1
|
Yoshida K, Doi Y, Iwazaki N, Yasuhara H, Ikenaga Y, Shimizu H, Nakada T, Watanabe T, Tateno C, Sanoh S, Kotake Y. Prediction of human pharmacokinetics for low-clearance compounds using pharmacokinetic data from chimeric mice with humanized livers. Clin Transl Sci 2021; 15:79-91. [PMID: 34080287 PMCID: PMC8742647 DOI: 10.1111/cts.13070] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/02/2021] [Accepted: 04/28/2021] [Indexed: 11/25/2022] Open
Abstract
Development of low-clearance (CL) compounds that can be slowly metabolized is a major goal in the pharmaceutical industry. However, the pursuit of low intrinsic CL (CLint ) often leads to significant challenges in evaluating the pharmacokinetics of such compounds. Although in vitro-in vivo extrapolation is widely used to predict human CL, its application has been limited for low-CLint compounds because of the low turnover of parent compounds in metabolic stability assays. To address this issue, we focused on chimeric mice with humanized livers (PXB-mice), which have been increasingly reported to accurately predict human CL in recent years. The predictive accuracy for nine low-CLint compounds with no significant turnover in a human hepatocyte assay was investigated using PXB-mouse methods such as single-species allometric scaling (PXB-SSS) approach and a novel physiologically based scaling (PXB-PBS) approach that assumes that the CLint per hepatocyte is equal between humans and PXB-mice. The percentages of compounds with predicted CL within 2- and 3-fold ranges of the observed CL for low-CLint compounds were 89% and 100%, respectively, for both PXB-SSS and PXB-PBS approaches. Moreover, the predicted CL was mostly consistent among the methods. Conversely, percentages of compounds with predicted CL within 2- and 3-fold ranges of the observed CL for low-CLint compounds were 50% and 63%, respectively for multispecies allometric scaling (MA). Overall, these PXB-mouse methods were much more accurate than conventional MA approaches, suggesting that PXB-mice are useful tool for predicting the human CL of low-CLint compounds that are slowly metabolized.
Collapse
Affiliation(s)
- Kosuke Yoshida
- DMPK Research Laboratories, Sohyaku. Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, Kanagawa, Japan.,Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yuki Doi
- DMPK Research Laboratories, Sohyaku. Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, Kanagawa, Japan
| | - Norihiko Iwazaki
- DMPK Research Laboratories, Sohyaku. Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, Kanagawa, Japan
| | - Hidenori Yasuhara
- DMPK Research Laboratories, Sohyaku. Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, Kanagawa, Japan
| | - Yuka Ikenaga
- DMPK Research Laboratories, Sohyaku. Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, Kanagawa, Japan
| | - Hidetoshi Shimizu
- DMPK Research Laboratories, Sohyaku. Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, Kanagawa, Japan
| | - Tomohisa Nakada
- DMPK Research Laboratories, Sohyaku. Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, Kanagawa, Japan
| | - Tomoko Watanabe
- DMPK Research Laboratories, Sohyaku. Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, Kanagawa, Japan
| | - Chise Tateno
- Research and Development Department, PhoenixBio Co., Ltd, Hiroshima, Japan
| | - Seigo Sanoh
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yaichiro Kotake
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
2
|
Quinlan RBA, Brennan PE. Chemogenomics for drug discovery: clinical molecules from open access chemical probes. RSC Chem Biol 2021; 2:759-795. [PMID: 34458810 PMCID: PMC8341094 DOI: 10.1039/d1cb00016k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/25/2021] [Indexed: 12/12/2022] Open
Abstract
In recent years chemical probes have proved valuable tools for the validation of disease-modifying targets, facilitating investigation of target function, safety, and translation. Whilst probes and drugs often differ in their properties, there is a belief that chemical probes are useful for translational studies and can accelerate the drug discovery process by providing a starting point for small molecule drugs. This review seeks to describe clinical candidates that have been inspired by, or derived from, chemical probes, and the process behind their development. By focusing primarily on examples of probes developed by the Structural Genomics Consortium, we examine a variety of epigenetic modulators along with other classes of probe.
Collapse
Affiliation(s)
- Robert B A Quinlan
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford Old Road Campus Oxford OX3 7FZ UK
| | - Paul E Brennan
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford Old Road Campus Oxford OX3 7FZ UK
- Alzheimer's Research (UK) Oxford Drug Discovery Institute, Nuffield Department of Medicine, University of Oxford Oxford OX3 7FZ UK
| |
Collapse
|
3
|
Metabolism and pharmacokinetics characterization of metarrestin in multiple species. Cancer Chemother Pharmacol 2020; 85:805-816. [PMID: 32185484 DOI: 10.1007/s00280-020-04042-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 02/17/2020] [Indexed: 01/17/2023]
Abstract
PURPOSE Metarrestin is a first-in-class pyrrolo-pyrimidine-derived small molecule targeting a marker of genome organization associated with metastasis and is currently in preclinical development as an anti-cancer agent. Here, we report the in vitro ADME characteristics and in vivo pharmacokinetic behavior of metarrestin. METHODS Solubility, permeability, and efflux ratio as well as in vitro metabolism of metarrestin in hepatocytes, liver microsomes and S9 fractions, recombinant cytochrome P450 (CYP) enzymes, and potential for CYP inhibition were evaluated. Single dose pharmacokinetic profiles after intravenous and oral administration in mice, rat, dog, monkey, and mini-pig were obtained. Simple allometric scaling was applied to predict human pharmacokinetics. RESULTS Metarrestin had an aqueous solubility of 150 µM at pH 7.4, high permeability in PAMPA and moderate efflux ratio in Caco-2 assays. The compound was metabolically stable in liver microsomes, S9 fractions, and hepatocytes from six species, including human. Metarrestin is a CYP3A4 substrate and, in mini-pigs, is also directly glucuronidated. Metarrestin did not show cytochrome P450 inhibitory activity. Plasma concentration-time profiles showed low to moderate clearance, ranging from 0.6 mL/min/kg in monkeys to 48 mL/min/kg in mice and moderate to high volume of distribution, ranging from 1.5 L/kg in monkeys to 17 L/kg in mice. Metarrestin has greater than 80% oral bioavailability in all species tested. The excretion of unchanged parent drug in urine was < 5% in dogs and < 1% in monkeys over collection periods of ≥ 144 h; in bile-duct cannulated rats, the excretion of unchanged drug was < 1% in urine and < 2% in bile over a collection period of 48 h. CONCLUSIONS Metarrestin is a low clearance compound which has good bioavailability and large biodistribution after oral administration. Biotransformation appears to be the major elimination process for the parent drug. In vitro data suggest a low drug-drug interaction potential on CYP-mediated metabolism. Overall favorable ADME and PK properties support metarrestin's progression to clinical investigation.
Collapse
|
4
|
Poloyac SM, Bertz RJ, McDermott LA, Marathe P. Pharmacological Optimization for Successful Traumatic Brain Injury Drug Development. J Neurotrauma 2019; 37:2435-2444. [PMID: 30816062 DOI: 10.1089/neu.2018.6295] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The purpose of this review is to highlight the pharmacological barrier to drug development for traumatic brain injury (TBI) and to discuss best practice strategies to overcome such barriers. Specifically, this article will review the pharmacological considerations of moving from the disease target "hit" to the "lead" compound with drug-like and central nervous system (CNS) penetrant properties. In vitro assessment of drug-like properties will be detailed, followed by pre-clinical studies to ensure adequate pharmacokinetic and pharmacodynamic characteristics of response. The importance of biomarker development and utilization in both pre-clinical and clinical studies will be detailed, along with the importance of identifying diagnostic, pharmacodynamic/response, and prognostic biomarkers of injury type or severity, drug target engagement, and disease progression. This review will detail the important considerations in determining in vivo pre-clinical dose selection, as well as cross-species and human equivalent dose selection. Specific use of allometric scaling, pharmacokinetic and pharmacodynamic criteria, as well as incorporation of biomarker assessments in human dose selection for clinical trial design will also be discussed. The overarching goal of this review is to detail the pharmacological considerations in the drug development process as a method to improve both pre-clinical and clinical study design as we evaluate novel therapies to improve outcomes in patients with TBI.
Collapse
Affiliation(s)
- Samuel M Poloyac
- University of Pittsburgh School of Pharmacy, Pittsburgh, Pennsylvania, USA
| | - Richard J Bertz
- University of Pittsburgh School of Pharmacy, Pittsburgh, Pennsylvania, USA
| | - Lee A McDermott
- University of Pittsburgh School of Pharmacy, Pittsburgh, Pennsylvania, USA
| | - Punit Marathe
- Department of Metabolism and Pharmacokinetics, Bristol-Myers Squibb, Princeton, New Jersey, USA
| |
Collapse
|
5
|
Preclinical Pharmacokinetics and Pharmacodynamics of Pinometostat (EPZ-5676), a First-in-Class, Small Molecule S-Adenosyl Methionine Competitive Inhibitor of DOT1L. Eur J Drug Metab Pharmacokinet 2017; 42:891-901. [DOI: 10.1007/s13318-017-0404-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
6
|
Smith SA, Gagnon S, Waters NJ. Mechanistic investigations into the species differences in pinometostat clearance: impact of binding to alpha-1-acid glycoprotein and permeability-limited hepatic uptake. Xenobiotica 2016; 47:185-193. [PMID: 27160567 DOI: 10.3109/00498254.2016.1173265] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
1. The plasma clearance of the first-in-class DOT1L inhibitor, EPZ-5676 (pinometostat), was shown to be markedly lower in human compared to the preclinical species, mouse, rat and dog. 2. This led to vertical allometry where various interspecies scaling methods were applied to the data, with fold-errors between 4 and 13. We had previously reported the elimination and metabolic pathways of EPZ-5676 were similar across species. Therefore, the aim of this work was to explore the mechanistic basis for the species difference in clearance for EPZ-5676, focusing on other aspects of disposition. 3. The protein binding of EPZ-5676 in human plasma demonstrated a non-linear relationship suggesting saturable binding at physiologically relevant concentrations. Saturation of protein binding was not observed in plasma from preclinical species. Kinetic determinations using purified serum albumin and alpha-1-acid glycoprotein (AAG) confirmed that EPZ-5676 is a high affinity ligand for AAG with a dissociation constant (Kd) of 0.24 μM. 4. Permeability limited uptake was also considered since hepatocyte CLint was much lower in human relative to preclinical species. Passive unbound CLint for EPZ-5676 was estimated using a correlation analysis of logD and data previously reported on seven drugs in sandwich cultured human hepatocytes. 5. Incorporation of AAG binding and permeability limited hepatic uptake into the well-stirred liver model gave rise to a predicted clearance for EPZ-5676 within 2-fold of the observed value of 1.4 mL min-1 kg-1. This analysis suggests that the marked species difference in EPZ-5676 clearance is driven by high affinity binding to human AAG as well as species-specific hepatic uptake invoking the role of transporters.
Collapse
Affiliation(s)
| | - Sandra Gagnon
- b Charles River Laboratories , Montreal , QC , Canada
| | | |
Collapse
|
7
|
Lombardo F, Berellini G, Labonte LR, Liang G, Kim S. Systematic Evaluation of Wajima Superposition (Steady-State Concentration to Mean Residence Time) in the Estimation of Human Intravenous Pharmacokinetic Profile. J Pharm Sci 2016; 105:1277-87. [PMID: 26886320 DOI: 10.1016/s0022-3549(15)00174-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 11/21/2015] [Accepted: 11/23/2015] [Indexed: 10/22/2022]
Abstract
We present a systematic evaluation of the Wajima superpositioning method to estimate the human intravenous (i.v.) pharmacokinetic (PK) profile based on a set of 54 marketed drugs with diverse structure and range of physicochemical properties. We illustrate the use of average of "best methods" for the prediction of clearance (CL) and volume of distribution at steady state (VDss) as described in our earlier work (Lombardo F, Waters NJ, Argikar UA, et al. J Clin Pharmacol. 2013;53(2):178-191; Lombardo F, Waters NJ, Argikar UA, et al. J Clin Pharmacol. 2013;53(2):167-177). These methods provided much more accurate prediction of human PK parameters, yielding 88% and 70% of the prediction within 2-fold error for VDss and CL, respectively. The prediction of human i.v. profile using Wajima superpositioning of rat, dog, and monkey time-concentration profiles was tested against the observed human i.v. PK using fold error statistics. The results showed that 63% of the compounds yielded a geometric mean of fold error below 2-fold, and an additional 19% yielded a geometric mean of fold error between 2- and 3-fold, leaving only 18% of the compounds with a relatively poor prediction. Our results showed that good superposition was observed in any case, demonstrating the predictive value of the Wajima approach, and that the cause of poor prediction of human i.v. profile was mainly due to the poorly predicted CL value, while VDss prediction had a minor impact on the accuracy of human i.v. profile prediction.
Collapse
Affiliation(s)
- Franco Lombardo
- Department of Metabolism and Pharmacokinetics, Novartis Institutes for Biomedical Research, Cambridge, Massachusetts 02139.
| | - Giuliano Berellini
- Department of Metabolism and Pharmacokinetics, Novartis Institutes for Biomedical Research, Cambridge, Massachusetts 02139
| | - Laura R Labonte
- Department of Metabolism and Pharmacokinetics, Novartis Institutes for Biomedical Research, Cambridge, Massachusetts 02139
| | - Guiqing Liang
- Department of Metabolism and Pharmacokinetics, Novartis Institutes for Biomedical Research, Cambridge, Massachusetts 02139
| | - Sean Kim
- Department of Metabolism and Pharmacokinetics, Novartis Institutes for Biomedical Research, Cambridge, Massachusetts 02139
| |
Collapse
|
8
|
Huang Q, Gehring R, Tell LA, Li M, Riviere JE. Interspecies allometric meta-analysis of the comparative pharmacokinetics of 85 drugs across veterinary and laboratory animal species. J Vet Pharmacol Ther 2014; 38:214-26. [DOI: 10.1111/jvp.12174] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 09/15/2014] [Indexed: 11/28/2022]
Affiliation(s)
- Q. Huang
- Institute of Computational Comparative Medicine; Kansas State University; Manhattan KS USA
| | - R. Gehring
- Institute of Computational Comparative Medicine; Kansas State University; Manhattan KS USA
| | - L. A. Tell
- Department of Medicine and Epidemiology; School of Veterinary Medicine; University of California-Davis; Davis CA USA
| | - M. Li
- Institute of Computational Comparative Medicine; Kansas State University; Manhattan KS USA
| | - J. E. Riviere
- Institute of Computational Comparative Medicine; Kansas State University; Manhattan KS USA
| |
Collapse
|
9
|
Huang Q, Riviere JE. The application of allometric scaling principles to predict pharmacokinetic parameters across species. Expert Opin Drug Metab Toxicol 2014; 10:1241-53. [PMID: 24984569 DOI: 10.1517/17425255.2014.934671] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Interspecies allometric scaling provides a simple and fast option to interpolate or extrapolate drug dose or pharmacokinetic parameters to a species of interest. Over the years, new scaling methods have been developed in order to improve the performance of these predictions. It is critical to choose appropriate allometric scaling approach(es) to analyze the available pharmacokinetic data. AREAS COVERED This review provides updated information on the latest allometric scaling methods developed for the most frequently interpolated or extrapolated pharmacokinetic parameters. The different degrees of success and advantages/disadvantages of different methods are compared and contrasted. The pitfalls that affect the accuracy of prediction and the solutions to avoid the risk of prediction errors are discussed. The application of allometric scaling in veterinary medicine is presented. EXPERT OPINION Although interspecies allometric scaling needs further refinements and has limitations, it is still a potential tool and rational option for the estimate of pharmacokinetic parameters in species for which there are no data available or to better interpret preclinical efficacy and safety trials. Allometric scaling can offer insight into possible mechanisms of species-dependent drug disposition.
Collapse
Affiliation(s)
- Qingbiao Huang
- Institute of Computational Comparative Medicine, Kansas State University , Manhattan, KS 66506 , USA
| | | |
Collapse
|