1
|
Eason CT, Shapiro L, Ogilvie S, King C, Clout M. Trends in the development of mammalian pest control technology in New Zealand. NEW ZEALAND JOURNAL OF ZOOLOGY 2017. [DOI: 10.1080/03014223.2017.1337645] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Charles T. Eason
- Cawthron Institute, Nelson, New Zealand
- Centre for Wildlife Management and Conservation Faculty of Agriculture and Life Sciences, Department of Ecology, Lincoln University, Canterbury, New Zealand
| | | | | | - Carolyn King
- Environmental Research Institute, University of Waikato, Hamilton, New Zealand
| | - Mick Clout
- Centre for Biodiversity and Biosecurity, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
2
|
Cooney TP, Varelis P, Bendall JG. High-Throughput Quantification of Monofluoroacetate (1080) in Milk as a Response to an Extortion Threat. J Food Prot 2016; 79:273-81. [PMID: 26818988 DOI: 10.4315/0362-028x.jfp-15-405] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
As a food defense measure against an extortion threat to poison infant formula with monofluoroacetate, a robust methodology for monofluoroacetate analysis in fluid milk and powdered dairy products was developed and optimized. Critical challenges posed by this situation required that the analytical methodology provide (i) high specificity, (ii) high throughput capable of analyzing thousands of samples of fluid milk per day, and (iii) trace-level detection of 1 ng/g or lower to achieve the maximum residue limit. Solid-phase extraction-purified acetone extracts of fluid milk were derivatized with aniline, and after ultrahigh-performance liquid chromatography using a Kinetex-C18 column packed with 1.3-μm shell particles, the resulting N-phenyl 2-fluoroacetamide could be determined by liquid chromatography-tandem mass spectrometry in a highly specific manner and with a limit of quantification of 0.5 ng/ml. By using 4-(4-chlorophenoxy)aniline as a derivatizing agent, the method could be extended to powdered dairy products with the same limit of quantification. Between January and July 2015, some 136,000 fluid milk samples were tested using this method. This analytical testing of fluid milk formed one element in a larger program of work by multiple agencies to ensure that consumers could continue to have confidence in the safety of New Zealand milk and dairy products.
Collapse
Affiliation(s)
- Terry P Cooney
- Analytica Laboratories, Ruakura Research Centre, 10 Bisley Road, Private Bag 3123, Hamilton 3240, New Zealand
| | - Peter Varelis
- Fonterra Research and Development Centre, Dairy Farm Road, Private Bag 11029, Palmerston North 4442, New Zealand
| | - Justin G Bendall
- Fonterra Research and Development Centre, Dairy Farm Road, Private Bag 11029, Palmerston North 4442, New Zealand.
| |
Collapse
|
3
|
Lansoprazole Upregulates Polyubiquitination of the TNF Receptor-Associated Factor 6 and Facilitates Runx2-mediated Osteoblastogenesis. EBioMedicine 2015; 2:2046-61. [PMID: 26844285 PMCID: PMC4703748 DOI: 10.1016/j.ebiom.2015.11.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Revised: 11/05/2015] [Accepted: 11/12/2015] [Indexed: 12/11/2022] Open
Abstract
The transcription factor, runt-related transcription factor 2 (Runx2), plays a pivotal role in the differentiation of the mesenchymal stem cells to the osteochondroblast lineages. We found by the drug repositioning strategy that a proton pump inhibitor, lansoprazole, enhances nuclear accumulation of Runx2 and induces osteoblastogenesis of human mesenchymal stromal cells. Systemic administration of lansoprazole to a rat femoral fracture model increased osteoblastogenesis. Dissection of signaling pathways revealed that lansoprazole activates a noncanonical bone morphogenic protein (BMP)-transforming growth factor-beta (TGF-β) activated kinase-1 (TAK1)-p38 mitogen-activated protein kinase (MAPK) pathway. We found by in cellulo ubiquitination studies that lansoprazole enhances polyubiquitination of the TNF receptor-associated factor 6 (TRAF6) and by in vitro ubiquitination studies that the enhanced polyubiquitination of TRAF6 is attributed to the blocking of a deubiquitination enzyme, cylindromatosis (CYLD). Structural modeling and site-directed mutagenesis of CYLD demonstrated that lansoprazole tightly fits in a pocket of CYLD where the C-terminal tail of ubiquitin lies. Lansoprazole is a potential therapeutic agent for enhancing osteoblastic differentiation.
Collapse
|
4
|
Yagi H, Ohkawara B, Nakashima H, Ito K, Tsushima M, Ishii H, Noto K, Ohta K, Masuda A, Imagama S, Ishiguro N, Ohno K. Zonisamide Enhances Neurite Elongation of Primary Motor Neurons and Facilitates Peripheral Nerve Regeneration In Vitro and in a Mouse Model. PLoS One 2015; 10:e0142786. [PMID: 26571146 PMCID: PMC4646494 DOI: 10.1371/journal.pone.0142786] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 10/27/2015] [Indexed: 12/25/2022] Open
Abstract
No clinically applicable drug is currently available to enhance neurite elongation after nerve injury. To identify a clinically applicable drug, we screened pre-approved drugs for neurite elongation in the motor neuron-like NSC34 cells. We found that zonisamide, an anti-epileptic and anti-Parkinson’s disease drug, promoted neurite elongation in cultured primary motor neurons and NSC34 cells in a concentration-dependent manner. The neurite-scratch assay revealed that zonisamide enhanced neurite regeneration. Zonisamide was also protective against oxidative stress-induced cell death of primary motor neurons. Zonisamide induced mRNA expression of nerve growth factors (BDNF, NGF, and neurotrophin-4/5), and their receptors (tropomyosin receptor kinase A and B). In a mouse model of sciatic nerve autograft, intragastric administration of zonisamide for 1 week increased the size of axons distal to the transected site 3.9-fold. Zonisamide also improved the sciatic function index, a marker for motor function of hindlimbs after sciatic nerve autograft, from 6 weeks after surgery. At 8 weeks after surgery, zonisamide was protective against denervation-induced muscle degeneration in tibialis anterior, and increased gene expression of Chrne, Colq, and Rapsn, which are specifically expressed at the neuromuscular junction. We propose that zonisamide is a potential therapeutic agent for peripheral nerve injuries as well as for neuropathies due to other etiologies.
Collapse
Affiliation(s)
- Hideki Yagi
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Bisei Ohkawara
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroaki Nakashima
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kenyu Ito
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mikito Tsushima
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hisao Ishii
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Hand Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kimitoshi Noto
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Hand Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kyotaro Ohta
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Akio Masuda
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shiro Imagama
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Naoki Ishiguro
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kinji Ohno
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
- * E-mail:
| |
Collapse
|
5
|
Bian Y, Masuda A, Matsuura T, Ito M, Okushin K, Engel AG, Ohno K. Tannic acid facilitates expression of the polypyrimidine tract binding protein and alleviates deleterious inclusion of CHRNA1 exon P3A due to an hnRNP H-disrupting mutation in congenital myasthenic syndrome. Hum Mol Genet 2009; 18:1229-37. [PMID: 19147685 PMCID: PMC2655771 DOI: 10.1093/hmg/ddp023] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We recently reported that the intronic splice-site mutation IVS3-8G>A of CHRNA1 that encodes the muscle nicotinic acetylcholine receptor alpha subunit disrupts binding of a splicing repressor, hnRNP H. This, in turn, results in exclusive inclusion of the downstream exon P3A. The P3A(+) transcript encodes a non-functional alpha subunit that comprises 50% of the transcripts in normal human skeletal muscle, but its functional significance remains undetermined. In an effort to search for a potential therapy, we screened off-label effects of 960 bioactive chemical compounds and found that tannic acid ameliorates the aberrant splicing due to IVS3-8G>A but without altering the expression of hnRNP H. Therefore, we searched for another splicing trans-factor. We found that the polypyrimidine tract binding protein (PTB) binds close to the 3' end of CHRNA1 intron 3, that PTB induces skipping of exon P3A and that tannic acid increases the expression of PTB in a dose-dependent manner. Deletion assays of the PTB promoter region revealed that the tannic acid-responsive element is between positions -232 and -74 from the translation initiation site. These observations open the door to the discovery of novel therapies based on PTB overexpression and to detecting possible untoward effects of the overexpression.
Collapse
Affiliation(s)
- Yang Bian
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | | | | | | | | | | |
Collapse
|
6
|
Pain DJ, White R, Stevenson J, Bell M, Williams KK, Fisher P, Wright G. Toxicity and persistence of sodium fluoroacetate (1080) in the land crab (Gecarcinus lagostoma) on Ascension Island. WILDLIFE RESEARCH 2008. [DOI: 10.1071/wr07038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
An eradication program for introduced feral cats, using sodium fluoroacetate (1080) bait, was planned on Ascension Island to help breeding seabird populations to recover. We investigated the likelihood of mortality and the occurrence of residual 1080 in the ‘non-target’ Ascension land crab (Gecarcinus lagostoma) through simulating ‘realistic’ and ‘worst case’ exposure to 1080 bait. Crabs feeding on 1080 baits ingested an estimated maximum of 9–56 mg 1080 (kg bodyweight)–1 and although two of 32 treatment crabs died, this mortality was not attributed to 1080 poisoning but to other, unknown, causes. Our results suggest that G. lagostoma has relatively low susceptibility to acute toxic effects of 1080. Most residual 1080 was eliminated rapidly from crab tissue, with concentrations of 0.006–0.070 mg (kg bodyweight)–1 measured in crab claw/leg tissue 9–11 days after exposure. Concentrations of 0.200 and 0.650 mg (kg bodyweight)–1 were measured in the claw tissue of two crabs that died from other causes on the third day of exposure to 1080, indicating potential for secondary exposure of sensitive scavengers or predators of 1080-exposed crabs. We recommend a moratorium on human consumption of all crabmeat for a withholding period following the eradication program. The withdrawal period should be defined by further research on the longevity of 1080 in crab tissues, and be confirmed by monitoring of residues in crabs after baiting.
Collapse
|