1
|
Deng F, Yang D, Qing L, Chen Y, Zou J, Jia M, Wang Q, Jiang R, Huang L. Exploring the interaction between the gut microbiota and cyclic adenosine monophosphate-protein kinase A signaling pathway: a potential therapeutic approach for neurodegenerative diseases. Neural Regen Res 2025; 20:3095-3112. [PMID: 39589173 DOI: 10.4103/nrr.nrr-d-24-00607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 09/10/2024] [Indexed: 11/27/2024] Open
Abstract
The interaction between the gut microbiota and cyclic adenosine monophosphate (cAMP)-protein kinase A (PKA) signaling pathway in the host's central nervous system plays a crucial role in neurological diseases and enhances communication along the gut-brain axis. The gut microbiota influences the cAMP-PKA signaling pathway through its metabolites, which activates the vagus nerve and modulates the immune and neuroendocrine systems. Conversely, alterations in the cAMP-PKA signaling pathway can affect the composition of the gut microbiota, creating a dynamic network of microbial-host interactions. This reciprocal regulation affects neurodevelopment, neurotransmitter control, and behavioral traits, thus playing a role in the modulation of neurological diseases. The coordinated activity of the gut microbiota and the cAMP-PKA signaling pathway regulates processes such as amyloid-β protein aggregation, mitochondrial dysfunction, abnormal energy metabolism, microglial activation, oxidative stress, and neurotransmitter release, which collectively influence the onset and progression of neurological diseases. This study explores the complex interplay between the gut microbiota and cAMP-PKA signaling pathway, along with its implications for potential therapeutic interventions in neurological diseases. Recent pharmacological research has shown that restoring the balance between gut flora and cAMP-PKA signaling pathway may improve outcomes in neurodegenerative diseases and emotional disorders. This can be achieved through various methods such as dietary modifications, probiotic supplements, Chinese herbal extracts, combinations of Chinese herbs, and innovative dosage forms. These findings suggest that regulating the gut microbiota and cAMP-PKA signaling pathway may provide valuable evidence for developing novel therapeutic approaches for neurodegenerative diseases.
Collapse
Affiliation(s)
- Fengcheng Deng
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Dan Yang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Lingxi Qing
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Yifei Chen
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Jilian Zou
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Meiling Jia
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Qian Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Runda Jiang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Lihua Huang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| |
Collapse
|
2
|
Aghighi F, Salami M. What we need to know about the germ-free animal models. AIMS Microbiol 2024; 10:107-147. [PMID: 38525038 PMCID: PMC10955174 DOI: 10.3934/microbiol.2024007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 03/26/2024] Open
Abstract
The gut microbiota (GM), as a forgotten organ, refers to the microbial community that resides in the gastrointestinal tract and plays a critical role in a variety of physiological activities in different body organs. The GM affects its targets through neurological, metabolic, immune, and endocrine pathways. The GM is a dynamic system for which exogenous and endogenous factors have negative or positive effects on its density and composition. Since the mid-twentieth century, laboratory animals are known as the major tools for preclinical research; however, each model has its own limitations. So far, two main models have been used to explore the effects of the GM under normal and abnormal conditions: the isolated germ-free and antibiotic-treated models. Both methods have strengths and weaknesses. In many fields of host-microbe interactions, research on these animal models are known as appropriate experimental subjects that enable investigators to directly assess the role of the microbiota on all features of physiology. These animal models present biological model systems to either study outcomes of the absence of microbes, or to verify the effects of colonization with specific and known microbial species. This paper reviews these current approaches and gives advantages and disadvantages of both models.
Collapse
Affiliation(s)
| | - Mahmoud Salami
- Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I. R. Iran
| |
Collapse
|
3
|
Li Y, Liu Q, Zhang L, Zou J, He R, Zhou Y, Qian C, Zhu Y, Chen R, Zhang Y, Cai P, Wang M, Shao W, Ji M, Wu H, Zhang F, Liu Z, Liu Y. Washed microbiota transplantation reduces glycemic variability in unstable diabetes. J Diabetes 2024; 16:e13485. [PMID: 37846600 PMCID: PMC10859319 DOI: 10.1111/1753-0407.13485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 09/17/2023] [Accepted: 09/25/2023] [Indexed: 10/18/2023] Open
Abstract
BACKGROUND Dysbiosis of gut microbiota is causally linked to impaired host glucose metabolism. We aimed to study effects of the new method of fecal microbiota transplantation, washed microbiota transplantation (WMT), on reducing glycemic variability (GV) in unstable diabetes. METHODS Fourteen eligible patients received three allogenic WMTs and were followed up at 1 week, 1 month, and 3 months. Primary outcomes were daily insulin dose, glucose excursions during meal tests, and GV indices calculated from continuous monitoring or self-monitoring glucose values. Secondary outcomes were multiomics data, including 16S rRNA gene sequencing, metagenomics, and metabolomics to explore underlying mechanisms. RESULTS Daily insulin dose and glucose excursions markedly dropped, whereas GV indices significantly improved up to 1 month. WMT increased gut microbial alpha diversity, beta diversity, and network complexity. Taxonomic changes featured lower abundance of genera Bacteroides and Escherichia-Shigella, and higher abundance of genus Prevotella. Metagenomics functional annotations revealed enrichment of distinct microbial metabolic pathways, including methane biosynthesis, citrate cycle, amino acid degradation, and butyrate production. Derived metabolites correlated significantly with improved GV indices. WMT did not change circulating inflammatory cytokines, enteroendocrine hormones, or C-peptide. CONCLUSIONS WMT showed strong ameliorating effect on GV, raising the possibility of targeting gut microbiota as an effective regimen to reduce GV in diabetes.
Collapse
Affiliation(s)
- Yangyang Li
- Department of Endocrinology, Sir Run Run HospitalNanjing Medical UniversityNanjingChina
| | - Qing Liu
- Department of Endocrinology, Sir Run Run HospitalNanjing Medical UniversityNanjingChina
| | - Lingyu Zhang
- Department of Endocrinology, Sir Run Run HospitalNanjing Medical UniversityNanjingChina
| | - Jing Zou
- Department of Endocrinology, Sir Run Run HospitalNanjing Medical UniversityNanjingChina
| | - Rongbo He
- Department of Endocrinology, Sir Run Run HospitalNanjing Medical UniversityNanjingChina
| | - Ying Zhou
- Department of Endocrinology, Sir Run Run HospitalNanjing Medical UniversityNanjingChina
| | - Chen Qian
- Department of Endocrinology, Sir Run Run HospitalNanjing Medical UniversityNanjingChina
| | - Yuxiao Zhu
- Department of Endocrinology, Sir Run Run HospitalNanjing Medical UniversityNanjingChina
| | - Rourou Chen
- Department of Endocrinology, Sir Run Run HospitalNanjing Medical UniversityNanjingChina
| | - Ying Zhang
- Department of Endocrinology, Sir Run Run HospitalNanjing Medical UniversityNanjingChina
| | - Pengpeng Cai
- Digestive Endoscopy Center, Sir Run Run HospitalNanjing Medical UniversityNanjingChina
| | - Miao Wang
- Division of Microbiotherapy, Sir Run Run HospitalNanjing Medical UniversityNanjingChina
| | - Wei Shao
- Department of Science and Technology, Sir Run Run HospitalNanjing Medical UniversityNanjingChina
| | - Minjun Ji
- Department of Pathogen Biology, Jiangsu Province Key Laboratory of Modern Pathogen BiologyNanjing Medical UniversityNanjingChina
| | - Hao Wu
- Human Phenome InstituteFudan UniversityShanghaiChina
| | - Faming Zhang
- Division of Microbiotherapy, Sir Run Run HospitalNanjing Medical UniversityNanjingChina
- Medical Center for Digestive Diseasesthe Second Affiliated Hospital of Nanjing Medical UniversityNanjingChina
- Key Lab of Holistic Integrative EnterologyNanjing Medical UniversityNanjingChina
| | - Zejian Liu
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular BiologyNanjing Medical UniversityNanjingChina
| | - Yu Liu
- Department of Endocrinology, Sir Run Run HospitalNanjing Medical UniversityNanjingChina
| |
Collapse
|
4
|
Lai TT, Liou CW, Tsai YH, Lin YY, Wu WL. Butterflies in the gut: the interplay between intestinal microbiota and stress. J Biomed Sci 2023; 30:92. [PMID: 38012609 PMCID: PMC10683179 DOI: 10.1186/s12929-023-00984-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 11/06/2023] [Indexed: 11/29/2023] Open
Abstract
Psychological stress is a global issue that affects at least one-third of the population worldwide and increases the risk of numerous psychiatric disorders. Accumulating evidence suggests that the gut and its inhabiting microbes may regulate stress and stress-associated behavioral abnormalities. Hence, the objective of this review is to explore the causal relationships between the gut microbiota, stress, and behavior. Dysbiosis of the microbiome after stress exposure indicated microbial adaption to stressors. Strikingly, the hyperactivated stress signaling found in microbiota-deficient rodents can be normalized by microbiota-based treatments, suggesting that gut microbiota can actively modify the stress response. Microbiota can regulate stress response via intestinal glucocorticoids or autonomic nervous system. Several studies suggest that gut bacteria are involved in the direct modulation of steroid synthesis and metabolism. This review provides recent discoveries on the pathways by which gut microbes affect stress signaling and brain circuits and ultimately impact the host's complex behavior.
Collapse
Affiliation(s)
- Tzu-Ting Lai
- Department of Physiology, College of Medicine, National Cheng Kung University, 1 University Rd., Tainan, 70101, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, 1 University Rd., Tainan, 70101, Taiwan
| | - Chia-Wei Liou
- Department of Physiology, College of Medicine, National Cheng Kung University, 1 University Rd., Tainan, 70101, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, 1 University Rd., Tainan, 70101, Taiwan
| | - Yu-Hsuan Tsai
- Department of Physiology, College of Medicine, National Cheng Kung University, 1 University Rd., Tainan, 70101, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, 1 University Rd., Tainan, 70101, Taiwan
| | - Yuan-Yuan Lin
- Department of Physiology, College of Medicine, National Cheng Kung University, 1 University Rd., Tainan, 70101, Taiwan
| | - Wei-Li Wu
- Department of Physiology, College of Medicine, National Cheng Kung University, 1 University Rd., Tainan, 70101, Taiwan.
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, 1 University Rd., Tainan, 70101, Taiwan.
| |
Collapse
|
5
|
Ticinesi A, Parise A, Nouvenne A, Cerundolo N, Prati B, Meschi T. The possible role of gut microbiota dysbiosis in the pathophysiology of delirium in older persons. MICROBIOME RESEARCH REPORTS 2023; 2:19. [PMID: 38046817 PMCID: PMC10688815 DOI: 10.20517/mrr.2023.15] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/15/2023] [Accepted: 05/23/2023] [Indexed: 12/05/2023]
Abstract
Delirium is a clinical syndrome characterized by an acute change in attention, awareness and cognition with fluctuating course, frequently observed in older patients during hospitalization for acute medical illness or after surgery. Its pathogenesis is multifactorial and still not completely understood, but there is general consensus on the fact that it results from the interaction between an underlying predisposition, such as neurodegenerative diseases, and an acute stressor acting as a trigger, such as infection or anesthesia. Alterations in brain insulin sensitivity and metabolic function, increased blood-brain barrier permeability, neurotransmitter imbalances, abnormal microglial activation and neuroinflammation have all been involved in the pathophysiology of delirium. Interestingly, all these mechanisms can be regulated by the gut microbiota, as demonstrated in experimental studies investigating the microbiota-gut-brain axis in dementia. Aging is also associated with profound changes in gut microbiota composition and functions, which can influence several aspects of disease pathophysiology in the host. This review provides an overview of the emerging evidence linking age-related gut microbiota dysbiosis with delirium, opening new perspectives for the microbiota as a possible target of interventions aimed at delirium prevention and treatment.
Collapse
Affiliation(s)
- Andrea Ticinesi
- Microbiome Research Hub, University of Parma, Parma 43124, Italy
- Department of Medicine and Surgery, University of Parma, Parma 43126, Italy
- Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria di Parma, Parma 43126, Italy
| | - Alberto Parise
- Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria di Parma, Parma 43126, Italy
| | - Antonio Nouvenne
- Microbiome Research Hub, University of Parma, Parma 43124, Italy
- Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria di Parma, Parma 43126, Italy
| | - Nicoletta Cerundolo
- Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria di Parma, Parma 43126, Italy
| | - Beatrice Prati
- Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria di Parma, Parma 43126, Italy
| | - Tiziana Meschi
- Microbiome Research Hub, University of Parma, Parma 43124, Italy
- Department of Medicine and Surgery, University of Parma, Parma 43126, Italy
- Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria di Parma, Parma 43126, Italy
| |
Collapse
|
6
|
Bolsega S, Smoczek A, Meng C, Kleigrewe K, Scheele T, Meller S, Glage S, Volk HA, Bleich A, Basic M. The Genetic Background Is Shaping Cecal Enlargement in the Absence of Intestinal Microbiota. Nutrients 2023; 15:nu15030636. [PMID: 36771343 PMCID: PMC9921660 DOI: 10.3390/nu15030636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 01/28/2023] Open
Abstract
Germ-free (GF) rodents have become a valuable tool for studying the role of intestinal microbes on the host physiology. The major characteristic of GF rodents is an enlarged cecum. The accumulation of mucopolysaccharides, digestion enzymes and water in the intestinal lumen drives this phenotype. Microbial colonization normalizes the cecum size in ex-GF animals. However, whether strain genetics influences the cecal enlargement is unknown. Here we investigated the impact of mouse genetic background on the cecal size in five GF strains frequently used in biomedical research. The cecal weight of GF mice on B6 background (B6J and B6N) represented up to 20% of total body weight. GF NMRI and BALBc mice showed an intermediate phenotype of 5-10%, and those on the C3H background of up to 5%. Reduced cecal size in GF C3H mice correlated with decreased water content, increased expression of water transporters, and reduced production of acidic mucins, but was independent of the level of digestive enzymes in the lumen. In contrast, GF B6J mice with greatly enlarged cecum showed increased water content and a distinct metabolic profile characterized by altered amino acid and bile acid metabolism, and increased acidic mucin production. Together, our results show that genetic background influences the cecal enlargement by regulating the water transport, production of acidic mucins, and metabolic profiles.
Collapse
Affiliation(s)
- Silvia Bolsega
- Institute for Laboratory Animal Science, Hannover Medical School, 30625 Hannover, Germany
| | - Anna Smoczek
- Institute for Laboratory Animal Science, Hannover Medical School, 30625 Hannover, Germany
| | - Chen Meng
- Bavarian Center for Biomolecular Mass Spectrometry, TUM School of Life Sciences, Technical University Munich, 85354 Freising, Germany
| | - Karin Kleigrewe
- Bavarian Center for Biomolecular Mass Spectrometry, TUM School of Life Sciences, Technical University Munich, 85354 Freising, Germany
| | - Tim Scheele
- Institute for Laboratory Animal Science, Hannover Medical School, 30625 Hannover, Germany
| | - Sebastian Meller
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Silke Glage
- Institute for Laboratory Animal Science, Hannover Medical School, 30625 Hannover, Germany
| | - Holger A Volk
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
- Center for Systems Neuroscience Hannover, 30559 Hannover, Germany
| | - André Bleich
- Institute for Laboratory Animal Science, Hannover Medical School, 30625 Hannover, Germany
| | - Marijana Basic
- Institute for Laboratory Animal Science, Hannover Medical School, 30625 Hannover, Germany
| |
Collapse
|
7
|
Jiang W, Wu J, Zhu S, Xin L, Yu C, Shen Z. The Role of Short Chain Fatty Acids in Irritable Bowel Syndrome. J Neurogastroenterol Motil 2022; 28:540-548. [PMID: 36250361 PMCID: PMC9577580 DOI: 10.5056/jnm22093] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 10/07/2022] [Indexed: 11/20/2022] Open
Abstract
Irritable bowel syndrome (IBS) is a functional gastrointestinal disorder that is characterized by abdominal pain and disordered bowel habits. The etiology of IBS is multifactorial, including abnormal gut-brain interactions, visceral hypersensitivity, altered colon motility, and psychological factors. Recent studies have shown that the intestinal microbiota and its metabolites short chain fatty acids (SCFAs) may be involved in the pathogenesis of IBS. SCFAs play an important role in the pathophysiology of IBS. We discuss the underlying mechanisms of action of SCFAs in intestinal inflammation and immunity, intestinal barrier integrity, motility, and the microbiota-gut-brain axis. Limited to previous studies, further studies are required to investigate the mechanisms of action of SCFAs in IBS and provide more precise therapeutic strategies for IBS.
Collapse
Affiliation(s)
- Wenxi Jiang
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jiali Wu
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Shefeng Zhu
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Linying Xin
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Chaohui Yu
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Zhe Shen
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
8
|
Wang N, Chen L, Yi K, Zhang B, Li C, Zhou X. The effects of microbiota on reproductive health: A review. Crit Rev Food Sci Nutr 2022; 64:1486-1507. [PMID: 36066460 DOI: 10.1080/10408398.2022.2117784] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Reproductive issues are becoming an increasing global problem. There is increasing interest in the relationship between microbiota and reproductive health. Stable microbiota communities exist in the gut, reproductive tract, uterus, testes, and semen. Various effects (e.g., epigenetic modifications, nervous system, metabolism) of dysbiosis in the microbiota can impair gamete quality; interfere with zygote formation, embryo implantation, and embryo development; and increase disease susceptibility, thus adversely impacting reproductive capacity and pregnancy. The maintenance of a healthy microbiota can protect the host from pathogens, increase reproductive potential, and reduce the rates of adverse pregnancy outcomes. In conclusion, this review discusses microbiota in the male and female reproductive systems of multiple animal species. It explores the effects and mechanisms of microbiota on reproduction, factors that influence microbiota composition, and applications of microbiota in reproductive disorder treatment and detection. The findings support novel approaches for managing reproductive diseases through microbiota improvement and monitoring. In addition, it will stimulate further systematic explorations of microbiota-mediated effects on reproduction.
Collapse
Affiliation(s)
- Nan Wang
- College of Animal Sciences, Jilin University, Changchun, China
| | - Lu Chen
- College of Animal Sciences, Jilin University, Changchun, China
| | - Kangle Yi
- Hunan Institute of Animal and Veterinary Science, Changsha, China
| | - Baizhong Zhang
- Hunan Institute of Animal and Veterinary Science, Changsha, China
| | - Chunjin Li
- College of Animal Sciences, Jilin University, Changchun, China
| | - Xu Zhou
- College of Animal Sciences, Jilin University, Changchun, China
| |
Collapse
|
9
|
Liao W, Su M, Zhang D. A study on the effect of symbiotic fermented milk products on human gastrointestinal health: Double-blind randomized controlled clinical trial. Food Sci Nutr 2022; 10:2947-2955. [PMID: 36171774 PMCID: PMC9469858 DOI: 10.1002/fsn3.2890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/27/2022] [Accepted: 04/02/2022] [Indexed: 11/07/2022] Open
Abstract
Several studies have claimed that the consumption of fermented dairy products can improve human gastrointestinal (GI) health. However, the numbers of systematic clinic trials are limited. In this study, a yogurt containing both probiotics and prebiotics was developed and a double-blind randomized controlled clinical trial was carried out to evaluate the effect of the product on human gastrointestinal health in three different aspects: (1) the effect on functional constipation (FC) and functional diarrhea (FD); (2) the effect on gastrointestinal (GI) tract immune system; and (3) the changes in GI tract microbiota. Participants who suffered FC or FD were randomized into three groups (n = 66 each group): the first group was treated with fermented milk with Lactobacillus plantarum ST-III (7 mg/kg) and inulin (1.5%), the second group was treated with L. plantarum ST-III (7 mg/kg) and inulin (1.0%), and the third group (control group) was treated without probiotics and prebiotics. Half of the participants stopped the treatment after 14 days and the rest of the group continued the trial to the full 28 days. The fecal samples of participants were analyzed regarding their short-chain fatty acids (SCFAs), secretory immunoglobulin A (sIgA), and microbiota. A survey on GI tract health was conducted and the Bristol stool scale was recorded. The results showed that the consumption of the symbiotic yogurt for 14 days and 28 days can both improve the digestive system, with the continual consumption of product containing L. plantarum ST-III (7 mg/kg) and inulin (1.5%) for 28 days showing the most significance. The consumption of this product may be used as a potential functional food.
Collapse
Affiliation(s)
- Wenyan Liao
- State Key Laboratory of Dairy BiotechnologyShanghai Engineering Research Center of Dairy BiotechnologyDairy Research InstituteBright Dairy & Food Co., LtdShanghaiChina
| | - Miya Su
- State Key Laboratory of Dairy BiotechnologyShanghai Engineering Research Center of Dairy BiotechnologyDairy Research InstituteBright Dairy & Food Co., LtdShanghaiChina
| | - Dong Zhang
- State Key Laboratory of Dairy BiotechnologyShanghai Engineering Research Center of Dairy BiotechnologyDairy Research InstituteBright Dairy & Food Co., LtdShanghaiChina
| |
Collapse
|
10
|
Tanelian A, Nankova B, Miari M, Nahvi RJ, Sabban EL. Resilience or susceptibility to traumatic stress: Potential influence of the microbiome. Neurobiol Stress 2022; 19:100461. [PMID: 35789769 PMCID: PMC9250071 DOI: 10.1016/j.ynstr.2022.100461] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 05/13/2022] [Accepted: 05/15/2022] [Indexed: 11/24/2022] Open
Abstract
Exposure to traumatic stress is a major risk factor for development of neuropsychiatric disorders in a sub-population of individuals, while others remain resilient. The mechanisms and contributing factors differentiating between these phenotypes are still unclear. We hypothesize that inter-individual differences in the microbial composition and function contribute to host resilience or susceptibility to stress-induced psychopathologies. The current study aimed to characterize gut microbial community before and after exposure to traumatic stress in an animal model of PTSD. Sprague-Dawley male rats were randomly divided into unstressed controls and experimental group subjected to Single Prolonged Stress (SPS). After 14 days, behavioral analyses were performed using Open Field, Social Interaction and Elevated Plus Maze tests. Based on the anxiety measures, the SPS group was further subdivided into resilient (SPS-R) and susceptible (SPS–S) cohorts. The animals were sacrificed after the last behavioral test and cecum, colon, hippocampus, and medial prefrontal cortex were dissected. Prior to SPS and immediately after Open Field test, fecal samples were collected from each rat for 16S V3–V4 ribosomal DNA sequencing, whereas urine samples were collected before SPS, 90 min into immobilization and on the day of sacrifice to measure epinephrine and norepinephrine levels. Analyses of the fecal microbiota revealed significant differences in microbial communities and in their predictive functionality among the groups before and after SPS stressors. Before SPS, the SPS-S subgroup harbored microbiota with an overall pro-inflammatory phenotype, whereas SPS-R subgroup had microbiota with an overall anti-inflammatory phenotype, with predictive functional pathways enriched in carbohydrate and lipid metabolism and decreased in amino acid metabolism and neurodegenerative diseases. After SPS, the gut microbial communities and their predictive functionality shifted especially in SPS cohorts, with volatility at the genus level correlating inversely with Anxiety Index. In line with the alterations seen in the gut microbiota, the levels of cecal short chain fatty acids were also altered, with SPS-S subgroup having significantly lower levels of acetate, valerate and caproate. The levels of acetate inversely correlated with Anxiety Index. Interestingly, urinary epinephrine and norepinephrine levels were also higher in the SPS-S subgroup at baseline and during stress, indicative of an altered sympathoadrenal stress axis. Finally, shorter colon (marker of intestinal inflammation) and a lower claudin-5 protein expression (marker for increased blood brain barrier permeability) were observed in the SPS-S subgroup. Taken together, our results suggest microbiota is a potential factor in predisposing subjects either to stress susceptibility or resilience. Moreover, SPS triggered significant shifts in the gut microbiota, their metabolites and brain permeability. These findings could lead to new therapeutic directions for PTSD possibly through the controlled manipulation of gut microbiota. It may enable early identification of individuals more likely to develop prolonged anxiogenic symptoms following traumatic stress. Preexisting individual differences in microbiome relate to host's stress response. Shift in the microbial composition differs in SPS-R and SPS-S subgroups after SPS. Cecal levels of acetate in SPS subgroups correlate inversely with anxiety index. Basal and stress-induced urinary catecholamine levels are higher in SPS-S subgroup. SPS-S subgroup has shorter colon, less cecal SCFA and lower brain TJ protein.
Collapse
|