1
|
Kumi M, Wang T, Ejeromedoghene O, Wang J, Li P, Huang W. Exploring the Potentials of Chitin and Chitosan-Based Bioinks for 3D-Printing of Flexible Electronics: The Future of Sustainable Bioelectronics. SMALL METHODS 2024; 8:e2301341. [PMID: 38403854 DOI: 10.1002/smtd.202301341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Indexed: 02/27/2024]
Abstract
Chitin and chitosan-based bioink for 3D-printed flexible electronics have tremendous potential for innovation in healthcare, agriculture, the environment, and industry. This biomaterial is suitable for 3D printing because it is highly stretchable, super-flexible, affordable, ultrathin, and lightweight. Owing to its ease of use, on-demand manufacturing, accurate and regulated deposition, and versatility with flexible and soft functional materials, 3D printing has revolutionized free-form construction and end-user customization. This study examined the potential of employing chitin and chitosan-based bioinks to build 3D-printed flexible electronic devices and optimize bioink formulation, printing parameters, and postprocessing processes to improve mechanical and electrical properties. The exploration of 3D-printed chitin and chitosan-based flexible bioelectronics will open new avenues for new flexible materials for numerous industrial applications.
Collapse
Affiliation(s)
- Moses Kumi
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi, 710072, P. R. China
| | - Tengjiao Wang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi, 710072, P. R. China
| | - Onome Ejeromedoghene
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Junjie Wang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi, 710072, P. R. China
| | - Peng Li
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi, 710072, P. R. China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi, 710072, P. R. China
| |
Collapse
|
2
|
Sargsyan A, Beebe LH. Putting the Ducks in a Row: Development of a Duck-assisted Green Care Intervention for Persons with Traumatic Brain Injury. Issues Ment Health Nurs 2024; 45:274-282. [PMID: 38232125 DOI: 10.1080/01612840.2023.2281026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Green Care therapies are defined as the engagement of a patient with the nature, exposing patients to a nature based therapeutic setting that may facilitate their recovery. Such therapies became popular at the end of the twentieth century. This therapeutic approach may include therapeutic horticulture, nature therapies, care farming, facilitated exercise, and animal-assisted therapies with farm animals (AATF). This paper describes the processes of planning and creating an AATF-based clinical intervention wherein persons with TBI interacted with ducks (in twice weekly, 1-hour groups) for 12 wk at a TBI rehabilitation facility. The discussion includes site identification, stakeholder engagement, intervention design and human and animal safety procedures. The research methods, theoretical framework, ethical consideration, and risk reduction strategies for human participants and ducks are discussed. Also, description of challenges and blueprints of possible solutions for other researchers interested in developing similar initiatives. This program will serve as a study site for examining effects of AATF-based interventions on self-efficacy, depression, and anxiety in persons with TBI. If the study suggests that AATF interventions with ducks may lead to positive changes, the proposed study will be followed with studies that include larger samples at multiple sites. Findings in this paper may contribute to the implementation science body of knowledge. Because of that, the information in this paper may benefit the researchers outside of the healthcare arena. From that perspective methods described in this paper may help to develop studies that focus on policy development, program expansion, or individual project implementation.
Collapse
Affiliation(s)
- Alex Sargsyan
- College of Nursing, University of Tennessee, Knoxville, Knoxville, TN, USA
| | - Lora H Beebe
- College of Nursing, University of Tennessee, Knoxville, Knoxville, TN, USA
| |
Collapse
|
3
|
Mastrolorito F, Togo MV, Gambacorta N, Trisciuzzi D, Giannuzzi V, Bonifazi F, Liantonio A, Imbrici P, De Luca A, Altomare CD, Ciriaco F, Amoroso N, Nicolotti O. TISBE: A Public Web Platform for the Consensus-Based Explainable Prediction of Developmental Toxicity. Chem Res Toxicol 2024; 37:323-339. [PMID: 38200616 DOI: 10.1021/acs.chemrestox.3c00310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Despite being extremely relevant for the protection of prenatal and neonatal health, the developmental toxicity (Dev Tox) is a highly complex endpoint whose molecular rationale is still largely unknown. The lack of availability of high-quality data as well as robust nontesting methods makes its understanding even more difficult. Thus, the application of new explainable alternative methods is of utmost importance, with Dev Tox being one of the most animal-intensive research themes of regulatory toxicology. Descending from TIRESIA (Toxicology Intelligence and Regulatory Evaluations for Scientific and Industry Applications), the present work describes TISBE (TIRESIA Improved on Structure-Based Explainability), a new public web platform implementing four fundamental advancements for in silico analyses: a three times larger dataset, a transparent XAI (explainable artificial intelligence) framework employing a fragment-based fingerprint coding, a novel consensus classifier based on five independent machine learning models, and a new applicability domain (AD) method based on a double top-down approach for better estimating the prediction reliability. The training set (TS) includes as many as 1008 chemicals annotated with experimental toxicity values. Based on a 5-fold cross-validation, a median value of 0.410 for the Matthews correlation coefficient was calculated; TISBE was very effective, with a median value of sensitivity and specificity equal to 0.984 and 0.274, respectively. TISBE was applied on two external pools made of 1484 bioactive compounds and 85 pediatric drugs taken from ChEMBL (Chemical European Molecular Biology Laboratory) and TEDDY (Task-Force in Europe for Drug Development in the Young) repositories, respectively. Notably, TISBE gives users the option to clearly spot the molecular fragments responsible for the toxicity or the safety of a given chemical query and is available for free at https://prometheus.farmacia.uniba.it/tisbe.
Collapse
Affiliation(s)
- Fabrizio Mastrolorito
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, 70125 Bari, Italy
| | - Maria Vittoria Togo
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, 70125 Bari, Italy
| | - Nicola Gambacorta
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, 70125 Bari, Italy
| | - Daniela Trisciuzzi
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, 70125 Bari, Italy
| | - Viviana Giannuzzi
- Fondazione per la Ricerca Farmacologica Gianni Benzi Onlus, 70010 Valenzano (BA), Italy
| | - Fedele Bonifazi
- Fondazione per la Ricerca Farmacologica Gianni Benzi Onlus, 70010 Valenzano (BA), Italy
| | - Antonella Liantonio
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, 70125 Bari, Italy
| | - Paola Imbrici
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, 70125 Bari, Italy
| | - Annamaria De Luca
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, 70125 Bari, Italy
| | - Cosimo Damiano Altomare
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, 70125 Bari, Italy
| | - Fulvio Ciriaco
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, 70125 Bari, Italy
| | - Nicola Amoroso
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, 70125 Bari, Italy
- Istituto Nazionale di Fisica Nucleare, Sezione di Bari, 70125 Bari, Italy
| | - Orazio Nicolotti
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, 70125 Bari, Italy
| |
Collapse
|
4
|
Giangreco NP, Tatonetti NP. A database of pediatric drug effects to evaluate ontogenic mechanisms from child growth and development. MED 2022; 3:579-595.e7. [PMID: 35752163 PMCID: PMC9378670 DOI: 10.1016/j.medj.2022.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/30/2021] [Accepted: 05/26/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Adverse drug effects (ADEs) in children are common and may result in disability and death, necessitating post-marketing monitoring of their use. Evaluating drug safety is especially challenging in children due to the processes of growth and maturation, which can alter how children respond to treatment. Current drug safety-signal-detection methods do not account for these dynamics. METHODS We recently developed a method called disproportionality generalized additive models (dGAMs) to better identify safety signals for drugs across child-development stages. FINDINGS We used dGAMs on a database of 264,453 pediatric adverse-event reports and found 19,438 ADEs signals associated with development and validated these signals against a small reference set of pediatric ADEs. Using our approach, we can hypothesize on the ontogenic dynamics of ADE signals, such as that montelukast-induced psychiatric disorders appear most significant in the second year of life. Additionally, we integrated pediatric enzyme expression data and found that pharmacogenes with dynamic childhood expression, such as CYP2C18 and CYP27B1, are associated with pediatric ADEs. CONCLUSIONS We curated KidSIDES, a database of pediatric drug safety signals, for the research community and developed the Pediatric Drug Safety portal (PDSportal) to facilitate evaluation of drug safety signals across childhood growth and development. FUNDING This study was supported by grants from the National Institutes of Health (NIH).
Collapse
Affiliation(s)
- Nicholas P Giangreco
- Departments of Systems Biology and Biomedical Informatics, Columbia University, 622 W. 168(th) Street, New York, NY 10032, USA
| | - Nicholas P Tatonetti
- Departments of Systems Biology and Biomedical Informatics, Columbia University, 622 W. 168(th) Street, New York, NY 10032, USA.
| |
Collapse
|
5
|
Schmitt G, Barrow P. Considerations for and against dosing rodent pups before 7 days of age in juvenile toxicology studies. Reprod Toxicol 2022; 112:77-87. [PMID: 35772686 DOI: 10.1016/j.reprotox.2022.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 10/17/2022]
Abstract
This review focuses on preweaning ontogenic and developmental processes that can influence the selection of the appropriate age at which to start dosing rodent pups in juvenile animal studies (JAS). The ICH S11 guideline on 'Nonclinical Safety Testing in Support of Development of Paediatric Medicines' highlights the need to adapt the age from which animals are dosed according to the stage of development in the target organs/tissues of concern in the youngest pediatric patients. Rodents (rat or mouse) are the most common species for JAS. Despite previous practices, based on comparative ontogeny, it is rarely necessary to dose rodents younger than one week of age since postnatal day (PND)7 is appropriate to address concern for the vast majority of organs. In exceptional cases, earlier dosing (e.g., PND4) can be appropriate to address specific concern in preterm neonates and when a tissue of concern has a particularly early developmental trajectory in the rodent compared to humans. The comparative development of the CNS is particularly complex. While exposure of rodents from PND10 covers most CNS development stages relevant to human neonates, a later dosing start (yet, not later than PND14) can sometimes be appropriate to reflect specific aspects (e.g., transformation of GABAergic transmission). An extended study design including subsets of several ages can be helpful to address multiple concerns within a preweaning JAS. Such design can allow for individual assessment of each concern, whilst minimizing (potentially irrelevant) signals from tissues exposed at a developmental stage that do not match the human situation.
Collapse
Affiliation(s)
- Georg Schmitt
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, CH 4070 Basel, Switzerland.
| | - Paul Barrow
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, CH 4070 Basel, Switzerland
| |
Collapse
|
6
|
Giangreco NP, Tatonetti NP. Evaluating risk detection methods to uncover ontogenic-mediated adverse drug effect mechanisms in children. BioData Min 2021; 14:34. [PMID: 34294093 PMCID: PMC8296590 DOI: 10.1186/s13040-021-00264-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/16/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Identifying adverse drugs effects (ADEs) in children, overall and within pediatric age groups, is essential for preventing disability and death from marketed drugs. At the same time, however, detection is challenging due to dynamic biological processes during growth and maturation, called ontogeny, that alter pharmacokinetics and pharmacodynamics. As a result, methodologies in pediatric drug safety have been limited to event surveillance and have not focused on investigating adverse event mechanisms. There is an opportunity to identify drug event patterns within observational databases for evaluating ontogenic-mediated adverse event mechanisms. The first step of which is to establish statistical models that can identify temporal trends of adverse effects across childhood. RESULTS Using simulation, we evaluated a population stratification method (the proportional reporting ratio or PRR) and a population modeling method (the generalized additive model or GAM) to identify and quantify ADE risk at varying reporting rates and dynamics. We found that GAMs showed improved performance over the PRR in detecting dynamic drug event reporting across child development stages. Moreover, GAMs exhibited normally distributed and robust ADE risk estimation at all development stages by sharing information across child development stages. CONCLUSIONS Our study underscores the opportunity for using population modeling techniques, which leverage drug event reporting across development stages, as biologically-inspired detection methods for evaluating ontogenic mechanisms.
Collapse
Affiliation(s)
- Nicholas P. Giangreco
- Departments of Systems Biology and Biomedical Informatics, Columbia University, 622 W. 168th Street, New York, NY 10032 USA
| | - Nicholas P. Tatonetti
- Departments of Systems Biology and Biomedical Informatics, Columbia University, 622 W. 168th Street, New York, NY 10032 USA
| |
Collapse
|
7
|
Barry E, Walsh JA, Weinrich SL, Beaupre D, Blasi E, Arenson DR, Jacobs IA. Navigating the Regulatory Landscape to Develop Pediatric Oncology Drugs: Expert Opinion Recommendations. Paediatr Drugs 2021; 23:381-394. [PMID: 34173206 PMCID: PMC8275539 DOI: 10.1007/s40272-021-00455-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/21/2021] [Indexed: 11/30/2022]
Abstract
Regulatory changes have been enacted in the United States (US) and European Union (EU) to encourage the development of new treatments for pediatric cancer. Here, we review some of the factors that have hampered the development of pediatric cancer treatments and provide a comparison of the US and EU regulations implemented to address this clinical need. We then provide some recommendations for each stage of the oncology drug development pathway to help researchers maximize their chance of successful drug development while complying with regulations. A key recommendation is the engagement of key stakeholders such as regulatory authorities, pediatric oncologists, academic researchers, patient advocacy groups, and a Pediatric Expert Group early in the drug development process. During drug target selection, sponsors are encouraged to consult the Food and Drug Administration (FDA), European Medicines Agency (EMA), and the FDA target list, in addition to relevant US and European consortia that have been established to characterize and prioritize oncology drug targets. Sponsors also need to carefully consider the resourcing requirements for preclinical testing, which include ensuring appropriate access to the most relevant databases, clinical samples, and preclinical models (cell lines and animal models). During clinical development, sponsors can account for the pharmacodynamic (PD)/pharmacokinetic (PK) considerations specific to a pediatric population by developing pediatric formulations, selecting suitable PD endpoints, and employing sparse PK sampling or modeling/simulation of drug exposures where appropriate. Additional clinical considerations include the specific design of the clinical trial, the potential inclusion of children in adult trials, and the value of cooperative group trials.
Collapse
|
8
|
Giangreco NP, Elias JE, Tatonetti NP. No population left behind: Improving paediatric drug safety using informatics and systems biology. Br J Clin Pharmacol 2020; 88:1464-1470. [PMID: 33332641 PMCID: PMC8209126 DOI: 10.1111/bcp.14705] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 10/26/2020] [Accepted: 12/05/2020] [Indexed: 12/12/2022] Open
Abstract
Adverse drugs effects (ADEs) in children are common and may result in disability and death. The current paediatric drug safety landscape, including clinical trials, is limited as it rarely includes children and relies on extrapolation from adults. Children are not small adults but go through an evolutionarily conserved and physiologically dynamic process of growth and maturation. Novel quantitative approaches, integrating observations from clinical trials and drug safety databases with dynamic mechanisms, can be used to systematically identify ADEs unique to childhood. In this perspective, we discuss three critical research directions using systems biology methodologies and novel informatics to improve paediatric drug safety, namely child versus adult drug safety profiles, age-dependent drug toxicities and genetic susceptibility of ADEs across childhood. We argue that a data-driven framework that leverages observational data, biomedical knowledge and systems biology modelling will reveal previously unknown mechanisms of pediatric adverse drug events and lead to improved paediatric drug safety.
Collapse
Affiliation(s)
- Nicholas P Giangreco
- Department of Biomedical Informatics and Systems Biology, Columbia University, New York, NY, USA
| | - Jonathan E Elias
- Department of Pediatrics, Instructor in Pediatrics, Assistant Medical Director of Information Services, Weill Cornell Medical & NYP Weill Cornell Medical Center, New York, NY, USA
| | - Nicholas P Tatonetti
- Department of Biomedical Informatics and Systems Biology, Columbia University, New York, NY, USA
| |
Collapse
|
9
|
Gopalakrishnan G, Ganiger S, White TEK, Yu C. Reproductive toxicology studies supporting the safety of molindone, a dopamine receptor antagonist. Birth Defects Res 2018; 110:1250-1262. [PMID: 30230712 DOI: 10.1002/bdr2.1381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 07/23/2018] [Accepted: 07/30/2018] [Indexed: 11/10/2022]
Abstract
BACKGROUND An extended-release molindone (a dopamine D2 and serotonin antagonist) is currently being developed as a novel treatment for impulsive aggression (IA) in patients optimally treated for ADHD. Oral Good Laboratory Practice reproductive toxicology studies (fertility and early embryonic [FEE], prenatal/postnatal [PPN], embryo-fetal development [EFD]) were conducted with molindone HCl using International Conference on Harmonisation (ICH) S5(R2)-compliant protocols. METHODS In the FEE study, 0, 5, 15, or 30 mg kg-1 day-1 was administered to female (2 weeks premating through implantation) and male (4 weeks premating for 57 days) rats, and fertility parameters were evaluated. In the EFD studies, rats received 0, 5, 20, or 40 mg kg-1 day-1 on gestational days (GDs) 6-17; rabbits received 0, 5, 10, or 15 mg kg-1 day-1 on GDs 6-18. Ovarian/uterine and fetal parameters were evaluated at term. In the PPN study, F0 rats received 0, 5, 20, or 40 mg kg-1 day-1 (GD6-LD21); behavior and reproduction were evaluated in F1 offspring. RESULTS Parental hypoactivity and reduced body weight gain occurred in all studies. In the FEE, prolonged estrous cycles and delayed mating occurred at ≥15 mg kg-1 day-1 , without effects on fertility or embryonic development. No developmental toxicity occurred in F1 fetuses. In F1 pups, reduced preweaning growth was observed at 40 mg kg-1 day-1 , but there were no effects on postweaning growth, behavior, or reproduction. CONCLUSIONS Molindone was not developmentally toxic in rats or rabbits at 69X and 6X clinical exposures, confirming the reproductive safety of molindone. Changes in estrous cyclicity were related to species-specific pharmacological effects of molindone in rodents and are not considered relevant to human risk.
Collapse
Affiliation(s)
| | | | - Tacey E K White
- Aclairo Pharmaceutical Development Group, Inc., Vienna, Virginia
| | - Chungping Yu
- Supernus Pharmaceuticals, Inc., Rockville, Maryland
| |
Collapse
|
10
|
Visalli T, Bower N, Kokate T, Andrews PA. Lack of value of juvenile animal toxicity studies for supporting the safety of pediatric oncology phase I trials. Regul Toxicol Pharmacol 2018; 96:167-177. [PMID: 29763632 DOI: 10.1016/j.yrtph.2018.05.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/07/2018] [Accepted: 05/11/2018] [Indexed: 02/04/2023]
Abstract
Toxicity studies in juvenile animals (JAS) are sometimes performed to support clinical trials in pediatric oncology patients, and there are differing conclusions on the value of JAS for pediatric drug development. This manuscript provides a review of the pediatric clinical data for 25 molecularly-targeted and 4 biologic anticancer therapeutics. Other publications that evaluated the value of JAS in pediatric drug development focus on differences in toxicity between juvenile animals and adult animals. The present paper examines pediatric-specific clinical findings to focus on dose setting in pediatric oncology patients and safety monitoring in terms of the potential value of JAS. Our assessment demonstrates that pediatric starting doses were safe for all 29 therapeutics examined in that no life-threatening toxicities occurred in the first cohort, and overall the ratio of the pediatric maximum tolerated dose (MTD) to the recommended adult dose was close to 1. In addition, the 4 serious adverse events (SAEs) that weren't detectable with standard monitoring plans for pediatric oncology trials would not have been detectable in a standard JAS. This review demonstrates that safe starting doses in pediatric oncology patients for these therapeutics could have been solely based on adult doses without any knowledge of findings in JAS.
Collapse
Affiliation(s)
- Thomas Visalli
- Eisai Inc., Global Nonclinical Regulatory Affairs, 155 Tice Boulevard, Woodcliff Lake, NJ 07677, United States.
| | - Nancy Bower
- Eisai Inc., Global Nonclinical Regulatory Affairs, 155 Tice Boulevard, Woodcliff Lake, NJ 07677, United States
| | - Tushar Kokate
- Eisai Inc., Global Nonclinical Regulatory Affairs, 155 Tice Boulevard, Woodcliff Lake, NJ 07677, United States
| | - Paul A Andrews
- Eisai Inc., Global Nonclinical Regulatory Affairs, 155 Tice Boulevard, Woodcliff Lake, NJ 07677, United States
| |
Collapse
|
11
|
Baldrick P. Juvenile Animal Testing: Assessing Need and Use in the Drug Product Label. Ther Innov Regul Sci 2018; 52:641-648. [PMID: 29714556 DOI: 10.1177/2168479017750129] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Juvenile animal testing has become an established part of drug development to support safe clinical use in the human pediatric population and for eventual drug product label use. METHODS AND RESULTS A review of European Paediatric Investigation Plan decisions showed that from 2007 to mid-2017, 229 drugs had juvenile animal work requested, almost exclusively incorporating general toxicology study designs, in rat (57.5%), dog (8%), mouse (4.5%), monkey (4%), pig (2%), sheep (1%), rabbit (1%), hamster (0.5%), and species not specified (21.5%). A range of therapeutic areas were found, but the most common areas were infectious diseases (15%), endocrinology (13.5%), oncology (13%), neurology (11%), and cardiovascular diseases (10%). Examination of major clinical indications within these therapeutic areas showed some level of consistency in the species of choice for testing and the pediatric age that required support. Examination of juvenile animal study findings presented in product labels raises questions around how useful the data are to allow prescribing the drug to a child. CONCLUSION It is hopeful that the new ICH S11 guideline "Nonclinical Safety Testing in Support of Development of Pediatric Medicines" currently in preparation will aid drug developers in clarifying the need for juvenile animal studies as well as in promoting a move away from toxicology studies with a conventional design. This would permit more focused testing to examine identified areas of toxicity or safety concerns and clarify the presentation/interpretation of juvenile animal study findings for proper risk assessment by a drug prescriber.
Collapse
Affiliation(s)
- Paul Baldrick
- 1 Visiting Professor, The Lincoln School of Pharmacy, University of Lincoln, Lincoln, UK
| |
Collapse
|
12
|
Constable A, Mahadevan B, Pressman P, Garthoff JA, Meunier L, Schrenk D, Speijers G, O’Sullivan A, Hayes AW. An integrated approach to the safety assessment of food additives in early life. TOXICOLOGY RESEARCH AND APPLICATION 2017. [DOI: 10.1177/2397847317707370] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
During the development of international standards by the Codex Alimentarius Commission, infant foods and their constituent ingredients are subject to rigorous risk analysis and are strictly regulated by many authorities. Various jurisdictions have approved only a limited number of additives specifically with regard to infant foods to fulfill specific technical requirements of quality. As part of the approval process, a rigorous safety assessment is essential to confirm that the use of additives does not pose any health risk for the consumer. An acceptable daily intake (ADI) may be derived from the toxicological databases. However, the ADI may not be applicable to infants because of the possible developmental sensitivities and potentially high exposure scenarios, leading to possible lower margins of safety than would often be determined for adult populations. There is interest in defining better food safety assessment approaches for pre-weaned infants aged less than 12–16 weeks. To confirm safe use in infants, we reviewed the suitability of the existing safety databases of six additives with historical uses in infant nutrition products. To determine further toxicity testing strategies, it is necessary to understand whether the chemical used in the additives is identical to endogenous physiological metabolites and/or whether immature organs of infants are targets of toxicity. Combined with an in-depth review of the existing relevant toxicological and nutritional studies, this integrated approach will facilitate decision-making. We propose a decision tree as a tool within this approach to help guide appropriate data requirements and identify data gaps. In cases of reasonable uncertainty, studies of targeted juvenile should be considered to investigate the safe use levels in food products.
Collapse
Affiliation(s)
| | | | - Peter Pressman
- Division of Medicine, Public Health & Nutrition, The Daedalus Foundation, Alexandria, VA, USA
| | | | - Leo Meunier
- Danone Food Safety Center, Uppsalalaan, Utrecht, The Netherlands
| | - Dieter Schrenk
- Food Chemistry and Toxicology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Gerrit Speijers
- General Health Effects Toxicology Safety Food (GETS), Nieuwegein, The Netherlands
| | - Aaron O’Sullivan
- Danone Trading Medical BV, Schiphol Boulevard, Schiphol Airport, The Netherlands
| | - A Wallace Hayes
- Harvard University, Boston, MA, USA and Michigan State University, East Lansing, MI, USA
| |
Collapse
|
13
|
In vitro Phase I- and Phase II-Drug Metabolism in The Liver of Juvenile and Adult Göttingen Minipigs. Pharm Res 2017; 34:750-764. [DOI: 10.1007/s11095-017-2101-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 01/06/2017] [Indexed: 10/20/2022]
|
14
|
Rebuttal to Dr. Andrew and Dr. Keller letter to the Editor on “Juvenile animal studies in oncology medicines for children”. Reprod Toxicol 2016; 66:131-132. [DOI: 10.1016/j.reprotox.2016.05.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 05/13/2016] [Indexed: 11/18/2022]
|
15
|
Leighton JK, Saber H, Reaman G, Pazdur R. An FDA oncology view of juvenile animal studies in support of initial pediatric trials for anticancer drugs. Regul Toxicol Pharmacol 2016; 79:142-143. [PMID: 26952647 DOI: 10.1016/j.yrtph.2016.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 03/02/2016] [Indexed: 11/30/2022]
Affiliation(s)
- John K Leighton
- US Food and Drug Administration, Center for Drug Evaluation and Research, Office of Hematology and Oncology Products, 10903 New Hampshire Ave, Silver Spring, MD 20903, United States.
| | - Haleh Saber
- US Food and Drug Administration, Center for Drug Evaluation and Research, Office of Hematology and Oncology Products, 10903 New Hampshire Ave, Silver Spring, MD 20903, United States
| | - Gregory Reaman
- US Food and Drug Administration, Center for Drug Evaluation and Research, Office of Hematology and Oncology Products, 10903 New Hampshire Ave, Silver Spring, MD 20903, United States
| | - Richard Pazdur
- US Food and Drug Administration, Center for Drug Evaluation and Research, Office of Hematology and Oncology Products, 10903 New Hampshire Ave, Silver Spring, MD 20903, United States
| |
Collapse
|
16
|
Bourgeois T, Delezoide AL, Zhao W, Guimiot F, Adle-Biassette H, Durand E, Ringot M, Gallego J, Storme T, Le Guellec C, Kassaï B, Turner MA, Jacqz-Aigrain E, Matrot B. Safety study of Ciprofloxacin in newborn mice. Regul Toxicol Pharmacol 2016; 74:161-9. [DOI: 10.1016/j.yrtph.2015.11.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 11/05/2015] [Indexed: 01/08/2023]
|
17
|
Bjørnstad S, Austdal LPE, Roald B, Glover JC, Paulsen RE. Cracking the Egg: Potential of the Developing Chicken as a Model System for Nonclinical Safety Studies of Pharmaceuticals. J Pharmacol Exp Ther 2015; 355:386-96. [DOI: 10.1124/jpet.115.227025] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 10/01/2015] [Indexed: 12/19/2022] Open
|
18
|
Hurtt M, Engel S. An update of juvenile animal studies in the European Union: What do the numbers say? Reprod Toxicol 2015; 56:105-8. [DOI: 10.1016/j.reprotox.2015.04.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 04/10/2015] [Accepted: 04/17/2015] [Indexed: 11/16/2022]
|
19
|
Abstract
Whereas pharmacological responses tend to be fairly rapid in onset and are therefore detectable after a single dose, some diminish on repeated dosing, and others increase in magnitude and therefore can be missed or underestimated in single-dose safety pharmacology studies. Safety pharmacology measurements can be incorporated into repeat-dose toxicity studies, either routinely or on an ad hoc basis. Drivers for this are both scientific (see above) and regulatory (e.g. ICH S6, S7, S9). There are inherent challenges in achieving this: the availability of suitable technical and scientific expertise in the test facility, unsuitable laboratory conditions, use of simultaneous (as opposed to staggered) dosing, requirement for toxicokinetic sampling, unsuitability of certain techniques (e.g. use of anaesthesia, surgical implantation, food restriction), equipment availability at close proximity and sensitivity of the methods to detect small, clinically relevant, changes. Nonetheless, 'fit-for-purpose' data can still be acquired without requiring additional animals. Examples include assessment of behaviour, sensorimotor, visual and autonomic functions, ambulatory ECG and blood pressure, echocardiography, respiratory, gastrointestinal, renal and hepatic function. This is entirely achievable if the safety pharmacology measurements are relatively unobtrusive, both with respect to the animals and to the toxicology study itself. Careful pharmacological validation of any methods used, and establishing their detection sensitivity, is vital to ensure the credibility of generated data.
Collapse
Affiliation(s)
- Will S Redfern
- Drug Safety and Metabolism, AstraZeneca R&D, Darwin Building, 310 Cambridge Science Park, Cambridge, CB4 0WG, UK,
| |
Collapse
|
20
|
Saunders NR, Dreifuss JJ, Dziegielewska KM, Johansson PA, Habgood MD, Møllgård K, Bauer HC. The rights and wrongs of blood-brain barrier permeability studies: a walk through 100 years of history. Front Neurosci 2014; 8:404. [PMID: 25565938 PMCID: PMC4267212 DOI: 10.3389/fnins.2014.00404] [Citation(s) in RCA: 157] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 11/20/2014] [Indexed: 12/16/2022] Open
Abstract
Careful examination of relevant literature shows that many of the most cherished concepts of the blood-brain barrier are incorrect. These include an almost mythological belief in its immaturity that is unfortunately often equated with absence or at least leakiness in the embryo and fetus. The original concept of a blood-brain barrier is often attributed to Ehrlich; however, he did not accept that permeability of cerebral vessels was different from other organs. Goldmann is often credited with the first experiments showing dye (trypan blue) exclusion from the brain when injected systemically, but not when injected directly into it. Rarely cited are earlier experiments of Bouffard and of Franke who showed methylene blue and trypan red stained all tissues except the brain. The term “blood-brain barrier” “Blut-Hirnschranke” is often attributed to Lewandowsky, but it does not appear in his papers. The first person to use this term seems to be Stern in the early 1920s. Studies in embryos by Stern and colleagues, Weed and Wislocki showed results similar to those in adult animals. These were well-conducted experiments made a century ago, thus the persistence of a belief in barrier immaturity is puzzling. As discussed in this review, evidence for this belief, is of poor experimental quality, often misinterpreted and often not properly cited. The functional state of blood-brain barrier mechanisms in the fetus is an important biological phenomenon with implications for normal brain development. It is also important for clinicians to have proper evidence on which to advise pregnant women who may need to take medications for serious medical conditions. Beliefs in immaturity of the blood-brain barrier have held the field back for decades. Their history illustrates the importance of taking account of all the evidence and assessing its quality, rather than selecting papers that supports a preconceived notion or intuitive belief. This review attempts to right the wrongs. Based on careful translation of original papers, some published a century ago, as well as providing discussion of studies claiming to show barrier immaturity, we hope that readers will have evidence on which to base their own conclusions.
Collapse
Affiliation(s)
- Norman R Saunders
- Department of Pharmacology and Therapeutics, University of Melbourne Parkville, VIC, Australia
| | | | | | - Pia A Johansson
- Institute for Stem Cell Research, Helmholtz Center Munich Munich, Germany
| | - Mark D Habgood
- Department of Pharmacology and Therapeutics, University of Melbourne Parkville, VIC, Australia
| | - Kjeld Møllgård
- Department of Cellular and Molecular Medicine, University of Copenhagen Copenhagen, Denmark
| | - Hans-Christian Bauer
- Institute of Tendon and Bone Regeneration, Paracelsus Medical University Salzburg, Austria ; Spinal Cord Injury and Tissue Regeneration Center, Paracelsus Medical University Salzburg, Austria
| |
Collapse
|
21
|
Maynard J, Sykes A, Powell H, Healing G, Scott M, Holmes A, Ricketts SA, Stewart J, Davis S. A longitudinal study assessing lens thickness changes in the eye of the growing beagle using ultrasound scanning: relevance to age of dogs in regulatory toxicology studies. J Appl Toxicol 2014; 34:1368-72. [DOI: 10.1002/jat.2967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 10/28/2013] [Accepted: 10/30/2013] [Indexed: 11/06/2022]
Affiliation(s)
- Juliana Maynard
- Imaging, Personalised Healthcare & Biomarkers, AstraZeneca; AstraZeneca; Mereside, Alderley Park Macclesfield Cheshire SK10 4TG
| | - Angela Sykes
- Drug Safety and Metabolism; AstraZeneca; Mereside, Alderley Park Macclesfield Cheshire SK10 4TG
| | - Helen Powell
- Drug Safety and Metabolism; AstraZeneca; Mereside, Alderley Park Macclesfield Cheshire SK10 4TG
| | - Guy Healing
- Drug Safety and Metabolism; AstraZeneca; Mereside, Alderley Park Macclesfield Cheshire SK10 4TG
| | - Marietta Scott
- Tissue Diagnostics; AstraZeneca; Mereside, Alderley Park Macclesfield Cheshire SK10 4TG
| | - Andrew Holmes
- Imaging, Personalised Healthcare & Biomarkers, AstraZeneca; AstraZeneca; Mereside, Alderley Park Macclesfield Cheshire SK10 4TG
| | - Sally-Ann Ricketts
- Imaging, Personalised Healthcare & Biomarkers, AstraZeneca; AstraZeneca; Mereside, Alderley Park Macclesfield Cheshire SK10 4TG
| | - Jane Stewart
- Drug Safety and Metabolism; AstraZeneca; Mereside, Alderley Park Macclesfield Cheshire SK10 4TG
| | - Stewart Davis
- Drug Safety and Metabolism; AstraZeneca; Mereside, Alderley Park Macclesfield Cheshire SK10 4TG
| |
Collapse
|
22
|
Brennan FR, Cauvin A, Tibbitts J, Wolfreys A. Optimized nonclinical safety assessment strategies supporting clinical development of therapeutic monoclonal antibodies targeting inflammatory diseases. Drug Dev Res 2014; 75:115-61. [PMID: 24782266 DOI: 10.1002/ddr.21173] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Accepted: 02/23/2014] [Indexed: 12/19/2022]
Abstract
An increasing number of immunomodulatory monoclonal antibodies (mAbs) and IgG Fc fusion proteins are either approved or in early-to-late stage clinical trials for the treatment of chronic inflammatory conditions, autoimmune diseases and organ transplant rejection. The exquisite specificity of mAbs, in combination with their multi-functional properties, high potency, long half-life (permitting intermittent dosing and prolonged pharamcological effects), and general lack of off-target toxicity makes them ideal therapeutics. Dosing with mAbs for these severe and debilitating but often non life-threatening diseases is usually prolonged, for several months or years, and not only affects adults, including sensitive populations such as woman of child-bearing potential (WoCBP) and the elderly, but also children. Immunosuppression is usually a therapeutic goal of these mAbs and when administered to patients whose treatment program often involves other immunosuppressive therapies, there is an inherent risk for frank immunosuppression and reduced host defence which when prolonged increases the risk of infection and cancer. In addition when mAbs interact with the immune system they can induce other adverse immune-mediated drug reactions such as infusion reactions, cytokine release syndrome, anaphylaxis, immune-complex-mediated pathology and autoimmunity. An overview of the nonclinical safety assessment and risk mitigation strategies utilized to characterize these immunomodulatory mAbs and Fc fusion proteins to support first-in human (FIH) studies and futher clinical development in inflammatory disease indications is provided. Specific emphasis is placed on the design of studies to qualify animal species for toxicology studies, early studies to investigate safety and define PK/PD relationships, FIH-enabling and chronic toxicology studies, immunotoxicity, developmental, reproductive and juvenile toxicity studies and studies to determine the potential for immunosuppression and reduced host defence against infection and cancer. Nonclinical strategies to facilitate clinical and market entry in the most efficient timeframe are presented.
Collapse
Affiliation(s)
- Frank R Brennan
- Preclinical Safety, New Medicines, UCB-Celltech, Slough, SL1 3WE, UK
| | | | | | | |
Collapse
|
23
|
Baldrick P. The evolution of juvenile animal testing for small and large molecules. Regul Toxicol Pharmacol 2013; 67:125-35. [DOI: 10.1016/j.yrtph.2013.07.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 07/19/2013] [Indexed: 11/25/2022]
|
24
|
Pellegatti M. Dogs and monkeys in preclinical drug development: the challenge of reducing and replacing. Expert Opin Drug Metab Toxicol 2013; 9:1171-80. [PMID: 23705836 DOI: 10.1517/17425255.2013.804061] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Animal experimentation is a very contentious issue affecting reputation of drug industry. There are several reasons to forecast an increase in the number of dogs and monkeys used in safety and pharmacokinetic studies. This increase may trigger a strong reaction of the public opinion. There have been many proposals and initiatives to change the present approach to safety and metabolic studies. Tests based on new technologies, in vitro cell assays, stem cells, imaging, and computational systems, have the potential to anticipate effects in humans. Unfortunately, all these efforts and ideas have not changed standard approaches and regulatory expectations. AREAS COVERED This review looks at opportunities to reduce the number of dogs and monkeys currently used in pharmaceutical research. It also discusses present efforts and approaches, their strengths and potentials and the reasons why they may not fulfill expectations. EXPERT OPINION Unless the pharmaceutical industry gets more involved, an alternative paradigm of preclinical drug development is unlikely to be established in the foreseeable future. One can imagine a scenario where the political pressure against the use of dogs and monkeys in biomedical research becomes irresistible while alternative methods are not yet established. To avoid this situation, the pharmaceutical industry should take the lead and preclinical scientists at all levels need to influence decision makers and help develop new innovative approaches in drug safety evaluation.
Collapse
|
25
|
Roth WJ, Kissinger CB, McCain RR, Cooper BR, Marchant-Forde JN, Vreeman RC, Hannou S, Knipp GT. Assessment of juvenile pigs to serve as human pediatric surrogates for preclinical formulation pharmacokinetic testing. AAPS JOURNAL 2013; 15:763-74. [PMID: 23595360 DOI: 10.1208/s12248-013-9482-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 03/25/2013] [Indexed: 11/30/2022]
Abstract
Pediatric drug development is hampered by biological, clinical, and formulation challenges associated with age-based populations. A primary cause for this lack of development is the inability to accurately predict ontogenic changes that affect pharmacokinetics (PK) in children using traditional preclinical animal models. In response to this issue, our laboratory has conducted a proof-of-concept study to investigate the potential utility of juvenile pigs to serve as surrogates for children during preclinical PK testing of selected rifampin dosage forms. Pigs were surgically modified with jugular vein catheters that were externalized in the dorsal scapular region and connected to an automated blood sampling system (PigTurn-Culex-L). Commercially available rifampin capsules were administered to both 20 and 40 kg pigs to determine relevant PK parameters. Orally disintegrating tablet formulations of rifampin were also developed and administered to 20 kg pigs. Plasma samples were prepared from whole blood by centrifugation and analyzed for rifampin content by liquid chromatography-tandem mass spectrometry. Porcine PK parameters were determined from the resultant plasma-concentration time profiles and contrasted with published rifampin PK data in human adults and children. Results indicated significant similarities in dose-normalized absorption and elimination parameters between pigs and humans. Moreover, ontogenic changes observed in porcine PK parameters were consistent with ontogenic changes reported for human PK. These results demonstrate the potential utility of the juvenile porcine model for predicting human pediatric PK for rifampin. Furthermore, utilization of juvenile pigs during formulation testing may provide an alternative approach to expedite reformulation efforts during pediatric drug development.
Collapse
Affiliation(s)
- Wyatt J Roth
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Soellner L, Olejniczak K. The need for juvenile animal studies – A critical review. Regul Toxicol Pharmacol 2013; 65:87-99. [DOI: 10.1016/j.yrtph.2012.10.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 10/10/2012] [Accepted: 10/15/2012] [Indexed: 10/27/2022]
|
27
|
Redfern WS, Ewart LC, Lainée P, Pinches M, Robinson S, Valentin JP. Functional assessments in repeat-dose toxicity studies: the art of the possible. Toxicol Res (Camb) 2013. [DOI: 10.1039/c3tx20093k] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
28
|
Barrett JS, Della Casa Alberighi O, Läer S, Meibohm B. Physiologically Based Pharmacokinetic (PBPK) Modeling in Children. Clin Pharmacol Ther 2012; 92:40-9. [DOI: 10.1038/clpt.2012.64] [Citation(s) in RCA: 140] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
29
|
|
30
|
Morford LL, Bowman CJ, Blanset DL, Bøgh IB, Chellman GJ, Halpern WG, Weinbauer GF, Coogan TP. Preclinical safety evaluations supporting pediatric drug development with biopharmaceuticals: strategy, challenges, current practices. ACTA ACUST UNITED AC 2011; 92:359-80. [PMID: 21770023 DOI: 10.1002/bdrb.20305] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Accepted: 04/11/2011] [Indexed: 11/08/2022]
Abstract
Evaluation of pharmaceutical agents in children is now conducted earlier in the drug development process. An important consideration for this pediatric use is how to assess and support its safety. This article is a collaborative effort of industry toxicologists to review strategies, challenges, and current practice regarding preclinical safety evaluations supporting pediatric drug development with biopharmaceuticals. Biopharmaceuticals include a diverse group of molecular, cell-based or gene therapeutics derived from biological sources or complex biotechnological processes. The principles of preclinical support of pediatric drug development for biopharmaceuticals are similar to those for small molecule pharmaceuticals and in general follow the same regulatory guidances outlined by the Food and Drug Administration and European Medicines Agency. However, many biopharmaceuticals are also inherently different, with limited species specificity or immunogenic potential which may impact the approach taken. This article discusses several key areas to aid in the support of pediatric clinical use, study design considerations for juvenile toxicity studies when they are needed, and current practices to support pediatric drug development based on surveys specifically targeting biopharmaceutical development.
Collapse
|
31
|
Redfern WS, Valentin JP. Trends in safety pharmacology: Posters presented at the annual meetings of the Safety Pharmacology Society 2001–2010. J Pharmacol Toxicol Methods 2011; 64:102-10. [DOI: 10.1016/j.vascn.2011.05.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Accepted: 05/13/2011] [Indexed: 01/01/2023]
|