biological, Earth and Environmental SciencesUniversity of New South WalesSydneyNew South WalesAustralia
- Centre for Integrative Ecology, School of Life and Environmental SciencesDeakin UniversityGeelongVictoriaAustralia
| | - Richard J. Edwards
- Evolution & Ecology Research Centre, School of Biotechnology and Biomedical SciencesUniversity of New South WalesSydneyNew South WalesAustralia
- Minderoo OceanOmics Centre at UWA, Oceans InstituteDeakin UniversityGeelongVictoriaAustralia
| | - Mark F. Richardson
- Centre for Integrative Ecology, School of Life and Environmental SciencesDeakin UniversityGeelongVictoriaAustralia
- Minderoo OceanOmics Centre at UWA, Oceans InstituteDeakin UniversityGeelongVictoriaAustralia
- Deakin Genomics Research and Discovery FacilityDeakin University, Locked BagGeelongVICAustralia
| | - Carlos M. Rodriguez Lopez
- Deakin Genomics Research and Discovery FacilityDeakin University, Locked BagGeelongVICAustralia
- School of Agriculture, Food and Wine, Waite Research InstituteThe University of AdelaideGlen OsmondSouth AustraliaAustralia
- Environmental Epigenetics and Genetics Group, Department of HorticultureCollege of Agriculture, Food and Environment, University of KentuckyLexingtonKentuckyUSA
| | - Michael R. Crossland
- School of Agriculture, Food and Wine, Waite Research InstituteThe University of AdelaideGlen OsmondSouth AustraliaAustralia
- School of Life and Environmental SciencesUniversity of SydneySydneyNew South WalesAustralia
| | - Gregory P. Brown
- School of Agriculture, Food and Wine, Waite Research InstituteThe University of AdelaideGlen OsmondSouth AustraliaAustralia
- School of Life and Environmental SciencesUniversity of SydneySydneyNew South WalesAustralia
- Department of Biological SciencesMacquarie UniversitySydneyNew South WalesAustralia
| | - Jayna L. DeVore
- School of Agriculture, Food and Wine, Waite Research InstituteThe University of AdelaideGlen OsmondSouth AustraliaAustralia
- School of Life and Environmental SciencesUniversity of SydneySydneyNew South WalesAustralia
- UMR 241 EIOUniversity of French Polynesia, IFREMER, ILM, IRDFaa’aTahitiFrench Polynesia
| | - Richard Shine
- School of Agriculture, Food and Wine, Waite Research InstituteThe University of AdelaideGlen OsmondSouth AustraliaAustralia
- School of Life and Environmental SciencesUniversity of SydneySydneyNew South WalesAustralia
- Department of Biological SciencesMacquarie UniversitySydneyNew South WalesAustralia
| | - Lee A. Rollins
- Evolution & Ecology Research Centre, Biological, Earth and Environmental SciencesUniversity of New South WalesSydneyNew South WalesAustralia
- Centre for Integrative Ecology, School of Life and Environmental SciencesDeakin UniversityGeelongVictoriaAustralia
| |
Collapse
|
16
|
Emerson KJ, Woodley SK. Something in the water: aquatic microbial communities influence the larval amphibian gut microbiota, neurodevelopment and behaviour. Proc Biol Sci 2024; 291:20232850. [PMID: 38412968 PMCID: PMC10898966 DOI: 10.1098/rspb.2023.2850] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024] Open
Abstract
Microorganisms colonize the gastrointestinal tract of animals and establish symbiotic host-associated microbial communities that influence vertebrate physiology. More specifically, these gut microbial communities influence neurodevelopment through the microbiota-gut-brain (MGB) axis. We tested the hypothesis that larval amphibian neurodevelopment is affected by the aquatic microbial community present in their housing water. Newly hatched Northern Leopard Frog (Lithobates pipiens) tadpoles were raised in pond water that was unmanipulated (natural) or autoclaved. Tadpoles raised in autoclaved pond water had a gut microbiota with reduced bacterial diversity and altered community composition, had decreased behavioural responses to sensory stimuli, were larger in overall body mass, had relatively heavier brains and had altered brain shape when compared with tadpoles raised in natural pond water. Further, the diversity and composition of the gut microbiota were associated with tadpole behavioural responses and brain measurements. Our results suggest that aquatic microbial communities shape tadpole behaviour and brain development, providing strong support for the occurrence of the MGB axis in amphibians. Lastly, the dramatic role played by aquatic microbial communities on vertebrate neurodevelopment and behaviour should be considered in future wildlife conservation efforts.
Collapse
Affiliation(s)
- Kyle J Emerson
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA 15220, USA
| | - Sarah K Woodley
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA 15220, USA
| |
Collapse
|
17
|
Mayne G, Buckley A, Ghidei L. Why Causation Matters: Rethinking "Race" as a Risk Factor. Obstet Gynecol 2023; 142:766-771. [PMID: 37678936 PMCID: PMC10510830 DOI: 10.1097/aog.0000000000005332] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/16/2023] [Accepted: 05/04/2023] [Indexed: 09/09/2023]
Abstract
Although it is tempting to construe the correlation between Black "race" and higher rates of preterm birth as causal, this logic is flawed. Worse, the continued use of Black "race" as a risk factor for preterm birth is actively harmful. Using Black "race" as a risk factor suggests a causal relationship that does not exist and, critically, obscures what actually causes Black patients to be more vulnerable to poorer maternal and infant outcomes: anti-Black racism. Failing to name anti-Black racism as the root cause of Black patients' vulnerability conceals key pathways and tempts us to construe Black "race" as immutably related to higher rates of preterm birth. The result is that we overlook two highly treatable pathways-chronic stress and implicit bias-through which anti-Black racism negatively contributes to birth. Thus, clinicians may underuse important tools to reduce stress from racism and discrimination while missing opportunities to address implicit bias within their practices and institutions. Fortunately, researchers, physicians, clinicians, and medical staff can positively affect Black maternal and infant health by shifting our causal paradigm. By eliminating the use of Black "race" as a risk factor and naming anti-Black racism as the root cause of Black patients' vulnerability, we can practice anti-racist maternity care and take a critical step toward achieving birth equity.
Collapse
Affiliation(s)
- Gabriella Mayne
- Department of Health & Behavioral Sciences, University of Colorado, Denver, Colorado; the Department of Obstetrics and Gynecology and the Department of Maternal Fetal Medicine, Weill Cornell Medicine, New York, New York; and Reproductive Specialists of the Carolinas, Charlotte, North Carolina
| | | | | |
Collapse
|
18
|
Castañeda-Cortés DC, Rosa IF, Boan AF, Marrone D, Pagliaro N, Oliveira MA, Rodrigues MS, Doretto LB, Silva C, Tavares-Júnior J, Costa DF, Dodds MS, Strobl-Mazzulla PH, Langlois VS, Nóbrega RH, Fernandino JI. Thyroid axis participates in high-temperature-induced male sex reversal through its activation by the stress response. Cell Mol Life Sci 2023; 80:253. [PMID: 37589787 PMCID: PMC11071808 DOI: 10.1007/s00018-023-04913-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/15/2023] [Accepted: 08/04/2023] [Indexed: 08/18/2023]
Abstract
Environmental changes alter the sex fate in about 15% of vertebrate orders, mainly in ectotherms such as fish and reptiles. However, the effects of temperature changes on the endocrine and molecular processes controlling gonadal sex determination are not fully understood. Here, we provide evidence that thyroid hormones (THs) act as co-players in heat-induced masculinization through interactions with the stress axis to promote testicular development. We first demonstrated that the thyroid axis (through thyroid-related genes and T3 levels) is highly active in males during the gonadal development in medaka (Oryzias latipes). Similarly, T3 treatments promoted female-to-male sex reversal in XX embryos. Subsequently, embryonic exposure to temperature-induced stress up-regulated the genes related to the thyroid and stress axes with a final increase in T3 levels. In this context, we show that blocking the stress axis response by the loss of function of the corticotropin-releasing hormone receptors suppresses thyroid-stimulating hormone expression, therefore, heat-induced activation of the thyroid axis. Thus, our data showed that early activation of the stress axis and, in consequence, the TH axis, too, leaves us with that both being important endocrine players in inducing female-to-male reversal, which can help predict possible upcoming physiological impacts of global warming on fish populations.
Collapse
Affiliation(s)
- Diana C Castañeda-Cortés
- Instituto Tecnológico de Chascomús, INTECH (CONICET-UNSAM), Chascomús, Argentina
- Escuela de Bio y Nanotecnologías (UNSAM), Chascomús, Argentina
- Institut National de la Recherche Scientifique (INRS) - Centre Eau Terre Environnement, Québec, QC, Canada
| | - Ivana F Rosa
- Reproductive and Molecular Biology Group, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Agustín F Boan
- Instituto Tecnológico de Chascomús, INTECH (CONICET-UNSAM), Chascomús, Argentina
- Escuela de Bio y Nanotecnologías (UNSAM), Chascomús, Argentina
| | - Demian Marrone
- Instituto Tecnológico de Chascomús, INTECH (CONICET-UNSAM), Chascomús, Argentina
- Escuela de Bio y Nanotecnologías (UNSAM), Chascomús, Argentina
| | - Natalia Pagliaro
- Instituto Tecnológico de Chascomús, INTECH (CONICET-UNSAM), Chascomús, Argentina
- Escuela de Bio y Nanotecnologías (UNSAM), Chascomús, Argentina
| | - Marcos A Oliveira
- Reproductive and Molecular Biology Group, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Maira S Rodrigues
- Reproductive and Molecular Biology Group, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Lucas B Doretto
- Reproductive and Molecular Biology Group, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Camila Silva
- Reproductive and Molecular Biology Group, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - José Tavares-Júnior
- Reproductive and Molecular Biology Group, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Daniel F Costa
- Reproductive and Molecular Biology Group, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - María S Dodds
- Instituto Tecnológico de Chascomús, INTECH (CONICET-UNSAM), Chascomús, Argentina
- Escuela de Bio y Nanotecnologías (UNSAM), Chascomús, Argentina
| | - Pablo H Strobl-Mazzulla
- Instituto Tecnológico de Chascomús, INTECH (CONICET-UNSAM), Chascomús, Argentina
- Escuela de Bio y Nanotecnologías (UNSAM), Chascomús, Argentina
| | - Valerie S Langlois
- Institut National de la Recherche Scientifique (INRS) - Centre Eau Terre Environnement, Québec, QC, Canada.
| | - Rafael H Nóbrega
- Reproductive and Molecular Biology Group, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil.
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, Vodňany, Ceske Budejovice, 389 25, Czech Republic.
| | - Juan I Fernandino
- Instituto Tecnológico de Chascomús, INTECH (CONICET-UNSAM), Chascomús, Argentina.
- Escuela de Bio y Nanotecnologías (UNSAM), Chascomús, Argentina.
| |
Collapse
|
19
|
Ledón-Rettig CC, Lo K, Lagon SR. Baseline corticosterone levels in spadefoot toads reflect alternate larval diets one year later. Gen Comp Endocrinol 2023; 339:114291. [PMID: 37094616 DOI: 10.1016/j.ygcen.2023.114291] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 03/30/2023] [Accepted: 04/19/2023] [Indexed: 04/26/2023]
Abstract
Early-life environmental variation can influence later-life physiology, such as the regulation of glucocorticoids. However, characterizing the effects of environmental factors on hormone regulation can be hampered when assessing animals that are small and require destructive sampling to collect blood. Using spadefoot toads (genus Spea), we evaluated whether waterborne corticosterone (CORT) measures could be used as a proxy for plasma CORT measures, detect stress-induced levels of CORT, and detect larval diet-induced changes in CORT regulation after metamorphosed individuals were maintained for 1 year under common garden conditions. We found that waterborne CORT measures were correlated with plasma CORT measures and could be used to detect stress-induced levels of CORT. Further, larval diet type significantly influenced baseline plasma CORT levels 1-year post-metamorphosis: adults that had consumed live prey as larvae had higher plasma CORT levels than adults that had consumed detritus as larvae. However, waterborne measures failed to reflect these differences, possibly due to low sample size. Our study demonstrates the utility of the waterborne hormone assay in assessing variation in baseline and stress-induced CORT levels in adult spadefoots. However, resolving more subtle differences that arise through developmental plasticity will require larger samples sizes when using the waterborne assay.
Collapse
Affiliation(s)
- Cristina C Ledón-Rettig
- Indiana University at Bloomington, 915 East 3(rd) Street, Myers Hall Bloomington, IN 47405, USA.
| | - Katie Lo
- Indiana University at Bloomington, 915 East 3(rd) Street, Myers Hall Bloomington, IN 47405, USA
| | - Sarah R Lagon
- Indiana University at Bloomington, 915 East 3(rd) Street, Myers Hall Bloomington, IN 47405, USA
| |
Collapse
|
20
|
Salica MJ, Goldberg J, Akmentins MS, Candioti FV. Exceptional features of the embryonic ontogeny of a direct‐developing Robber frog. J Zool (1987) 2023. [DOI: 10.1111/jzo.13060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Affiliation(s)
- M. J. Salica
- Instituto de Ecorregiones Andinas (Consejo Nacional de Investigaciones Científicas y Técnicas – Universidad Nacional de Jujuy) San Salvador de Jujuy Argentina
| | - J. Goldberg
- Instituto de Diversidad y Ecología Animal (Consejo Nacional de Investigaciones Científicas y Técnicas – Universidad Nacional de Córdoba); Facultad de Ciencias Exactas, Físicas y Naturales (Universidad Nacional de Córdoba) Córdoba Argentina
| | - M. S. Akmentins
- Instituto de Ecorregiones Andinas (Consejo Nacional de Investigaciones Científicas y Técnicas – Universidad Nacional de Jujuy) San Salvador de Jujuy Argentina
| | - F. Vera Candioti
- Unidad Ejecutora Lillo (Consejo Nacional de Investigaciones Científicas y Técnicas – Fundación Miguel Lillo) San Miguel de Tucumán Argentina
| |
Collapse
|
21
|
Burraco P, Hernandez-Gonzalez M, Metcalfe NB, Monaghan P. Ageing across the great divide: tissue transformation, organismal growth and temperature shape telomere dynamics through the metamorphic transition. Proc Biol Sci 2023; 290:20222448. [PMID: 36750187 PMCID: PMC9904946 DOI: 10.1098/rspb.2022.2448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 01/12/2023] [Indexed: 02/09/2023] Open
Abstract
Telomere attrition is considered a useful indicator of cellular and whole-organism ageing rate. While approximately 80% of animal species undergo metamorphosis that includes extensive tissue transformations (involving cell division, apoptosis, de-differentiation and de novo formation of stem cells), the effect on telomere dynamics is unknown. We measured telomeres in Xenopus laevis developing from larvae to adults under contrasting environmental temperatures. Telomere dynamics were linked to the degree of tissue transformation during development. Average telomere length in gut tissue increased dramatically during metamorphosis, when the gut shortens by 75% and epithelial cells de-differentiate into stem cells. In the liver (retained from larva) and hindlimb muscle (newly formed before metamorphosis), telomeres gradually shortened until adulthood, likely due to extensive cell division. Tail muscle telomere lengths were constant until tail resorption, and those in heart (retained from larva) showed no change over time. Telomere lengths negatively correlated with larval growth, but for a given growth rate, telomeres were shorter in cooler conditions, suggesting that growing in the cold is more costly. Telomere lengths were not related to post-metamorphic growth rate. Further research is now needed to understand whether telomere dynamics are a good indicator of ageing rate in species undergoing metamorphosis.
Collapse
Affiliation(s)
- Pablo Burraco
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow G12 8QQ, UK
- Ecology, Evolution and Development Group, Doñana Biological Station (CSIC), 41092, Seville, Spain
| | - Miguel Hernandez-Gonzalez
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow G12 8QQ, UK
| | - Neil B. Metcalfe
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow G12 8QQ, UK
| | - Pat Monaghan
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
22
|
Paul B, Dockery R, Valverde VM, Buchholz DR. Characterization of a novel corticosterone response gene in Xenopus tropicalis tadpole tails. Front Endocrinol (Lausanne) 2023; 14:1121002. [PMID: 36777337 PMCID: PMC9910334 DOI: 10.3389/fendo.2023.1121002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 01/11/2023] [Indexed: 01/27/2023] Open
Abstract
Corticosteroids are critical for development and for mediating stress responses across diverse vertebrate taxa. Study of frog metamorphosis has made significant breakthroughs in our understanding of corticosteroid signaling during development in non-mammalian vertebrate species. However, lack of adequate corticosterone (CORT) response genes in tadpoles make identification and quantification of CORT responses challenging. Here, we characterized a CORT-response gene frzb (frizzled related protein) previously identified in Xenopus tropicalis tadpole tail skin by an RNA-seq study. We validated the RNA-seq results that CORT and not thyroid hormone induces frzb in the tails using quantitative PCR. Further, maximum frzb expression was achieved by 100-250 nM CORT within 12-24 hours. frzb is not significantly induced in the liver and brain in response to 100 nM CORT. We also found no change in frzb expression across natural metamorphosis when endogenous CORT levels peak. Surprisingly, frzb is only induced by CORT in X. tropicalis tails and not in Xenopus laevis tails. The exact downstream function of increased frzb expression in tails in response to CORT is not known, but the specificity of hormone response and its high mRNA expression levels in the tail render frzb a useful marker of exogenous CORT-response independent of thyroid hormone for exogenous hormone treatments and in-vivo endocrine disruption studies.
Collapse
Affiliation(s)
- Bidisha Paul
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, United States
| | - Rejenae Dockery
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, United States
| | - Valery M. Valverde
- School of Medicine and Health Sciences TecSalud Instituto Tecnológico y de Estudios Superiores de Monterrey (ITESM), Monterrey, Nuevo Leon, Mexico
| | - Daniel R. Buchholz
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, United States
| |
Collapse
|
23
|
Schreiber AM. Lessons From Tadpoles on the Physiological Roles of Corticosteroids. Endocrinology 2023; 164:6980479. [PMID: 36624971 DOI: 10.1210/endocr/bqad002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 01/11/2023]
Affiliation(s)
- Alex M Schreiber
- Department of Biology, St Lawrence University, Canton, NY 13617, USA
| |
Collapse
|
24
|
Alves-Ferreira G, Katzenberger M, Fava FG, Costa RN, Carilo Filho LM, Solé M. Roundup Original DI® and thermal stress affect survival, morphology and thermal tolerance in tadpoles of Boana faber (Hylidae, Anura). ECOTOXICOLOGY (LONDON, ENGLAND) 2023; 32:93-101. [PMID: 36653510 DOI: 10.1007/s10646-023-02622-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
In amphibians, stressful environments can lead to accelerated metamorphosis at the expense of total length, resulting in the occurrence of morphological abnormalities. Many studies have linked the occurrence of these phenomena to the pollution of habitats by pesticides and thermal stress. Here, we assessed how exposure to Roundup Original DI® and higher constant temperatures affect the survival of Boana faber tadpoles and estimate the CL5096hs for the population. In addition, we evaluated how exposure to Roundup affects larval growth, morphology and thermal tolerance. Our findings suggest that even at sublethal doses, Roundup Original DI® may affect the survival of Boana faber larvae. There also appears to be an additive effect between Roundup and temperature increase on larval survival, however, we need to further explore this point to determine a pattern, proving to be a promising issue to be investigated in the future. We observed effects of chronic exposure to the herbicide formulation on the morphology and growth of the tadpoles, resulting in a reduction in total length and differences in the shape of the larvae. Although we did not recover any direct effects of herbicide exposure on CTMax, we did observe an upward trend in CTMax for tadpoles exposed to Roundup. Understanding how anthropogenic changes affect anuran persistence is fundamental for the management and conservation of the species and can be considered an initial step toward the formulation of legislations that regulate the use of herbicides.
Collapse
Affiliation(s)
- Gabriela Alves-Ferreira
- Tropical Herpetology Lab, Programa de Pós-Graduação em Ecologia e Conservação da Biodiversidade, Universidade Estadual de Santa Cruz, Rodovia Jorge Amado, km 16, 45662-900, Ilhéus, Bahia, Brasil.
- Kunhã Asé Network of Women in Science, Salvador, Bahia, Brasil.
| | - Marco Katzenberger
- Laboratório de Bioinformática e Biologia Evolutiva, Department of Genetics, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, 1235 - Cidade Universitária, CEP 50670-901, Recife, Pernambuco, Brasil
| | - Fernanda Guimarães Fava
- Tropical Herpetology Lab, Programa de Pós-Graduação em Ecologia e Conservação da Biodiversidade, Universidade Estadual de Santa Cruz, Rodovia Jorge Amado, km 16, 45662-900, Ilhéus, Bahia, Brasil
| | - Renan Nunes Costa
- Departamento de Ciências Biológicas, Universidade do Estado de Minas Gerais, Praça dos Estudantes 23, Santa Emília, CEP 36800-000, Carangola, Minas Gerais, Brasil
| | - Leildo Machado Carilo Filho
- Tropical Herpetology Lab, Programa de Pós-Graduação em Zoologia, Universidade Estadual de Santa Cruz, Rodovia Jorge Amado, km 16, 45662-900, Ilhéus, Bahia, Brasil
| | - Mirco Solé
- Tropical Herpetology Lab, Programa de Pós-Graduação em Ecologia e Conservação da Biodiversidade, Universidade Estadual de Santa Cruz, Rodovia Jorge Amado, km 16, 45662-900, Ilhéus, Bahia, Brasil
- Tropical Herpetology Lab, Programa de Pós-Graduação em Zoologia, Universidade Estadual de Santa Cruz, Rodovia Jorge Amado, km 16, 45662-900, Ilhéus, Bahia, Brasil
- Herpetology Section, Zoologisches Forschungsmuseum Alexander Koenig, Adenauerallee 160, 53113, Bonn, North Rhine-Westphalia, Germany
| |
Collapse
|
25
|
Regueira E, O'Donohoe MEA, Pavón Novarin M, Michou Etcheverría GC, Tropea C, Hermida GN. Integrating morphology and physiology of the key endocrine organ during tadpole development: The interrenal gland. J Anat 2022; 241:1357-1370. [PMID: 36056596 PMCID: PMC9644952 DOI: 10.1111/joa.13759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 08/09/2022] [Accepted: 08/17/2022] [Indexed: 11/26/2022] Open
Abstract
Indirect development is widespread in anurans and is considered an ancestral condition. The metamorphosis of larvae into juveniles involves highly coordinated morphological, physiological, biochemical, and behavioral changes, promoted by the thyroid hormone and interrenal corticosteroids. Stress response to environmental changes is also mediated by corticosteroids, affecting the timing and rate of metamorphosis and leading to great developmental plasticity in tadpoles. Given the potential effect of interrenal gland ontogeny alterations on metamorphosis and the lack of studies addressing both the morphology and endocrinology of this gland in tadpoles, we present corticosterone (CORT) production and histological changes through the ontogeny of interrenal gland in the generalized pond-type tadpole of Rhinella arenarum (Anura, Bufonidae). This species shows the highest concentration of whole-body CORT by the early climax when drastic metamorphic changes begin. This is coincident with the morphological differentiation of steroidogenic cells and the formation of interrenal cords. By this stage, steroidogenic cells have a shrunken cytoplasm, with a significantly higher nucleus-to-cell diameter ratio. The lowest CORT concentration during premetamorphosis and late climax is associated with small undifferentiated cells with lipid inclusions surrounding large blood vessels between kidneys, and with cords of differentiated steroidogenic cells with a significantly lower nucleus-to-cell diameter ratio, respectively. Our study characterizes the morphological and physiological pattern of interrenal gland development, showing an association between certain histological and morphometric characteristics and CORT levels. Variations in this morpho-physiological pattern should be considered when studying the phenotypic plasticity or variable growth rates of tadpoles.
Collapse
Affiliation(s)
- Eleonora Regueira
- Laboratorio Biología de Anfibios – Histología Animal, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y NaturalesUniversidad de Buenos AiresCABAArgentina
- Consejo Nacional de Investigaciones Científicas y TécnicasCABAArgentina
| | - M. E. Ailín O'Donohoe
- Laboratorio Biología de Anfibios – Histología Animal, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y NaturalesUniversidad de Buenos AiresCABAArgentina
- Consejo Nacional de Investigaciones Científicas y TécnicasCABAArgentina
| | - Mariela Pavón Novarin
- Laboratorio Biología de Anfibios – Histología Animal, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y NaturalesUniversidad de Buenos AiresCABAArgentina
| | - Gabriela C. Michou Etcheverría
- Laboratorio Biología de Anfibios – Histología Animal, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y NaturalesUniversidad de Buenos AiresCABAArgentina
| | - Carolina Tropea
- Consejo Nacional de Investigaciones Científicas y TécnicasCABAArgentina
- Laboratorio de Biología de la Reproducción y el Crecimiento de Crustáceos Decápodos, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y NaturalesInstituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), Universidad de Buenos AiresCABAArgentina
| | - Gladys N. Hermida
- Laboratorio Biología de Anfibios – Histología Animal, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y NaturalesUniversidad de Buenos AiresCABAArgentina
| |
Collapse
|
26
|
Rigolet M, Buisine N, Scharwatt M, Duvernois-Berthet E, Buchholz DR, Sachs LM. Crosstalk between Thyroid Hormone and Corticosteroid Signaling Targets Cell Proliferation in Xenopus tropicalis Tadpole Liver. Int J Mol Sci 2022; 23:ijms232213715. [PMID: 36430192 PMCID: PMC9692397 DOI: 10.3390/ijms232213715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 11/11/2022] Open
Abstract
Thyroid hormones (TH) and glucocorticoids (GC) are involved in numerous developmental and physiological processes. The effects of individual hormones are well documented, but little is known about the joint actions of the two hormones. To decipher the crosstalk between these two hormonal pathways, we conducted a transcriptional analysis of genes regulated by TH, GC, or both hormones together in liver of Xenopus tropicalis tadpoles using RNA-Seq. Among the differentially expressed genes (DE), 70.5% were regulated by TH only, 0.87% by GC only, and 15% by crosstalk between the two hormones. Gene ontology analysis of the crosstalk-regulated genes identified terms referring to DNA replication, DNA repair, and cell-cycle regulation. Biological network analysis identified groups of genes targeted by the hormonal crosstalk and corroborated the gene ontology analysis. Specifically, we found two groups of functionally linked genes (chains) mainly composed of crosstalk-regulated hubs (highly interactive genes), and a large subnetwork centred around the crosstalk-regulated genes psmb6 and cdc7. Most of the genes in the chains are involved in cell-cycle regulation, as are psmb6 and cdc7, which regulate the G2/M transition. Thus, the biological action of these two hormonal pathways acting together in the liver targets cell-cycle regulation.
Collapse
Affiliation(s)
- Muriel Rigolet
- UMR PhyMA CNRS, Muséum National d’Histoire Naturelle, 75005 Paris, France
| | - Nicolas Buisine
- UMR PhyMA CNRS, Muséum National d’Histoire Naturelle, 75005 Paris, France
| | - Marylou Scharwatt
- UMR PhyMA CNRS, Muséum National d’Histoire Naturelle, 75005 Paris, France
| | | | - Daniel R. Buchholz
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Laurent M. Sachs
- UMR PhyMA CNRS, Muséum National d’Histoire Naturelle, 75005 Paris, France
- UMR7221 CNRS, Muséum National d’Histoire Naturelle, CP32, 7 Rue Cuvier, CEDEX 05, 75231 Paris, France
- Correspondence: ; Tel.: +33-1-40-79-36-17
| |
Collapse
|
27
|
McClelland SJ, Woodley SK. Developmental Exposure to Trace Concentrations of Chlorpyrifos Results in Nonmonotonic Changes in Brain Shape and Behavior in Amphibians. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:9379-9386. [PMID: 35704902 DOI: 10.1021/acs.est.2c01039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Despite regulations and improved design, pesticides remain ubiquitous in the environment at relatively low, trace concentrations. To understand how prolonged exposure to trace pesticide concentrations impacts vertebrate brain development and behavior, we raised larval amphibians (northern leopard frogs, Lithobates pipiens) in 0, 1, or 10 μg/L of the organophosphorus pesticide chlorpyrifos (CPF) from hatching to metamorphosis. Tadpoles exposed to 1 μg/L CPF, but not 10 μg/L CPF, had changes in relative brain mass, relative telencephalon shape, and behavioral responses to a novel visual cue. Tadpoles exposed to 10 μg/L CPF had altered behavioral responses to predator-associated olfactory cues. After metamorphosis, frogs raised in 1 μg/L CPF, but not 10 μg/L CPF, had changes in the shape of their optic tectum and medulla. Thus, we provide robust evidence that even trace, yet ecologically realistic, concentrations of CPF have neurodevelopmental and behavioral effects that carry over to later life-history stages, further emphasizing the potent effects of trace levels of CPF on vertebrate development. Also, some but not all effects were nonmonotonic, meaning that effects were evident at the lowest but not at the higher concentration of CPF.
Collapse
Affiliation(s)
- Sara J McClelland
- Duquesne University, Pittsburgh, Pennsylvania 15217, United States
- Moravian University, Bethlehem, Pennsylvania 18018, United States
| | - Sarah K Woodley
- Duquesne University, Pittsburgh, Pennsylvania 15217, United States
| |
Collapse
|
28
|
Thyroid and Corticosteroid Signaling in Amphibian Metamorphosis. Cells 2022; 11:cells11101595. [PMID: 35626631 PMCID: PMC9139329 DOI: 10.3390/cells11101595] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/28/2022] [Accepted: 05/05/2022] [Indexed: 01/25/2023] Open
Abstract
In multicellular organisms, development is based in part on the integration of communication systems. Two neuroendocrine axes, the hypothalamic–pituitary–thyroid and the hypothalamic–pituitary–adrenal/interrenal axes, are central players in orchestrating body morphogenesis. In all vertebrates, the hypothalamic–pituitary–thyroid axis controls thyroid hormone production and release, whereas the hypothalamic–pituitary–adrenal/interrenal axis regulates the production and release of corticosteroids. One of the most salient effects of thyroid hormones and corticosteroids in post-embryonic developmental processes is their critical role in metamorphosis in anuran amphibians. Metamorphosis involves modifications to the morphological and biochemical characteristics of all larval tissues to enable the transition from one life stage to the next life stage that coincides with an ecological niche switch. This transition in amphibians is an example of a widespread phenomenon among vertebrates, where thyroid hormones and corticosteroids coordinate a post-embryonic developmental transition. The review addresses the functions and interactions of thyroid hormone and corticosteroid signaling in amphibian development (metamorphosis) as well as the developmental roles of these two pathways in vertebrate evolution.
Collapse
|
29
|
Sinai N, Glos J, Mohan AV, Lyra ML, Riepe M, Thöle E, Zummach C, Ruthsatz K. Developmental plasticity in amphibian larvae across the world: Investigating the roles of temperature and latitude. J Therm Biol 2022; 106:103233. [DOI: 10.1016/j.jtherbio.2022.103233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 02/23/2022] [Accepted: 03/26/2022] [Indexed: 01/04/2023]
|
30
|
Understanding and Reducing Persistent Racial Disparities in Preterm Birth: a Model of Stress-Induced Developmental Plasticity. Reprod Sci 2022; 29:2051-2059. [PMID: 35298790 DOI: 10.1007/s43032-022-00903-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 02/27/2022] [Indexed: 10/18/2022]
Abstract
Preterm birth is a leading cause of neonatal mortality and is characterized by substantial racial disparities in the US. Despite efforts to reduce preterm birth, rates have risen and racial disparities persist. Maternal stress is a risk factor for preterm birth; however, often, it is treated as a secondary variable rather than a primary target for intervention. Stress is known to affect several biological processes leading to downstream sequelae. Here, we present a model of stress-induced developmental plasticity where maternal stress is a key environmental cue impacting the length of gestation and therefore a primary target for intervention. Black women experience disproportionate and unique maternal stressors related to perceived racism and discrimination. It is therefore not surprising that Black women have disproportionate rates of preterm birth. The downstream effects of racism on preterm birth pathophysiology may reflect an appropriate response to stressors through the highly conserved maternal-fetal-placental neuroendocrine stress axis. This environmentally sensitive system mediates both maternal stress and the timing of birth and is a mechanism by which developmental plasticity occurs. Fortunately, stress does not appear to be an all-or-none variable. Evidence suggests that developmental plasticity is dynamic, functioning on a continuum. Therefore, simple, stress-reducing interventions that support pregnant women may tangibly reduce rates of preterm birth and improve birth outcomes for all women, particularly Black women.
Collapse
|
31
|
Weiwei D, Bei W, Hong W, Cailan W, Hailin S, Donghong X, Xiaolai W, Zhaohu H, Shijun L, Jian T, Qiang J. Thyroid Hormone Changes in the Northern Area of Tianjin during the COVID-19 Pandemic. Int J Endocrinol 2022; 2022:5720875. [PMID: 35013681 PMCID: PMC8742148 DOI: 10.1155/2022/5720875] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/30/2021] [Indexed: 12/15/2022] Open
Abstract
PURPOSE This study aimed to determine whether and how stress-induced thyroid hormone changes occur during the COVID-19 pandemic in the northern area of Tianjin. METHODS This study comprised two groups of study subjects in Tianjin: before (2019) and during (2020) the COVID-19 outbreak. Subjects were included if they had FT3, FT4, and TSH concentrations and thyroid TPOAb or TgAb information available. People who were pregnant, were lactating, or had mental illness were excluded. We used propensity score matching to form a cohort in which patients had similar baseline characteristics, and their anxiety level was measured by the Hamilton Anxiety Rating Scale (HAMA). RESULTS Among the 1395 eligible people, 224 in Group A and 224 in Group B had similar propensity scores and were included in the analyses. The detection rate of abnormal thyroid function was decreased in pandemic Group B (69.2% vs. 93.3%, χ 2 = 42.725, p < 0.01), especially for hypothyroidism (14.29% vs. 35.71%, χ 2 = 27.429, p < 0.01) and isolated thyroid-related antibodies (25.89% vs. 38.39%, χ 2 = 8.023, p < 0.01). The level of FT4 (z = -2.821, p < 0.01) and HAMA score (7.63 ± 2.07 vs. 5.40 ± 1.65, t = 16.873, p < 0.01) went up in Group B; however, TSH (z = -5.238, p < 0.01), FT3 (z = -3.089, p=0.002), TgAb (z = -11.814, p < 0.01), and TPOAb (z = -9.299, p < 0.01) were lower, and HAMA was positive with FT3 (r = 0.208, p < 0.01) and FT4 (r = 0.247, p < 0.01). CONCLUSION People in the northern area of Tianjin during the COVID-19 outbreak were at an increased risk of higher FT4, lower FT3, and lower TSH. The HAMA scores increased in emergency situations and were positively correlated with the levels of FT3 and FT4.
Collapse
Affiliation(s)
- Dong Weiwei
- Department of Nuclear Medicine, Tianjin Fourth Central Hospital, The Fourth Central Clinical School, Tianjin Medical University, Tianjin 300140, China
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin 300052, China
| | - Wu Bei
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin 300052, China
- Department of Nuclear Medicine, Tianjin Hospital, Tianjin 300211, China
| | - Wang Hong
- Rehabilitation Medical Department, Tianjin Union Medical Center, Tianjin 300121, China
| | - Wu Cailan
- Department of Nuclear Medicine, Tianjin Fourth Central Hospital, The Fourth Central Clinical School, Tianjin Medical University, Tianjin 300140, China
| | - Shao Hailin
- Department of Endocrinology Medicine, Tianjin Fourth Central Hospital, The Fourth Central Clinical School, Tianjin Medical University, Tianjin 300140, China
| | - Xu Donghong
- Department of Endocrinology Medicine, Tianjin Fourth Central Hospital, The Fourth Central Clinical School, Tianjin Medical University, Tianjin 300140, China
| | - Wang Xiaolai
- Department of Endocrinology Medicine, Tianjin Fourth Central Hospital, The Fourth Central Clinical School, Tianjin Medical University, Tianjin 300140, China
| | - Hao Zhaohu
- Department of Endocrinology Medicine, Tianjin Fourth Central Hospital, The Fourth Central Clinical School, Tianjin Medical University, Tianjin 300140, China
| | - Li Shijun
- Department of Hematology, Tianjin Fourth Central Hospital, The Fourth Central Clinical School, Tianjin Medical University, Tianjin 300140, China
| | - Tan Jian
- Department of Nuclear Medicine, Tianjin Fourth Central Hospital, The Fourth Central Clinical School, Tianjin Medical University, Tianjin 300140, China
| | - Jia Qiang
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin 300052, China
| |
Collapse
|
32
|
Suzuki Y, Toh L. Constraints and Opportunities for the Evolution of Metamorphic Organisms in a Changing Climate. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.734031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We argue that developmental hormones facilitate the evolution of novel phenotypic innovations and timing of life history events by genetic accommodation. Within an individual’s life cycle, metamorphic hormones respond readily to environmental conditions and alter adult phenotypes. Across generations, the many effects of hormones can bias and at times constrain the evolution of traits during metamorphosis; yet, hormonal systems can overcome constraints through shifts in timing of, and acquisition of tissue specific responses to, endocrine regulation. Because of these actions of hormones, metamorphic hormones can shape the evolution of metamorphic organisms. We present a model called a developmental goblet, which provides a visual representation of how metamorphic organisms might evolve. In addition, because developmental hormones often respond to environmental changes, we discuss how endocrine regulation of postembryonic development may impact how organisms evolve in response to climate change. Thus, we propose that developmental hormones may provide a mechanistic link between climate change and organismal adaptation.
Collapse
|
33
|
Rousseau K, Dufour S, Sachs LM. Interdependence of Thyroid and Corticosteroid Signaling in Vertebrate Developmental Transitions. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.735487] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Post-embryonic acute developmental processes mainly allow the transition from one life stage in a specific ecological niche to the next life stage in a different ecological niche. Metamorphosis, an emblematic type of these post-embryonic developmental processes, has occurred repeatedly and independently in various phylogenetic groups throughout metazoan evolution, such as in cnidarian, insects, molluscs, tunicates, or vertebrates. This review will focus on metamorphoses and developmental transitions in vertebrates, including typical larval metamorphosis in anuran amphibians, larval and secondary metamorphoses in teleost fishes, egg hatching in sauropsids and birth in mammals. Two neuroendocrine axes, the hypothalamic-pituitary-thyroid and the hypothalamic-pituitary-adrenal/interrenal axes, are central players in the regulation of these life transitions. The review will address the molecular and functional evolution of these axes and their interactions. Mechanisms of integration of internal and environmental cues, and activation of these neuroendocrine axes represent key questions in an “eco-evo-devo” perspective of metamorphosis. The roles played by developmental transitions in the innovation, adaptation, and plasticity of life cycles throughout vertebrates will be discussed. In the current context of global climate change and habitat destruction, the review will also address the impact of environmental factors, such as global warming and endocrine disruptors on hypothalamic-pituitary-thyroid and hypothalamic-pituitary-adrenal/interrenal axes, and regulation of developmental transitions.
Collapse
|