1
|
Spiliotopoulos D, Koelbert C, Audebert M, Barisch I, Bellet D, Constans M, Czich A, Finot F, Gervais V, Khoury L, Kirchnawy C, Kitamoto S, Le Tesson A, Malesic L, Matsuyama R, Mayrhofer E, Mouche I, Preikschat B, Prielinger L, Rainer B, Roblin C, Wäse K. Assessment of the performance of the Ames MPF™ assay: A multicenter collaborative study with six coded chemicals. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2024; 893:503718. [PMID: 38272629 DOI: 10.1016/j.mrgentox.2023.503718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/06/2023] [Accepted: 11/19/2023] [Indexed: 01/27/2024]
Abstract
The Ames MPF™ is a miniaturized, microplate fluctuation format of the Ames test. It is a standardized, commercially available product which can be used to assess mutagenicity in Salmonella and E. coli strains in 384-well plates using a color change-based readout. Several peer-reviewed comparisons of the Ames MPF™ to the Ames test in Petri dishes confirmed its suitability to evaluate the mutagenic potential of a variety of test items. An international multicenter study involving seven laboratories tested six coded chemicals with this assay using five bacterial strains, as recommended by the OECD test guideline 471. The data generated by the participating laboratories was in excellent agreement (93%), and the similarity of their dose response curves, as analyzed with sophisticated statistical approaches further confirmed the suitability of the Ames MPF™ assay as an alternative to the Ames test on agar plates, but with advantages with respect to significantly reduced amount of test substance and S9 requirements, speed, hands-on time and, potentially automation.
Collapse
Affiliation(s)
| | | | - Marc Audebert
- PrediTox, 1 place Pierre Potier, 31100 Toulouse, France; INRAE UMR1331 Toxalim, 180 chemin de Tournefeuille, 31300 Toulouse, France
| | - Ilona Barisch
- Genetic Toxicology, Preclinical Safety, Sanofi-Aventis Deutschland GmbH, 65926 Frankfurt am Main, Germany
| | - Deborah Bellet
- GenEvolutioN, 2, 8 Rue de Rouen, 78440 Porcheville, France
| | | | - Andreas Czich
- Genetic Toxicology, Preclinical Safety, Sanofi-Aventis Deutschland GmbH, 65926 Frankfurt am Main, Germany
| | - Francis Finot
- GenEvolutioN, 2, 8 Rue de Rouen, 78440 Porcheville, France
| | - Véronique Gervais
- Servier Group, Non-Clinical Safety Department, F-45403 Orléans-Gidy, France
| | - Laure Khoury
- PrediTox, 1 place Pierre Potier, 31100 Toulouse, France
| | - Christian Kirchnawy
- OFI, Austrian Research Institute for Chemistry and Technology, Department for Microbiology and Cell Culture, Franz-Grill Straße 5, Objekt 213, 1030 Vienna, Austria
| | - Sachiko Kitamoto
- Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd., 1-98, Kasugadenaka 3-chome, konohana-ku, Osaka, Japan
| | - Audrey Le Tesson
- Servier Group, Non-Clinical Safety Department, F-45403 Orléans-Gidy, France
| | - Laure Malesic
- GenEvolutioN, 2, 8 Rue de Rouen, 78440 Porcheville, France
| | - Ryoko Matsuyama
- Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd., 1-98, Kasugadenaka 3-chome, konohana-ku, Osaka, Japan
| | - Elisa Mayrhofer
- OFI, Austrian Research Institute for Chemistry and Technology, Department for Microbiology and Cell Culture, Franz-Grill Straße 5, Objekt 213, 1030 Vienna, Austria
| | | | - Birgit Preikschat
- Genetic Toxicology, Preclinical Safety, Sanofi-Aventis Deutschland GmbH, 65926 Frankfurt am Main, Germany
| | - Lukas Prielinger
- Department of Applied Life Sciences, University of Applied Sciences, FH Campus Wien, Favoritenstraße 222, 1100 Vienna, Austria
| | - Bernhard Rainer
- Department of Applied Life Sciences, University of Applied Sciences, FH Campus Wien, Favoritenstraße 222, 1100 Vienna, Austria
| | - Clémence Roblin
- Servier Group, Non-Clinical Safety Department, F-45403 Orléans-Gidy, France
| | - Kerstin Wäse
- Genetic Toxicology, Preclinical Safety, Sanofi-Aventis Deutschland GmbH, 65926 Frankfurt am Main, Germany
| |
Collapse
|
2
|
Kluxen FM, Weber K, Strupp C, Jensen SM, Hothorn LA, Garcin JC, Hofmann T. Using historical control data in bioassays for regulatory toxicology. Regul Toxicol Pharmacol 2021; 125:105024. [PMID: 34364928 DOI: 10.1016/j.yrtph.2021.105024] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/21/2021] [Accepted: 07/30/2021] [Indexed: 12/12/2022]
Abstract
Historical control data (HCD) consist of pooled control group responses from bioassays. These data must be collected and are often used or reported in regulatory toxicology studies for multiple purposes: as quality assurance for the test system, to help identify toxicological effects and their effect-size relevance and to address the statistical multiple comparison problem. The current manuscript reviews the various classical and potential new approaches for using HCD. Issues in current practice are identified and recommendations for improved use and discussion are provided. Furthermore, stakeholders are invited to discuss whether it is necessary to consider uncertainty when using HCD formally and statistically in toxicological discussions and whether binary inclusion/exclusion criteria for HCD should be revised to a tiered information contribution to assessments. Overall, the critical value of HCD in toxicological bioassays is highlighted when used in a weight-of-evidence assessment.
Collapse
Affiliation(s)
| | | | | | - Signe M Jensen
- Department of Plant and Efoldnvironmental Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | | |
Collapse
|
3
|
Kim DE, Yang H, Jang WH, Jung KM, Park M, Choi JK, Jung MS, Jeon EY, Heo Y, Yeo KW, Jo JH, Park JE, Sohn SJ, Kim TS, Ahn IY, Jeong TC, Lim KM, Bae S. Predictive capacity of a non-radioisotopic local lymph node assay using flow cytometry, LLNA:BrdU–FCM: Comparison of a cutoff approach and inferential statistics. J Pharmacol Toxicol Methods 2016; 78:76-84. [DOI: 10.1016/j.vascn.2015.12.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 10/20/2015] [Accepted: 12/02/2015] [Indexed: 10/22/2022]
|
4
|
Yang H, Na J, Jang WH, Jung MS, Jeon JY, Heo Y, Yeo KW, Jo JH, Lim KM, Bae S. Appraisal of within- and between-laboratory reproducibility of non-radioisotopic local lymph node assay using flow cytometry, LLNA:BrdU-FCM: Comparison of OECD TG429 performance standard and statistical evaluation. Toxicol Lett 2015; 234:172-9. [DOI: 10.1016/j.toxlet.2015.02.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 02/15/2015] [Accepted: 02/18/2015] [Indexed: 10/23/2022]
|