1
|
Dong X, Rawiwan P, Middleditch M, Guo G, Woo MW, Quek SY. Effects of protein variations by different extraction and dehydration approaches on hempseed protein isolate: Protein pattern, amino acid profiling and label-free proteomics. Food Chem 2024; 460:140426. [PMID: 39047496 DOI: 10.1016/j.foodchem.2024.140426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/04/2024] [Accepted: 07/10/2024] [Indexed: 07/27/2024]
Abstract
This study evaluates the effects of alkaline and micellisation extraction methods, alongside freeze-drying and spray-drying, on the protein subunits, amino acid profiles, and proteome data of hempseed protein isolate (HPI). Findings revealed that the extraction methods affect protein profiles more than the drying methods. Micellisation-extracted HPI showed higher albumin, oleosin, and sulphur-containing protein levels than alkaline-extracted HPI. The alkali-extracted undried sample (AU) gave more potentially allergenic proteins, including Hsp70 and triosephosphate isomerase, than its micellization-extracted counterpart (MU). Unique potential allergens were identified, including malate dehydrogenase and enolase in AU, and RuBisCo in MU samples. Both drying processes impacted the HPI proteome and reduced RuBisCo in the micellisation-extracted HPI. These insights highlight the crucial role of method selection in HPI processing for optimising production in the food industry.
Collapse
Affiliation(s)
- Xuan Dong
- Food Science, School of Chemical Sciences, The University of Auckland, Auckland, 1010, New Zealand.
| | - Pattarasuda Rawiwan
- Food Science, School of Chemical Sciences, The University of Auckland, Auckland, 1010, New Zealand.
| | - Martin Middleditch
- Technical Services, Faculty of Science, The University of Auckland, Auckland, 1010, New Zealand.
| | - George Guo
- Department of Physiology, School of Medical Sciences, University of Auckland, Auckland, New Zealand.
| | - Meng Wai Woo
- Department of Chemical and Materials Engineering, Faculty of Engineering, The University of Auckland, Auckland, 1142, New Zealand.
| | - Siew Young Quek
- Food Science, School of Chemical Sciences, The University of Auckland, Auckland, 1010, New Zealand; Riddet Institute, Centre of Research Excellence for Food Research, Palmerston North 4474, New Zealand.
| |
Collapse
|
2
|
Zhang Z, Li XM, Wang H, Lin H, Xiao H, Li Z. Seafood allergy: Allergen, epitope mapping and immunotherapy strategy. Crit Rev Food Sci Nutr 2023; 63:1314-1338. [PMID: 36825451 DOI: 10.1080/10408398.2023.2181755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Seafoods are fashionable delicacies with high nutritional values and culinary properties, while seafood belongs to worldwide common food allergens. In recent years, many seafood allergens have been identified, while the diversity of various seafood species give a great challenge in identifying and characterizing seafood allergens, mapping IgE-binding epitopes and allergen immunotherapy development, which are critical for allergy diagnostics and immunotherapy treatments. This paper reviewed the recent progress on seafood (fish, crustacean, and mollusk) allergens, IgE-binding epitopes and allergen immunotherapy for seafood allergy. In recent years, many newly identified seafood allergens were reported, this work concluded the current situation of seafood allergen identification and designation by the World Health Organization (WHO)/International Union of Immunological Societies (IUIS) Allergen Nomenclature Sub-Committee. Moreover, this review represented the recent advances in identifying the IgE-binding epitopes of seafood allergens, which were helpful to the diagnosis, prevention and treatment for seafood allergy. Furthermore, the allergen immunotherapy could alleviate seafood allergy and provide promising approaches for seafood allergy treatment. This review represents the recent advances and future outlook on seafood allergen identification, IgE-binding epitope mapping and allergen immunotherapy strategies for seafood allergy prevention and treatment.
Collapse
Affiliation(s)
- Ziye Zhang
- Laboratory of Food Safety, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Xiu-Min Li
- Department of Pathology, Microbiology and Immunology and Department of Otolaryngology, School of Medicine, New York Medical College, Valhalla, New York, USA
| | - Hao Wang
- Laboratory of Food Safety, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Hong Lin
- Laboratory of Food Safety, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Zhenxing Li
- Laboratory of Food Safety, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| |
Collapse
|
3
|
Effect of species, muscle location, food processing and refrigerated storage on the fish allergens, tropomyosin and parvalbumin. Food Chem 2022; 402:134479. [DOI: 10.1016/j.foodchem.2022.134479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/14/2022] [Accepted: 09/28/2022] [Indexed: 11/17/2022]
|
4
|
Chien HJ, Huang YH, Zheng YF, Wang WC, Kuo CY, Wei GJ, Lai CC. Proteomics for species authentication of cod and corresponding fishery products. Food Chem 2021; 374:131631. [PMID: 34838403 DOI: 10.1016/j.foodchem.2021.131631] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 11/14/2021] [Accepted: 11/15/2021] [Indexed: 11/27/2022]
Abstract
Seafood substitutions is a global problem and come under the spotlight in recent years. In Taiwan, Greenland halibut is usually substituted for the cod because of its lower price. Nowadays, DNA technology is widely used for fish species identifications; however, it still has concern about the DNA of processed fishery products might be destroyed. This study was designed to develop a proteomic-based method for fish and fishery product authentication by using ultra performance liquid chromatography/quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS/MS) with Sequential window acquisition of all theoretical fragment ion spectra (SWATH). The protein biomarkers from the meat of Alaska pollock, Atlantic cod, and Greenland halibut were identified and validated for species authentication of cod and corresponding fishery products, which might prevent consumer substitutions and fish product mislabeling. Besides, the E. coli proteins can be measured from existing SWATH-MS data though retrospective analysis successfully, it might present the quality of fish meat.
Collapse
Affiliation(s)
- Han-Ju Chien
- Institute of Molecular Biology, National Chung Hsing University, Taichung 40227, Taiwan.
| | - Yu-Han Huang
- Institute of Food Safety and Health Risk Assessment, National Yang-Ming University, Taipei 11221, Taiwan.
| | - Yi-Feng Zheng
- Institute of Molecular Biology, National Chung Hsing University, Taichung 40227, Taiwan.
| | - Wei-Chen Wang
- Institute of Molecular Biology, National Chung Hsing University, Taichung 40227, Taiwan.
| | - Cheng-Yu Kuo
- Institute of Molecular Biology, National Chung Hsing University, Taichung 40227, Taiwan.
| | - Guor-Jien Wei
- Institute of Food Safety and Health Risk Assessment, National Yang-Ming University, Taipei 11221, Taiwan; Metabolomics-Proteomics Research Center, National Yang-Ming University, Taipei 11221, Taiwan.
| | - Chien-Chen Lai
- Institute of Molecular Biology, National Chung Hsing University, Taichung 40227, Taiwan; Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung 40227, Taiwan; Graduate Institute of Chinese Medical Science, China Medical University, Taichung 40402, Taiwan.
| |
Collapse
|
5
|
Ruethers T, Taki AC, Karnaneedi S, Nie S, Kalic T, Dai D, Daduang S, Leeming M, Williamson NA, Breiteneder H, Mehr SS, Kamath SD, Campbell DE, Lopata AL. Expanding the allergen repertoire of salmon and catfish. Allergy 2021; 76:1443-1453. [PMID: 32860256 DOI: 10.1111/all.14574] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 01/17/2023]
Abstract
BACKGROUND Diagnostic tests for fish allergy are hampered by the large number of under-investigated fish species. Four salmon allergens are well-characterized and registered with the WHO/IUIS while no catfish allergens have been described so far. In 2008, freshwater-cultured catfish production surpassed that of salmon, the globally most-cultured marine species. We aimed to identify, quantify, and compare all IgE-binding proteins in salmon and catfish. METHODS Seventy-seven pediatric patients with clinically confirmed fish allergy underwent skin prick tests to salmon and catfish. The allergen repertoire of raw and heated protein extracts was evaluated by immunoblotting using five allergen-specific antibodies and patients' serum followed by mass spectrometric analyses. RESULTS Raw and heated extracts from catfish displayed a higher frequency of IgE-binding compared to those from salmon (77% vs 70% and 64% vs 53%, respectively). The major fish allergen parvalbumin demonstrated the highest IgE-binding capacity (10%-49%), followed by triosephosphate isomerase (TPI; 19%-34%) in raw and tropomyosin (6%-32%) in heated extracts. Six previously unidentified fish allergens, including TPI, were registered with the WHO/IUIS. Creatine kinase from salmon and catfish was detected by IgE from 14% and 10% of patients, respectively. Catfish L-lactate dehydrogenase, glyceraldehyde-3-phosphate dehydrogenase, pyruvate kinase, and glucose-6-phosphate isomerase showed IgE-binding for 6%-13% of patients. In salmon, these proteins could not be separated successfully. CONCLUSIONS We detail the allergen repertoire of two highly farmed fish species. IgE-binding to fish tropomyosins and TPIs was demonstrated for the first time in a large patient cohort. Tropomyosins, in addition to parvalbumins, should be considered for urgently needed improved fish allergy diagnostics.
Collapse
Affiliation(s)
- Thimo Ruethers
- Molecular Allergy Research Laboratory College of Public Health, Medical and Veterinary Sciences James Cook University Townsville Qld Australia
- Centre for Food and Allergy Research Murdoch Children's Research Institute Melbourne Vic. Australia
- Australian Institute of Tropical Health and Medicine James Cook University Townsville Qld Australia
- Centre for Sustainable Tropical Fisheries and Aquaculture Faculty of Science and Engineering James Cook University Townsville Qld Australia
| | - Aya C. Taki
- Molecular Allergy Research Laboratory College of Public Health, Medical and Veterinary Sciences James Cook University Townsville Qld Australia
- Centre for Food and Allergy Research Murdoch Children's Research Institute Melbourne Vic. Australia
- Australian Institute of Tropical Health and Medicine James Cook University Townsville Qld Australia
| | - Shaymaviswanathan Karnaneedi
- Molecular Allergy Research Laboratory College of Public Health, Medical and Veterinary Sciences James Cook University Townsville Qld Australia
- Centre for Food and Allergy Research Murdoch Children's Research Institute Melbourne Vic. Australia
- Australian Institute of Tropical Health and Medicine James Cook University Townsville Qld Australia
- Centre for Sustainable Tropical Fisheries and Aquaculture Faculty of Science and Engineering James Cook University Townsville Qld Australia
| | - Shuai Nie
- Bio21 Mass Spectrometry and Proteomics Facility The Bio21 Molecular Science and Biotechnology Institute The University of Melbourne Melbourne Vic. Australia
| | - Tanja Kalic
- Institute of Pathophysiology and Allergy Research Center for Pathophysiology, Infectiology and Immunology Medical University of Vienna Vienna Austria
| | - Danyi Dai
- Allergy and Immunology Children's Hospital at Westmead Sydney NSW Australia
| | - Sakda Daduang
- Division of Pharmacognosy and Toxicology Faculty of Pharmaceutical Sciences Khon Kaen University Khon Kaen Thailand
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI) Khon Kaen University Khon Kaen Thailand
| | - Michael Leeming
- Bio21 Mass Spectrometry and Proteomics Facility The Bio21 Molecular Science and Biotechnology Institute The University of Melbourne Melbourne Vic. Australia
| | - Nicholas A. Williamson
- Bio21 Mass Spectrometry and Proteomics Facility The Bio21 Molecular Science and Biotechnology Institute The University of Melbourne Melbourne Vic. Australia
| | - Heimo Breiteneder
- Institute of Pathophysiology and Allergy Research Center for Pathophysiology, Infectiology and Immunology Medical University of Vienna Vienna Austria
| | - Sam S. Mehr
- Centre for Food and Allergy Research Murdoch Children's Research Institute Melbourne Vic. Australia
- Allergy and Immunology Children's Hospital at Westmead Sydney NSW Australia
- Department of Allergy and Immunology Royal Children's Hospital Melbourne Melbourne Vic. Australia
| | - Sandip D. Kamath
- Molecular Allergy Research Laboratory College of Public Health, Medical and Veterinary Sciences James Cook University Townsville Qld Australia
- Centre for Food and Allergy Research Murdoch Children's Research Institute Melbourne Vic. Australia
- Australian Institute of Tropical Health and Medicine James Cook University Townsville Qld Australia
- Centre for Sustainable Tropical Fisheries and Aquaculture Faculty of Science and Engineering James Cook University Townsville Qld Australia
| | - Dianne E. Campbell
- Centre for Food and Allergy Research Murdoch Children's Research Institute Melbourne Vic. Australia
- Allergy and Immunology Children's Hospital at Westmead Sydney NSW Australia
- Discipline of Paediatrics and Child Health University of Sydney Sydney NSW Australia
| | - Andreas L. Lopata
- Molecular Allergy Research Laboratory College of Public Health, Medical and Veterinary Sciences James Cook University Townsville Qld Australia
- Centre for Food and Allergy Research Murdoch Children's Research Institute Melbourne Vic. Australia
- Australian Institute of Tropical Health and Medicine James Cook University Townsville Qld Australia
- Centre for Sustainable Tropical Fisheries and Aquaculture Faculty of Science and Engineering James Cook University Townsville Qld Australia
| |
Collapse
|
6
|
Akimoto S, Yokooji T, Ogino R, Chinuki Y, Taogoshi T, Adachi A, Morita E, Matsuo H. Identification of allergens for food-dependent exercise-induced anaphylaxis to shrimp. Sci Rep 2021; 11:5400. [PMID: 33686124 PMCID: PMC7940642 DOI: 10.1038/s41598-021-84752-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 02/22/2021] [Indexed: 11/10/2022] Open
Abstract
Shrimp is a causative food that elicits food-dependent exercise-induced anaphylaxis (FDEIA). In this study, we sought to identify IgE-binding allergens in patients with shrimp-FDEIA. Sera were obtained from eight patients with shrimp-FDEIA and two healthy control subjects. Proteins were extracted from four shrimp species by homogenization in Tris buffer. Immunoblot analysis revealed that IgE from patient sera bound strongly to a 70-kDa and a 43-kDa protein in a preparation of Tris-soluble extracts from Litopenaeus vannamei. Mass spectrometry identified the 70-kDa and 43-kDa proteins as a P75 homologue and fructose 1,6-bisphosphate aldolase (FBPA), respectively. To confirm that the putative shrimp allergens were specifically recognized by serum IgE from shrimp-FDEIA patients, the two proteins were purified by ammonium sulfate precipitation followed by reversed-phase HPLC and/or anion-exchange hydrophobic interaction chromatography and then subjected to immunoblot analysis. Purified P75 homologue and FBPA were positively bound by serum IgE from one and three, respectively, of the eight patients with shrimp-FDEIA, but not by sera from control subjects. Thus, P75 homologue and FBPA are identified as IgE-binding allergens for shrimp-FDEIA. These findings could be useful for the development of diagnostic tools and desensitization therapy for shrimp-FDEIA patients.
Collapse
Affiliation(s)
- Shiori Akimoto
- Department of Pharmaceutical Services, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Tomoharu Yokooji
- Department of Pharmaceutical Services, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan. .,Department of Frontier Science for Pharmacotherapy, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.
| | - Ryohei Ogino
- Department of Dermatology, Faculty of Medicine, Shimane University, Izumo, Japan
| | - Yuko Chinuki
- Department of Dermatology, Faculty of Medicine, Shimane University, Izumo, Japan
| | - Takanori Taogoshi
- Department of Pharmaceutical Services, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Atsuko Adachi
- Department of Dermatology, Hyogo Prefectural Kakogawa Medical Center, Kakogawa, Japan
| | - Eishin Morita
- Department of Dermatology, Faculty of Medicine, Shimane University, Izumo, Japan
| | - Hiroaki Matsuo
- Department of Pharmaceutical Services, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| |
Collapse
|
7
|
Buyuktiryaki B, Masini M, Mori F, Barni S, Liccioli G, Sarti L, Lodi L, Giovannini M, du Toit G, Lopata AL, Marques-Mejias MA. IgE-Mediated Fish Allergy in Children. ACTA ACUST UNITED AC 2021; 57:medicina57010076. [PMID: 33477460 PMCID: PMC7830012 DOI: 10.3390/medicina57010076] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 12/14/2022]
Abstract
Fish allergy constitutes a severe problem worldwide. Its prevalence has been calculated as high as 7% in paediatric populations, and in many cases, it persists into adulthood with life-threatening signs and symptoms. The following review focuses on the epidemiology of Immunoglobulin E (IgE)-mediated fish allergy, its pathogenesis, clinical manifestations, and a thorough approach to diagnosis and management in the paediatric population. The traditional approach for managing fish allergy is avoidance and rescue medication for accidental exposures. Food avoidance poses many obstacles and is not easily maintained. In the specific case of fish, food is also not the only source of allergens; aerosolisation of fish proteins when cooking is a common source of highly allergenic parvalbumin, and elimination diets cannot prevent these contacts. Novel management approaches based on immunomodulation are a promising strategy for the future of these patients.
Collapse
Affiliation(s)
- Betul Buyuktiryaki
- Division of Pediatric Allergy, Koc University Hospital, 34010 Istanbul, Turkey;
| | - Marzio Masini
- Department of Pediatrics, Sapienza University of Rome, 00185 Rome, Italy;
| | - Francesca Mori
- Allergy Unit, Department of Pediatrics, Meyer Children’s University Hospital, 50139 Florence, Italy; (F.M.); (S.B.); (G.L.); (L.S.)
| | - Simona Barni
- Allergy Unit, Department of Pediatrics, Meyer Children’s University Hospital, 50139 Florence, Italy; (F.M.); (S.B.); (G.L.); (L.S.)
| | - Giulia Liccioli
- Allergy Unit, Department of Pediatrics, Meyer Children’s University Hospital, 50139 Florence, Italy; (F.M.); (S.B.); (G.L.); (L.S.)
| | - Lucrezia Sarti
- Allergy Unit, Department of Pediatrics, Meyer Children’s University Hospital, 50139 Florence, Italy; (F.M.); (S.B.); (G.L.); (L.S.)
| | - Lorenzo Lodi
- Department of Health Sciences, Division of Immunology, Section of Pediatrics, University of Florence and Meyer Children’s Hospital, 50139 Florence, Italy;
| | - Mattia Giovannini
- Allergy Unit, Department of Pediatrics, Meyer Children’s University Hospital, 50139 Florence, Italy; (F.M.); (S.B.); (G.L.); (L.S.)
- Pediatric Allergy Group, Department of Women and Children’s Health, School of Life Course Sciences, King’s College London, London SE5 9NU, UK; (G.d.T.); (M.A.M.-M.)
- Correspondence:
| | - George du Toit
- Pediatric Allergy Group, Department of Women and Children’s Health, School of Life Course Sciences, King’s College London, London SE5 9NU, UK; (G.d.T.); (M.A.M.-M.)
- Children’s Allergy Service, Evelina London Children’s Hospital, Guy’s and St Thomas’ NHS Foundation Trust, London SE1 7EH, UK
- Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, King’s College London, London SE5 9NU, UK
| | - Andreas Ludwig Lopata
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811, Australia;
| | - Maria Andreina Marques-Mejias
- Pediatric Allergy Group, Department of Women and Children’s Health, School of Life Course Sciences, King’s College London, London SE5 9NU, UK; (G.d.T.); (M.A.M.-M.)
- Children’s Allergy Service, Evelina London Children’s Hospital, Guy’s and St Thomas’ NHS Foundation Trust, London SE1 7EH, UK
| |
Collapse
|
8
|
Bexley J, Kingswell N, Olivry T. Serum IgE cross-reactivity between fish and chicken meats in dogs. Vet Dermatol 2018; 30:25-e8. [PMID: 30378189 DOI: 10.1111/vde.12691] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND In humans, a cross-reactive clinical allergy has been reported between three chicken and fish meat proteins: beta-enolase, aldolase A and parvalbumin. OBJECTIVE To evaluate if IgE cross-reactivity between chicken and fish also existed in the dog. ANIMALS Sera from dogs with suspected allergic skin disease and with IgE against chicken and fish. METHODS AND MATERIALS Sera were analysed by ELISA and immunoblotting with chicken, white fish (haddock and cod) and salmon extracts. Reciprocal inhibition ELISAs and inhibition immunoblots were then performed. Protein sequencing of bands identified on multiple extracts was determined by mass spectrometry. RESULTS Out of 53 archived canine sera tested by ELISA against chicken, white fish or salmon, 15 (28%), 12 (23%) and 26 (49%), respectively, had elevated IgE against one, two or all three of these extracts. Seven of the triple-reactive sera were subjected to reciprocal inhibition ELISAs. A >50% inhibition was found between chicken-fish, chicken-salmon and fish-salmon in seven, four and five of seven dogs, respectively. Immunoblotting identified multiple IgE-binding proteins of identical molecular weights in the three extracts; these were partially to fully cross-reactive by inhibition immunoblotting. Mass spectrometry identified nine cross-reactive proteins as: pyruvate kinase, creatine kinase, alpha-actin, glyceraldehyde-3-phosphate dehydrogenase, beta-enolase, aldolase, malate dehydrogenase, lactate dehydrogenase and triose-phosphate isomerase 1. All of these have been reported previously as fish, shellfish and/or chicken allergens for humans. CONCLUSIONS AND CLINICAL IMPORTANCE Whether any of these newly identified IgE cross-reactive chicken-fish allergens is the cause of clinical allergy needs to be determined in dogs reacting to at least two of these common food sources.
Collapse
Affiliation(s)
- Jennifer Bexley
- Avacta Animal Health, Unit 651, Street 5, Thorp Arch Estate, Wetherby, Yorkshire, LS23 7FZ, UK
| | - Nicola Kingswell
- Avacta Animal Health, Unit 651, Street 5, Thorp Arch Estate, Wetherby, Yorkshire, LS23 7FZ, UK
| | - Thierry Olivry
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Research Building, 1060 William Moore Drive, Raleigh, NC, 27606, USA.,Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, 27606, USA
| |
Collapse
|
9
|
Tong WS, Yuen AW, Wai CY, Leung NY, Chu KH, Leung PS. Diagnosis of fish and shellfish allergies. J Asthma Allergy 2018; 11:247-260. [PMID: 30323632 PMCID: PMC6181092 DOI: 10.2147/jaa.s142476] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Seafood allergy is a hypersensitive disorder with increasing prevalence worldwide. Effective and accurate diagnostic workup for seafood allergy is essential for clinicians and patients. Parvalbumin and tropomyosin are the most common fish and shellfish allergens, respectively. The diagnosis of seafood allergies is complicated by cross-reactivity among fish allergens and between shellfish allergens and other arthropods. Current clinical diagnosis of seafood allergy is a complex algorithm that includes clinical assessment, skin prick test, specific IgE measurement, and oral food challenges. Emerging diagnostic strategies, such as component-resolved diagnosis (CRD), which uses single allergenic components for assessment of epitope specific IgE, can provide critical information in predicting individualized sensitization patterns and risk of severe allergic reactions. Further understanding of the molecular identities and characteristics of seafood allergens can advance the development of CRD and lead to more precise diagnosis and improved clinical management of seafood allergies.
Collapse
Affiliation(s)
- Wai Sze Tong
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, SAR, China
| | - Agatha Wt Yuen
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, SAR, China
| | - Christine Yy Wai
- Department of Paediatrics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China,
| | - Nicki Yh Leung
- Department of Paediatrics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China,
| | - Ka Hou Chu
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, SAR, China
| | - Patrick Sc Leung
- Division of Rheumatology, Allergy and Clinical Immunology, School of Medicine, University of California Davis, Davis, CA, USA,
| |
Collapse
|
10
|
Seafood allergy: A comprehensive review of fish and shellfish allergens. Mol Immunol 2018; 100:28-57. [PMID: 29858102 DOI: 10.1016/j.molimm.2018.04.008] [Citation(s) in RCA: 199] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 04/11/2018] [Accepted: 04/16/2018] [Indexed: 11/23/2022]
Abstract
Seafood refers to several distinct groups of edible aquatic animals including fish, crustacean, and mollusc. The two invertebrate groups of crustacean and mollusc are, for culinary reasons, often combined as shellfish but belong to two very different phyla. The evolutionary and taxonomic diversity of the various consumed seafood species poses a challenge in the identification and characterisation of the major and minor allergens critical for reliable diagnostics and therapeutic treatments. Many allergenic proteins are very different between these groups; however, some pan-allergens, including parvalbumin, tropomyosin and arginine kinase, seem to induce immunological and clinical cross-reactivity. This extensive review details the advances in the bio-molecular characterisation of 20 allergenic proteins within the three distinct seafood groups; fish, crustacean and molluscs. Furthermore, the structural and biochemical properties of the major allergens are described to highlight the immunological and subsequent clinical cross-reactivities. A comprehensive list of purified and recombinant allergens is provided, and the applications of component-resolved diagnostics and current therapeutic developments are discussed.
Collapse
|
11
|
Edge MS, Kunkel ME, Schmidt J, Papoutsakis C. 2015 Evidence Analysis Library Systematic Review on Advanced Technology in Food Production. J Acad Nutr Diet 2018. [PMID: 29526649 DOI: 10.1016/j.jand.2017.08.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In the late 20th century, plant breeders began using molecular biology techniques such as recombinant DNA, also known as genetic engineering, along with traditional cross-breeding. Ten plant and one animal food have been approved for commercialization in the United States. Today, foods and ingredients from genetically engineered (GE) crops are present throughout the food supply, which has led to varying levels of acceptance. Much discussion exists among consumers and health professionals about the believability of statements made regarding benefits or risks of GE foods. The aim of this systematic review was to examine the evidence on the association of consumption of GE foods and ingredients derived from them on human health, specifically allergenicity, food safety, pesticide consumption, nutrient adequacy, inflammation, and antibiotic resistance. An expert panel conducted a systematic review on advanced technology in food production. The 30 developed questions focused on effects of human consumption of GE foods and the effects of human consumption of foods containing pesticide residues on human health. Primary research published from 1994 to 2014 were identified using PubMed and Agricultural Online Access databases. Additional studies were identified by searching references of review articles. Twenty-one studies met the inclusion criteria. Relevant research addressed five of 30 questions. Four questions focused on food allergenicity, the fifth on nutrient adequacy, and all received a Grade III (limited/weak) rating. No human studies addressed 25 questions on the consumption of foods produced using genetic engineering technologies on gene translocation, cancer, food safety, phenotype expression, inflammation and inflammatory markers, or antibiotic resistance. These questions received a Grade V (grade not assignable). Evidence from human studies did not reveal an association between adverse health effects and consumption of foods produced using genetic engineering technologies. Although the number of available human studies is small, they support that there are no clear adverse health effects-as they relate to allergenicity and nutrient adequacy-associated with consumption of GE foods. The present systematic review is aligned with a recent report by the National Academy of Sciences that included human and animal research.
Collapse
|
12
|
Dunn SE, Vicini JL, Glenn KC, Fleischer DM, Greenhawt MJ. The allergenicity of genetically modified foods from genetically engineered crops: A narrative and systematic review. Ann Allergy Asthma Immunol 2017; 119:214-222.e3. [PMID: 28890018 DOI: 10.1016/j.anai.2017.07.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/05/2017] [Accepted: 07/05/2017] [Indexed: 12/23/2022]
Affiliation(s)
- S Eliza Dunn
- Medical Sciences and Outreach Lead, Monsanto Company, St Louis, Missouri; Division of Emergency Medicine, Washington University, St Louis, Missouri
| | - John L Vicini
- Food and Feed Safety Scientific Affairs Lead, Monsanto Company, St Louis, Missouri
| | - Kevin C Glenn
- Allergenicity/Pipeline Issues Management Lead, Monsanto Company, St Louis, Missouri
| | - David M Fleischer
- Department of Pediatrics, Section of Allergy and Immunology, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, Colorado
| | - Matthew J Greenhawt
- Department of Pediatrics, Section of Allergy and Immunology, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, Colorado.
| |
Collapse
|
13
|
Yang Y, Zhang YX, Liu M, Maleki SJ, Zhang ML, Liu QM, Cao MJ, Su WJ, Liu GM. Triosephosphate Isomerase and Filamin C Share Common Epitopes as Novel Allergens of Procambarus clarkii. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:950-963. [PMID: 28072528 DOI: 10.1021/acs.jafc.6b04587] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Triosephosphate isomerase (TIM) is a key enzyme in glycolysis and has been identified as an allergen in saltwater products. In this study, TIM with a molecular mass of 28 kDa was purified from the freshwater crayfish (Procambarus clarkii) muscle. A 90-kDa protein that showed IgG/IgE cross-reactivity with TIM was purified and identified as filamin C (FLN c), which is an actin-binding protein. TIM showed similar thermal and pH stability with better digestion resistance compared with FLN c. The result of the surface plasmon resonance (SPR) experiment demonstrated the infinity of anti-TIM polyclonal antibody (pAb) to both TIM and FLN c. Five linear and 3 conformational epitopes of TIM, as well as 9 linear and 10 conformational epitopes of FLN c, were mapped by phage display. Epitopes of TIM and FLN c demonstrated the sharing of certain residues; the occurrence of common epitopes in the two allergens accounts for their cross-reactivity.
Collapse
Affiliation(s)
- Yang Yang
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Jimei University , Xiamen, Fujian 361021, China
| | - Yong-Xia Zhang
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Jimei University , Xiamen, Fujian 361021, China
| | - Meng Liu
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Jimei University , Xiamen, Fujian 361021, China
| | - Soheila J Maleki
- Agricultural Research Service, Southern Regional Research Center, U. S. Department of Agriculture , New Orleans, Louisiana 70124, United States
| | - Ming-Li Zhang
- Xiamen Second Hospital , Xiamen, Fujian 361021, China
| | - Qing-Mei Liu
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Jimei University , Xiamen, Fujian 361021, China
| | - Min-Jie Cao
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Jimei University , Xiamen, Fujian 361021, China
| | - Wen-Jin Su
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Jimei University , Xiamen, Fujian 361021, China
| | - Guang-Ming Liu
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Jimei University , Xiamen, Fujian 361021, China
| |
Collapse
|
14
|
Top-Down Proteomics and Farm Animal and Aquatic Sciences. Proteomes 2016; 4:proteomes4040038. [PMID: 28248248 PMCID: PMC5260971 DOI: 10.3390/proteomes4040038] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 11/25/2016] [Accepted: 12/05/2016] [Indexed: 01/16/2023] Open
Abstract
Proteomics is a field of growing importance in animal and aquatic sciences. Similar to other proteomic approaches, top-down proteomics is slowly making its way within the vast array of proteomic approaches that researchers have access to. This opinion and mini-review article is dedicated to top-down proteomics and how its use can be of importance to animal and aquatic sciences. Herein, we include an overview of the principles of top-down proteomics and how it differs regarding other more commonly used proteomic methods, especially bottom-up proteomics. In addition, we provide relevant sections on how the approach was or can be used as a research tool and conclude with our opinions of future use in animal and aquatic sciences.
Collapse
|
15
|
Pedrosa M, Boyano-Martínez T, García-Ara C, Quirce S. Shellfish Allergy: a Comprehensive Review. Clin Rev Allergy Immunol 2016; 49:203-16. [PMID: 24870065 DOI: 10.1007/s12016-014-8429-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Shellfish allergy is of increasing concern, as its prevalence has risen in recent years. Many advances have been made in allergen characterization. B cell epitopes in the major allergen tropomyosin have been characterized. In addition to tropomyosin, arginine kinase, sarcoplasmic calcium-binding protein, and myosin light chain have recently been reported in shellfish. All are proteins that play a role in muscular contraction. Additional allergens such as hemocyanin have also been described. The effect of processing methods on these allergens has been studied, revealing thermal stability and resistance to peptic digestion in some cases. Modifications after Maillard reactions have also been addressed, although in some cases with conflicting results. In recent years, new hypoallergenic molecules have been developed, which constitute a new therapeutic approach to allergic disorders. A recombinant hypoallergenic tropomyosin has been developed, which opens a new avenue in the treatment of shellfish allergy. Cross-reactivity with species that are not closely related is common in shellfish-allergic patients, as many of shellfish allergens are widely distributed panallergens in invertebrates. Cross-reactivity with house dust mites is well known, but other species can also be involved in this phenomenon.
Collapse
Affiliation(s)
- María Pedrosa
- Allergy Department, Hospital La Paz Institute for Health Research (IdiPAZ), Paseo de la Castellana 261, 28046, Madrid, Spain.
| | - Teresa Boyano-Martínez
- Allergy Department, Hospital La Paz Institute for Health Research (IdiPAZ), Paseo de la Castellana 261, 28046, Madrid, Spain
| | - Carmen García-Ara
- Allergy Department, Hospital La Paz Institute for Health Research (IdiPAZ), Paseo de la Castellana 261, 28046, Madrid, Spain
| | - Santiago Quirce
- Allergy Department, Hospital La Paz Institute for Health Research (IdiPAZ), Paseo de la Castellana 261, 28046, Madrid, Spain
| |
Collapse
|
16
|
González-Mancebo E, Gandolfo-Cano M, González-de-Olano D, Mohedano-Vicente E, Bartolome B, Pastor-Vargas C. Identification of a novel protein allergen in Mediterranean silverside fish species. Ann Allergy Asthma Immunol 2014; 113:114-5. [PMID: 24863400 DOI: 10.1016/j.anai.2014.04.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 04/28/2014] [Accepted: 04/29/2014] [Indexed: 10/25/2022]
Affiliation(s)
| | - Mar Gandolfo-Cano
- Unidad Alergia, Hospital Universitario de Fuenlabrada, Madrid, Spain
| | | | | | | | | |
Collapse
|
17
|
Li X, Yang HW, Chen H, Wu J, Liu Y, Wei JF. In Silico Prediction of T and B Cell Epitopes of Der f 25 in Dermatophagoides farinae. Int J Genomics 2014; 2014:483905. [PMID: 24895543 PMCID: PMC4033504 DOI: 10.1155/2014/483905] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 03/28/2014] [Accepted: 03/30/2014] [Indexed: 12/30/2022] Open
Abstract
The house dust mites are major sources of indoor allergens for humans, which induce asthma, rhinitis, dermatitis, and other allergic diseases. Der f 25 is a triosephosphate isomerase, representing the major allergen identified in Dermatophagoides farinae. The objective of this study was to predict the B and T cell epitopes of Der f 25. In the present study, we analyzed the physiochemical properties, function motifs and domains, and structural-based detailed features of Der f 25 and predicted the B cell linear epitopes of Der f 25 by DNAStar protean system, BPAP, and BepiPred 1.0 server and the T cell epitopes by NetMHCIIpan-3.0 and NetMHCII-2.2. As a result, the sequence and structure analysis identified that Der f 25 belongs to the triosephosphate isomerase family and exhibited a triosephosphate isomerase pattern (PS001371). Eight B cell epitopes (11-18, 30-35, 71-77, 99-107, 132-138, 173-187, 193-197, and 211-224) and five T cell epitopes including 26-34, 38-54, 66-74, 142-151, and 239-247 were predicted in this study. These results can be used to benefit allergen immunotherapies and reduce the frequency of mite allergic reactions.
Collapse
Affiliation(s)
- Xiaohong Li
- Department of Allergy, First Affiliated Hospital of Anhui Medical University, No. 210, Jixi Road, Anhui Province, Hefei 230022, China
| | - Hai-Wei Yang
- Department of Urology, First Affiliated Hospital of Nanjing Medical University, Jiangsu Province, Nanjing 210029, China
| | - Hao Chen
- Research Division of Clinical Pharmacology, First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China
| | - Jing Wu
- Department of Allergy, First Affiliated Hospital of Anhui Medical University, No. 210, Jixi Road, Anhui Province, Hefei 230022, China
| | - Yehai Liu
- Department of Allergy, First Affiliated Hospital of Anhui Medical University, No. 210, Jixi Road, Anhui Province, Hefei 230022, China
| | - Ji-Fu Wei
- Research Division of Clinical Pharmacology, First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China
| |
Collapse
|
18
|
Kuehn A, Swoboda I, Arumugam K, Hilger C, Hentges F. Fish allergens at a glance: variable allergenicity of parvalbumins, the major fish allergens. Front Immunol 2014; 5:179. [PMID: 24795722 PMCID: PMC4001008 DOI: 10.3389/fimmu.2014.00179] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 04/05/2014] [Indexed: 01/19/2023] Open
Abstract
Fish is a common trigger of severe, food-allergic reactions. Only a limited number of proteins induce specific IgE-mediated immune reactions. The major fish allergens are the parvalbumins. They are members of the calcium-binding EF-hand protein family characterized by a conserved protein structure. They represent highly cross-reactive allergens for patients with specific IgE to conserved epitopes. These patients might experience clinical reactions with various fish species. On the other hand, some individuals have IgE antibodies directed against unique, species-specific parvalbumin epitopes, and these patients show clinical symptoms only with certain fish species. Furthermore, different parvalbumin isoforms and isoallergens are present in the same fish and might display variable allergenicity. This was shown for salmon homologs, where only a single parvalbumin (beta-1) isoform was identified as allergen in specific patients. In addition to the parvalbumins, several other fish proteins, enolases, aldolases, and fish gelatin, seem to be important allergens. New clinical and molecular insights advanced the knowledge and understanding of fish allergy in the last years. These findings were useful for the advancement of the IgE-based diagnosis and also for the management of fish allergies consisting of advice and treatment of fish-allergic patients.
Collapse
Affiliation(s)
- Annette Kuehn
- Laboratory of Immunogenetics and Allergology, Public Research Centre for Health (CRP-Santé), Luxembourg, Luxembourg
| | - Ines Swoboda
- Molecular Biotechnology Section, University of Applied Sciences, Vienna, Austria
| | - Karthik Arumugam
- Laboratory of Immunogenetics and Allergology, Public Research Centre for Health (CRP-Santé), Luxembourg, Luxembourg
| | - Christiane Hilger
- Laboratory of Immunogenetics and Allergology, Public Research Centre for Health (CRP-Santé), Luxembourg, Luxembourg
| | - François Hentges
- Laboratory of Immunogenetics and Allergology, Public Research Centre for Health (CRP-Santé), Luxembourg, Luxembourg
- Unit of Immunology and Allergology, Centre Hospitalier de Luxembourg, Luxembourg, Luxembourg
| |
Collapse
|
19
|
Kuehn A, Hilger C, Lehners-Weber C, Codreanu-Morel F, Morisset M, Metz-Favre C, Pauli G, de Blay F, Revets D, Muller CP, Vogel L, Vieths S, Hentges F. Identification of enolases and aldolases as important fish allergens in cod, salmon and tuna: component resolved diagnosis using parvalbumin and the new allergens. Clin Exp Allergy 2014; 43:811-22. [PMID: 23786287 DOI: 10.1111/cea.12117] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 02/07/2013] [Accepted: 02/11/2013] [Indexed: 12/01/2022]
Abstract
BACKGROUND The majority of fish-allergic patients are sensitized to parvalbumin, known to be the cause of important IgE cross-reactivity among fish species. Little is known about the importance of fish allergens other than parvalbumin. OBJECTIVE The aim of this study was to characterize hitherto undefined fish allergens in three commonly consumed fish species, cod, salmon and tuna, and to evaluate their importance for in vitro IgE-diagnosis in addition to parvalbumin and fish gelatin. METHODS Sixty-two patients were diagnosed by clinical history, skin prick tests and specific IgE to fish extracts. Two new fish allergens from cod, salmon and tuna were identified by microsequencing. These proteins were characterized by immunoblot, ELISA and mediator release assay. Purified parvalbumin, enolase, aldolase and fish gelatin were used for quantification of specific IgE in ELISA. RESULTS Parvalbumin and two other allergens of 50 and 40 kDa were detected in IgE-immunoblots of cod, salmon and tuna extracts by most patient sera. The 50 and 40 kDa proteins were identified as beta-enolase and fructose-bisphosphate aldolase A respectively. Both purified enzymes showed allergenic activity in the mediator release assay. Indeed, 72.6% of the patients were sensitized to parvalbumin, 20% of these had specific IgE to salmon parvalbumin only. IgE to enolases were found in 62.9% (0.5-95.0 kUA /L), to aldolases in 50.0% (0.4-26.0 kUA /L) and to fish gelatin in 19.3% (0.4-20.0 kUA /L) of the patients. Inter-species cross-reactivity, even though limited, was found for enolases and aldolases by IgE-inhibition ELISA. CONCLUSIONS AND CLINICAL RELEVANCE Fish enolase and aldolase have been identified as important new fish allergens. In fish allergy diagnosis, IgE to enolase and aldolase are especially relevant when IgE to parvalbumin are absent.
Collapse
Affiliation(s)
- A Kuehn
- Laboratory of Immunogenetics and Allergology, CRP-Santé, L-1526 Luxembourg, Luxembourg.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
Immunoblot-coupled proteomics based on two-dimensional polyacrylamide gel electrophoresis (2D-PAGE), namely, immunoproteomics, has been used for comprehensive identification of food allergens, because it is a simple and inexpensive tool for rapid identification of several IgE-binding proteins. In this section, we describe our protocols for identification of food allergens using immunoproteomics and discuss a few technical points in detail.
Collapse
Affiliation(s)
- Rika Nakamura
- National Institute of Health Sciences (NIHS), Setagaya-ku, Tokyo, Japan
| | | |
Collapse
|
21
|
McColl KA, Clarke B, Doran TJ. Role of genetically engineered animals in future food production. Aust Vet J 2013; 91:113-7. [DOI: 10.1111/avj.12024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2012] [Indexed: 12/12/2022]
Affiliation(s)
- KA McColl
- CSIRO Animal; Food and Health Sciences; Australian Animal Health Laboratory; PO Bag 24; Geelong; Victoria; 3220; Australia
| | - B Clarke
- CSIRO Animal; Food and Health Sciences; Australian Animal Health Laboratory; PO Bag 24; Geelong; Victoria; 3220; Australia
| | - TJ Doran
- CSIRO Animal; Food and Health Sciences; Australian Animal Health Laboratory; PO Bag 24; Geelong; Victoria; 3220; Australia
| |
Collapse
|
22
|
Santos KS, Galvao CE, Gadermaier G, Resende VMF, de Oliveira Martins C, Misumi DS, Yang AC, Ferreira F, Palma MS, Kalil J, Castro FFM. Allergic reactions to manioc (Manihot esculenta Crantz): Identification of novel allergens with potential involvement in latex-fruit syndrome. J Allergy Clin Immunol 2011; 128:1367-9. [DOI: 10.1016/j.jaci.2011.07.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2011] [Revised: 07/08/2011] [Accepted: 07/12/2011] [Indexed: 11/27/2022]
|
23
|
Liu R, Yang E, Liu C, Xue W. Tilapia (Oreochromis mossambicus) allergens characterized by ELISA, SDS-PAGE, 2D gels, Western blotting and MALDI-TOF mass spectrometry. Int J Food Sci Nutr 2011; 63:259-66. [DOI: 10.3109/09637486.2011.619966] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
24
|
Bauermeister K, Wangorsch A, Garoffo LP, Reuter A, Conti A, Taylor SL, Lidholm J, Dewitt AM, Enrique E, Vieths S, Holzhauser T, Ballmer-Weber B, Reese G. Generation of a comprehensive panel of crustacean allergens from the North Sea Shrimp Crangon crangon. Mol Immunol 2011; 48:1983-92. [PMID: 21784530 DOI: 10.1016/j.molimm.2011.06.216] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Revised: 05/30/2011] [Accepted: 06/04/2011] [Indexed: 12/16/2022]
Abstract
BACKGROUND Published data on crustacean allergens are incomplete. The identification of tropomyosin (TM), arginine kinase (AK), sarcoplasmic Ca-binding protein (SCP) and myosin light chain (MLC) as shrimp allergens are all important contributions but additional allergens are required for the development of a complete set of reagents for component resolved diagnosis and the exploration of novel vaccination strategies. METHODS The North Sea shrimp (Crangon crangon), which is frequently consumed in Europe, served as a model organism in this study. TM and AK were directly cloned from mRNA based on sequence homology and produced as recombinant proteins. Additional IgE-reactive proteins were isolated by preparative SDS-PAGE and identified by mass spectrometry and corresponding cDNAs were cloned and expressed in E. coli. The relevance of the 6 cloned crustacean allergens was confirmed with sera of 31 shrimp-allergic subjects, 12 of which had a positive double-blind, placebo-controlled food challenge (DBPCFC) to shrimp and 19 a convincing history of food allergy to shrimp, including 5 cases of anaphylaxis. Quantitative IgE measurements were performed by ImmunoCAP. RESULTS Six recombinant crustacean proteins: TM, AK, SCP, a novel MLC, troponin C (TnC), and triosephosphate isomerase (TIM) bound IgE in ImmunoCAP analysis. Specific IgE to at least one of these single shrimp allergens was detected in 90% of the study population, thus the in vitro diagnostic sensitivity was comparable to that of shrimp extract (97%). In 75% of the subjects, the combined technical sensitivity was similar to or greater with single shrimp allergens than with natural shrimp extract. CONCLUSIONS We identified six IgE-binding proteins from C. crangon, three of which have not before been described as allergens in crustaceans. This extensive panel of shrimp allergens forms a valuable asset for future efforts towards the identification of clinically relevant biomarkers and as a basis to approach patient-tailored immunotherapeutic strategies.
Collapse
Affiliation(s)
- Kerstin Bauermeister
- Paul-Ehrlich-Institut, Division of Allergology, Paul-Ehrlich-Str. 51-59, D-63225 Langen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Satoh R, Nakamura R, Komatsu A, Oshima M, Teshima R. Proteomic analysis of known and candidate rice allergens between non-transgenic and transgenic plants. Regul Toxicol Pharmacol 2011; 59:437-44. [DOI: 10.1016/j.yrtph.2011.01.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Revised: 01/24/2011] [Accepted: 01/25/2011] [Indexed: 10/18/2022]
|
26
|
Nakamura R, Satoh R, Nakamura R, Shimazaki T, Kasuga M, Yamaguchi-Shinozaki K, Kikuchi A, Watanabe KN, Teshima R. Immunoproteomic and two-dimensional difference gel electrophoresis analysis of Arabidopsis dehydration response element-binding protein 1A (DREB1A)-transgenic potato. Biol Pharm Bull 2010; 33:1418-25. [PMID: 20686241 DOI: 10.1248/bpb.33.1418] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To produce crops that are more tolerant to stresses such as heat, cold, and salt, transgenic plants have been produced those express stress-associated proteins. In this study, we used immunoproteomic and two-dimensional difference gel electrophoresis (2D-DIGE) methods to investigate the allergenicity of transgenic potatoes expressing Arabidopsis DREB1A (dehydration responsive element-binding protein 1A), driven by the rd29A promoter or the 35S promoter. Immunoproteomic analysis using sera from potato-allergic patients revealed several immunoglobulin E (IgE)-binding protein spots. The patterns of protein binding were almost the same between transgenic and non-transgenic potatoes. The IgE-binding proteins in potato were identified as patatin precursors, a segment of serine protease inhibitor 2, and proteinase inhibitor II by matrix assisted laser desorption/ionization-time of flight (MALDI-TOF) MS/MS. 2D-DIGE analysis revealed several differences in protein expression between non-transgenic potato and transgenic potato; those showing increased expression in transgenic potatoes were identified as precursors of patatin, a major potato allergen, and those showing decreased expression in transgenic potatoes were identified as lipoxygenase and glycogen (starch) synthase. These results suggested that transgenic potatoes may express slightly higher levels of allergens, but their IgE-binding patterns were almost the same as those of control potatoes. Further research on changes in protein expressions in response to environmental factors is required to confirm whether the differences observed in this study are due to gene transfection, rather than environmental factors.
Collapse
Affiliation(s)
- Rika Nakamura
- Division of Novel Foods and Immunochemistry, National Institute of Health Sciences, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
New allergen involved in a case of allergy to Solea solea, common sole. Ann Allergy Asthma Immunol 2010; 104:352-3. [PMID: 20408348 DOI: 10.1016/j.anai.2010.01.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
28
|
Allergenicity study of EGFP-transgenic chicken meat by serological and 2D-DIGE analysis. Food Chem Toxicol 2010; 48:1302-10. [DOI: 10.1016/j.fct.2010.02.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Revised: 02/14/2010] [Accepted: 02/18/2010] [Indexed: 11/20/2022]
|