1
|
Price PS, Hubbell BJ, Hagiwara S, Paoli GM, Krewski D, Guiseppi‐Elie A, Gwinn MR, Adkins NL, Thomas RS. A Framework that Considers the Impacts of Time, Cost, and Uncertainty in the Determination of the Cost Effectiveness of Toxicity-Testing Methodologies. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2022; 42:707-729. [PMID: 34490933 PMCID: PMC9290960 DOI: 10.1111/risa.13810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/06/2021] [Accepted: 07/28/2021] [Indexed: 06/13/2023]
Abstract
Regulatory agencies are required to evaluate the impacts of thousands of chemicals. Toxicological tests currently used in such evaluations are time-consuming and resource intensive; however, advances in toxicology and related fields are providing new testing methodologies that reduce the cost and time required for testing. The selection of a preferred methodology is challenging because the new methodologies vary in duration and cost, and the data they generate vary in the level of uncertainty. This article presents a framework for performing cost-effectiveness analyses (CEAs) of toxicity tests that account for cost, duration, and uncertainty. This is achieved by using an output metric-the cost per correct regulatory decision-that reflects the three elements. The framework is demonstrated in two example CEAs, one for a simple decision of risk acceptability and a second, more complex decision, involving the selection of regulatory actions. Each example CEA evaluates five hypothetical toxicity-testing methodologies which differ with respect to cost, time, and uncertainty. The results of the examples indicate that either a fivefold reduction in cost or duration can be a larger driver of the selection of an optimal toxicity-testing methodology than a fivefold reduction in uncertainty. Uncertainty becomes of similar importance to cost and duration when decisionmakers are required to make more complex decisions that require the determination of small differences in risk predictions. The framework presented in this article may provide a useful basis for the identification of cost-effective methods for toxicity testing of large numbers of chemicals.
Collapse
Affiliation(s)
- Paul S. Price
- Center for Computational Toxicology and ExposureUS Environmental Protection Agency, Research Triangle ParkDurhamNCUSA
| | - Bryan J. Hubbell
- Air, Climate, and Energy Research ProgramUS Environmental Protection Agency, Research Triangle ParkDurhamNCUSA
| | - Shintaro Hagiwara
- School of Mathematics and StatisticsCarleton UniversityOttawaCanada
- Risk Sciences InternationalOttawaCanada
| | | | - Daniel Krewski
- McLaughlin Centre for Population Health Risk AssessmentUniversity of OttawaOttawaCanada
| | - Annette Guiseppi‐Elie
- Center for Computational Toxicology and ExposureUS Environmental Protection Agency, Research Triangle ParkDurhamNCUSA
| | - Maureen R. Gwinn
- Sustainable and Healthy Communities Research ProgramUS Environmental Protection Agency, Research Triangle ParkNCUSA
| | - Norman L. Adkins
- Center for Computational Toxicology and ExposureUS Environmental Protection Agency, Research Triangle ParkDurhamNCUSA
| | - Russell S. Thomas
- Center for Computational Toxicology and ExposureUS Environmental Protection Agency, Research Triangle ParkDurhamNCUSA
| |
Collapse
|
2
|
Risk assessment of predicted serum concentrations of bisphenol A in children and adults following treatment with dental composite restoratives, dental sealants, or orthodontic adhesives using physiologically based pharmacokinetic modeling. Regul Toxicol Pharmacol 2020; 120:104839. [PMID: 33301868 DOI: 10.1016/j.yrtph.2020.104839] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/26/2020] [Accepted: 12/03/2020] [Indexed: 01/16/2023]
Abstract
Bisphenol A (BPA) is a chemical used to manufacture bisphenol A glycidyl methacrylate (BisGMA). BisGMA has been used for decades in dental composite restoratives, sealants, and adhesives. Based on published studies, exposure to low concentrations of BPA are possible from dental and orthodontic devices. The serum BPA concentrations arising from such devices and oral doses were predicted using a PBPK model in children and adult females based on 1) published extraction data for cured and uncured 3M ESPE Filtek Supreme Ultra Flowable, 3M ESPE Filtek Bulk Fill Restorative, and 3M ESPE Clinpro Sealant and 2) published 20% ethanol/water and water rinsate data following orthodontic application with 3M ESPE Transbond MIP Primer and 3M ESPE Transbond XT Adhesive. Predicted oral exposure to BPA arising from these dental and orthodontic devices is low (median <10 ng/treatment) and predicted serum BPA concentrations were also low (<10-4 nM). Even the maximum predicted exposure in this study (533.2 ng/treatment) yields a margin of exposure of 7.5 relative to the EFSA t-TDI (4 μg/kg-day) and is only 2.8% of the daily BPA exposure for the US population in a 58-kg woman (15,660 ng/day). Therefore, the exposure to BPA arising from the 3M ESPE dental and orthodontic devices evaluated in this study is negligible relative to daily BPA exposure in the general population and these potential BPA sources do not constitute a risk to patients.
Collapse
|
3
|
Mortuza T, Chen C, White CA, Cummings BS, Muralidhara S, Gullick D, Bruckner JV. Toxicokinetics of Deltamethrin: Dosage Dependency, Vehicle Effects, and Low-Dose Age-Equivalent Dosimetry in Rats. Toxicol Sci 2019; 162:327-336. [PMID: 29165640 DOI: 10.1093/toxsci/kfx260] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
There is increasing concern that infants and children may be at increased risk of neurological effects of pyrethroids, the most widely used class of insecticide. The objectives of this investigation were to (1) characterize the dose-dependent toxicokinetics (TK) of deltamethrin (DLM) for exposures ranging from environmentally relevant to acutely toxic; (2) determine the influence of an aqueous versus oil vehicle on oral absorption and bioavailability; and (3) determine whether DLM exhibits low-dose, age-equivalent internal dosimetry. Serial arterial plasma samples were obtained for 72 h from adult, male Sprague Dawley rats given 0.05-5.0 mg DLM/kg as an oral bolus in corn oil (CO). DLM exhibited linear, absorption rate-limited TK. Increases in maximum plasma concentration (Cmax) and AUC∘∞ were directly proportional to the dose. Oral bioavailability was quite limited. The vehicle and its volume had modest effect on the rate and extent of systemic absorption in adult rats. Postnatal day (PND) 15, 21, and 90 (adult) rats received 0.10, 0.25, or 0.50 mg DLM/kg orally in CO and were sacrificed periodically for plasma, brain, and liver collection. Age-dependent differences between PND 15 and 90 plasma Cmax and AUC∘24 values progressively diminished as the dose decreased, but there was a lack of low dose age equivalence in these brain and liver dosimeters. Other maturational factors may account for the lack of the low-dose age equivalence in brain and liver. This investigation provides support for the premise that the relatively low metabolic capacity of immature subjects may be adequate to effectively eliminate trace amounts of DLM and other pyrethroids from the plasma.
Collapse
Affiliation(s)
- Tanzir Mortuza
- Department of Pharmaceutical & Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia 30602-2354
| | - Chen Chen
- Department of Pharmaceutical & Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia 30602-2354
| | - Catherine A White
- Department of Pharmaceutical & Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia 30602-2354
| | - Brian S Cummings
- Department of Pharmaceutical & Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia 30602-2354
| | - Srinivasa Muralidhara
- Department of Pharmaceutical & Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia 30602-2354
| | - Darren Gullick
- Department of Pharmaceutical & Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia 30602-2354
| | - James V Bruckner
- Department of Pharmaceutical & Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia 30602-2354
| |
Collapse
|
4
|
Timchalk C, Weber TJ, Smith JN. The need for non- or minimally-invasive biomonitoring strategies and the development of pharmacokinetic/pharmacodynamic models for quantification. CURRENT OPINION IN TOXICOLOGY 2017; 4:28-34. [PMID: 35978611 PMCID: PMC9380408 DOI: 10.1016/j.cotox.2017.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Advancements in Exposure Science involving the development and deployment of biomarkers of exposure and biological response are anticipated to significantly (and positively) influence health outcomes associated with occupational, environmental and clinical exposure to chemicals/drugs. To achieve this vision, innovative strategies are needed to develop multiplex sensor platforms capable of quantifying individual and mixed exposures (i.e. systemic dose) by measuring biomarkers of dose and biological response in readily obtainable (non-invasive) biofluids. Secondly, the use of saliva (alternative to blood) for biomonitoring coupled with the ability to rapidly analyze multiple samples in real-time offers an innovative opportunity to revolutionize biomonitoring assessments. In this regard, the timing and number of samples taken for biomonitoring will not be limited as is currently the case. In addition, real-time analysis will facilitate identification of work practices or conditions that are contributing to increased exposures and will make possible a more rapid and successful intervention strategy. The initial development and application of computational models for evaluation of saliva/blood analyte concentration at anticipated exposure levels represents an important opportunity to establish the limits of quantification and robustness of multiplex sensor systems by exploiting a unique computational modeling framework. The use of these pharmacokinetic models will also enable prediction of an exposure dose based on the saliva/blood measurement. This novel strategy will result in a more accurate prediction of exposures and, once validated, can be employed to assess dosimetry to a broad range of chemicals in support of biomonitoring and epidemiology studies.
Collapse
Affiliation(s)
| | - Thomas J Weber
- Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Jordan N Smith
- Pacific Northwest National Laboratory, Richland, WA 99354, USA
| |
Collapse
|
5
|
Poet TS, Timchalk C, Bartels MJ, Smith JN, McDougal R, Juberg DR, Price PS. Use of a probabilistic PBPK/PD model to calculate Data Derived Extrapolation Factors for chlorpyrifos. Regul Toxicol Pharmacol 2017; 86:59-73. [PMID: 28238854 DOI: 10.1016/j.yrtph.2017.02.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 01/24/2017] [Accepted: 02/17/2017] [Indexed: 11/16/2022]
Abstract
A physiologically based pharmacokinetic and pharmacodynamic (PBPK/PD) model combined with Monte Carlo analysis of inter-individual variation was used to assess the effects of the insecticide, chlorpyrifos and its active metabolite, chlorpyrifos oxon in humans. The PBPK/PD model has previously been validated and used to describe physiological changes in typical individuals as they grow from birth to adulthood. This model was updated to include physiological and metabolic changes that occur with pregnancy. The model was then used to assess the impact of inter-individual variability in physiology and biochemistry on predictions of internal dose metrics and quantitatively assess the impact of major sources of parameter uncertainty and biological diversity on the pharmacodynamics of red blood cell acetylcholinesterase inhibition. These metrics were determined in potentially sensitive populations of infants, adult women, pregnant women, and a combined population of adult men and women. The parameters primarily responsible for inter-individual variation in RBC acetylcholinesterase inhibition were related to metabolic clearance of CPF and CPF-oxon. Data Derived Extrapolation Factors that address intra-species physiology and biochemistry to replace uncertainty factors with quantitative differences in metrics were developed in these same populations. The DDEFs were less than 4 for all populations. These data and modeling approach will be useful in ongoing and future human health risk assessments for CPF and could be used for other chemicals with potential human exposure.
Collapse
Affiliation(s)
| | | | | | - Jordan N Smith
- Battelle, Pacific Northwest Division, Richland, WA, 99354, USA
| | - Robin McDougal
- Dug Safety and Metabolism, AstraZeneca, Gatehouse Park, Waltham, Boston, 02451, USA
| | | | | |
Collapse
|
6
|
Terry C, Hays S, McCoy AT, McFadden LG, Aggarwal M, Rasoulpour RJ, Juberg DR. Implementing a framework for integrating toxicokinetics into human health risk assessment for agrochemicals. Regul Toxicol Pharmacol 2016; 75:89-104. [DOI: 10.1016/j.yrtph.2015.10.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 10/01/2015] [Accepted: 10/04/2015] [Indexed: 01/25/2023]
|
7
|
Yoon M, Clewell HJ. Addressing Early Life Sensitivity Using Physiologically Based Pharmacokinetic Modeling and In Vitro to In Vivo Extrapolation. Toxicol Res 2016; 32:15-20. [PMID: 26977255 PMCID: PMC4780231 DOI: 10.5487/tr.2016.32.1.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 12/24/2015] [Accepted: 01/05/2016] [Indexed: 01/10/2023] Open
Abstract
Physiologically based pharmacokinetic (PBPK) modeling can provide an effective way to utilize in vitro and in silico based information in modern risk assessment for children and other potentially sensitive populations. In this review, we describe the process of in vitro to in vivo extrapolation (IVIVE) to develop PBPK models for a chemical in different ages in order to predict the target tissue exposure at the age of concern in humans. We present our on-going studies on pyrethroids as a proof of concept to guide the readers through the IVIVE steps using the metabolism data collected either from age-specific liver donors or expressed enzymes in conjunction with enzyme ontogeny information to provide age-appropriate metabolism parameters in the PBPK model in the rat and human, respectively. The approach we present here is readily applicable to not just to other pyrethroids, but also to other environmental chemicals and drugs. Establishment of an in vitro and in silico-based evaluation strategy in conjunction with relevant exposure information in humans is of great importance in risk assessment for potentially vulnerable populations like early ages where the necessary information for decision making is limited.
Collapse
|
8
|
Brown K, Phillips M, Grulke C, Yoon M, Young B, McDougall R, Leonard J, Lu J, Lefew W, Tan YM. Reconstructing exposures from biomarkers using exposure-pharmacokinetic modeling – A case study with carbaryl. Regul Toxicol Pharmacol 2015; 73:689-98. [DOI: 10.1016/j.yrtph.2015.10.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 10/29/2015] [Accepted: 10/29/2015] [Indexed: 12/14/2022]
|
9
|
Arnold SM, Morriss A, Velovitch J, Juberg D, Burns CJ, Bartels M, Aggarwal M, Poet T, Hays S, Price P. Derivation of human Biomonitoring Guidance Values for chlorpyrifos using a physiologically based pharmacokinetic and pharmacodynamic model of cholinesterase inhibition. Regul Toxicol Pharmacol 2014; 71:235-43. [PMID: 25543108 DOI: 10.1016/j.yrtph.2014.12.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 12/17/2014] [Accepted: 12/18/2014] [Indexed: 12/01/2022]
Abstract
A number of biomonitoring surveys have been performed for chlorpyrifos (CPF) and its metabolite (3,5,6-trichloro-2-pyridinol, TCPy); however, there is no available guidance on how to interpret these data in a health risk assessment context. To address this gap, Biomonitoring Guidance Values (BGVs) are developed using a physiologically based pharmacokinetic and pharmacodynamic (PBPK/PD) model. The PBPK/PD model is used to predict the impact of age and human variability on the relationship between an early marker of cholinesterase (ChE) inhibition in the peripheral and central nervous systems [10% red blood cell (RBC) ChE inhibition] and levels of systemic biomarkers. Since the PBPK/PD model characterizes variation of sensitivity to CPF in humans, interspecies and intraspecies uncertainty factors are not needed. Derived BGVs represent the concentration of blood CPF and urinary TCPy associated with 95% of the population having less than or equal to 10% RBC ChE inhibition. Blood BGV values for CPF in adults and infants are 6100 ng/L and 4200 ng/L, respectively. Urinary TCPy BGVs for adults and infants are 2100 μg/L and 520 μg/L, respectively. The reported biomonitoring data are more than 150-fold lower than the BGVs suggesting that current US population exposures to CPF are well below levels associated with any adverse health effect.
Collapse
Affiliation(s)
| | | | | | | | - Carol J Burns
- The Dow Chemical Company, Midland, MI, United States
| | | | - Manoj Aggarwal
- Dow AgroSciences Ltd., Milton Park, Abingdon, United Kingdom
| | - Torka Poet
- Summit Toxicology, LLP, Richland, WA, United States
| | - Sean Hays
- Summit Toxicology, LLP, Lyons, CO, United States
| | - Paul Price
- The Dow Chemical Company, Midland, MI, United States
| |
Collapse
|
10
|
Pharmacokinetics and effects on serum cholinesterase activities of organophosphorus pesticides acephate and chlorpyrifos in chimeric mice transplanted with human hepatocytes. Regul Toxicol Pharmacol 2014; 70:468-73. [DOI: 10.1016/j.yrtph.2014.08.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 08/06/2014] [Accepted: 08/15/2014] [Indexed: 11/30/2022]
|
11
|
A human life-stage physiologically based pharmacokinetic and pharmacodynamic model for chlorpyrifos: Development and validation. Regul Toxicol Pharmacol 2014; 69:580-97. [DOI: 10.1016/j.yrtph.2013.10.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 10/18/2013] [Accepted: 10/19/2013] [Indexed: 12/25/2022]
|
12
|
Simon TW, Simons SS, Preston RJ, Boobis AR, Cohen SM, Doerrer NG, Fenner-Crisp PA, McMullin TS, McQueen CA, Rowlands JC. The use of mode of action information in risk assessment: Quantitative key events/dose-response framework for modeling the dose-response for key events. Crit Rev Toxicol 2014; 44 Suppl 3:17-43. [DOI: 10.3109/10408444.2014.931925] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
13
|
Poet TS, Timchalk C, Hotchkiss JA, Bartels MJ. Chlorpyrifos PBPK/PD model for multiple routes of exposure. Xenobiotica 2014; 44:868-81. [DOI: 10.3109/00498254.2014.918295] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
14
|
|
15
|
Sharma G, Kodali V, Gaffrey M, Wang W, Minard KR, Karin NJ, Teeguarden JG, Thrall BD. Iron oxide nanoparticle agglomeration influences dose rates and modulates oxidative stress-mediated dose-response profiles in vitro. Nanotoxicology 2013; 8:663-75. [PMID: 23837572 DOI: 10.3109/17435390.2013.822115] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Spontaneous agglomeration of engineered nanoparticles (ENPs) is a common problem in cell culture media which can confound interpretation of in vitro nanotoxicity studies. The authors created stable agglomerates of iron oxide nanoparticles (IONPs) in conventional culture medium, which varied in hydrodynamic size (276 nm-1.5 μm) but were composed of identical primary particles with similar surface potentials and protein coatings. Studies using C10 lung epithelial cells show that the dose rate effects of agglomeration can be substantial, varying by over an order of magnitude difference in cellular dose in some cases. Quantification by magnetic particle detection showed that small agglomerates of carboxylated IONPs induced greater cytotoxicity and redox-regulated gene expression when compared with large agglomerates on an equivalent total cellular IONP mass dose basis, whereas agglomerates of amine-modified IONPs failed to induce cytotoxicity or redox-regulated gene expression despite delivery of similar cellular doses. Dosimetry modelling and experimental measurements reveal that on a delivered surface area basis, large and small agglomerates of carboxylated IONPs have similar inherent potency for the generation of ROS, induction of stress-related genes and eventual cytotoxicity. The results suggest that reactive moieties on the agglomerate surface are more efficient in catalysing cellular ROS production than molecules buried within the agglomerate core. Because of the dynamic, size and density-dependent nature of ENP delivery to cells in vitro, the biological consequences of agglomeration are not discernible from static measures of exposure concentration (μg/ml) alone, highlighting the central importance of integrated physical characterisation and quantitative dosimetry for in vitro studies. The combined experimental and computational approach provides a quantitative framework for evaluating relationships between the biocompatibility of nanoparticles and their physical and chemical characteristics.
Collapse
|
16
|
A framework for fit-for-purpose dose response assessment. Regul Toxicol Pharmacol 2013; 66:234-40. [DOI: 10.1016/j.yrtph.2013.03.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 03/20/2013] [Accepted: 03/22/2013] [Indexed: 01/07/2023]
|
17
|
Dourson M, Becker RA, Haber LT, Pottenger LH, Bredfeldt T, Fenner-Crisp PA. Advancing human health risk assessment: integrating recent advisory committee recommendations. Crit Rev Toxicol 2013; 43:467-92. [PMID: 23844697 PMCID: PMC3725687 DOI: 10.3109/10408444.2013.807223] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Revised: 05/16/2013] [Accepted: 05/17/2013] [Indexed: 11/13/2022]
Abstract
Over the last dozen years, many national and international expert groups have considered specific improvements to risk assessment. Many of their stated recommendations are mutually supportive, but others appear conflicting, at least in an initial assessment. This review identifies areas of consensus and difference and recommends a practical, biology-centric course forward, which includes: (1) incorporating a clear problem formulation at the outset of the assessment with a level of complexity that is appropriate for informing the relevant risk management decision; (2) using toxicokinetics and toxicodynamic information to develop Chemical Specific Adjustment Factors (CSAF); (3) using mode of action (MOA) information and an understanding of the relevant biology as the key, central organizing principle for the risk assessment; (4) integrating MOA information into dose-response assessments using existing guidelines for non-cancer and cancer assessments; (5) using a tiered, iterative approach developed by the World Health Organization/International Programme on Chemical Safety (WHO/IPCS) as a scientifically robust, fit-for-purpose approach for risk assessment of combined exposures (chemical mixtures); and (6) applying all of this knowledge to enable interpretation of human biomonitoring data in a risk context. While scientifically based defaults will remain important and useful when data on CSAF or MOA to refine an assessment are absent or insufficient, assessments should always strive to use these data. The use of available 21st century knowledge of biological processes, clinical findings, chemical interactions, and dose-response at the molecular, cellular, organ and organism levels will minimize the need for extrapolation and reliance on default approaches.
Collapse
Affiliation(s)
- Michael Dourson
- Toxicology Excellence for Risk Assessment, Cincinnati, OH, USA.
| | | | | | | | | | | |
Collapse
|
18
|
Knaak JB, Tan C, Dary CC. Pesticide regulations: exposure-dose modeling from FIFRA to FQPA. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 112:117-62. [PMID: 22974739 DOI: 10.1016/b978-0-12-415813-9.00005-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The federal laws and regulations governing the registration and use of pesticides in the United States under the Federal Insecticide, Fungicide, and Rodenticide Act are published in the Federal Register, while state laws such as California are published in the California Food and Agricultural Code, Divisions 6, 7, and 13. Up until the passage of the Food Quality Protection Act (FQPA of 1996), federal and state regulations pertaining to the registration and use of pesticides were in most cases identical except for the fact that food tolerances were enforced but not set at the state level. The California Department of Pesticide Regulation's Worker Health and Safety Program continues to monitor worker exposure to pesticides and report illnesses among workers associated with pesticide exposure. Under FQPA, the United States Environmental Protection Agency (EPA) has taken a leadership role in the development of probabilistic pesticide exposure models (i.e., DEEM, SHEDS, etc.) using pesticide application, human activity, and exposure databases (i.e., CPPAES, CHAD, CSFII, FCID, NHANES, and NHEXAS). A physiologically based pharmacokinetic/pharmacodynamic (PBPK/PD) modeling framework has been established by EPA to assess cumulative risk of dose and injury to infants and children to organophosphorus, carbamate (NMC), and pyrethroid insecticides from aggregate sources and routes. Probabilistic models are being linked to PBPK/PD models to improve risk assessments.
Collapse
Affiliation(s)
- James B Knaak
- Department of Pharmacology and Toxicology, School of Medicine and Biomedical Sciences, SUNY at Buffalo, Buffalo, New York, USA
| | | | | |
Collapse
|
19
|
Price PS, Schnelle KD, Cleveland CB, Bartels MJ, Hinderliter PM, Timchalk C, Poet TS. Application of a source-to-outcome model for the assessment of health impacts from dietary exposures to insecticide residues. Regul Toxicol Pharmacol 2011; 61:23-31. [DOI: 10.1016/j.yrtph.2011.05.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2011] [Revised: 05/20/2011] [Accepted: 05/21/2011] [Indexed: 10/18/2022]
|