1
|
Chen G, Ma S, Gong Q, Xie X, Wu P, Guo W, Kang L, Li M, Zhang H, Zhou E, Zhang Y, Rong J, Duan H, Jin L, Xu S, Zhang N, Sun S, Li R, Yao L, Xiang D, Bu L, Liu Z. Assessment of brain imaging and cognitive function in a modified rhesus monkey model of depression. Behav Brain Res 2023; 445:114382. [PMID: 36871905 DOI: 10.1016/j.bbr.2023.114382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/27/2023] [Accepted: 03/02/2023] [Indexed: 03/07/2023]
Abstract
Depression incurs a huge personal and societal burden, impairing cognitive and social functioning and affecting millions of people worldwide. A better understanding of the biological basis of depression could facilitate the development of new and improved therapies. Rodent models have limitations and do not fully recapitulate human disease, hampering clinical translation. Primate models of depression help to bridge this translational gap and facilitate research into the pathophysiology of depression. Here we optimized a protocol for administering unpredictable chronic mild stress (UCMS) to non-human primates and evaluated the influence of UCMS on cognition using the classical Wisconsin General Test Apparatus (WGTA) method. We used resting-state functional MRI to explore changes in amplitude of low-frequency fluctuations and regional homogeneity in rhesus monkeys. Our work highlights that the UCMS paradigm effectively induces behavioral and neurophysiological (functional MRI) changes in monkeys but without significantly impacting cognition. The UCMS protocol requires further optimization in non-human primates to authentically simulate changes in cognition associated with depression.
Collapse
Affiliation(s)
- Guopeng Chen
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Simeng Ma
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Qian Gong
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xinhui Xie
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Peng Wu
- Hubei Topgene Xinsheng Technology Co., Ltd, Wuhan 430000, China
| | - Wenbi Guo
- Department of Rehabilitation Medicine, Central Theater General Hospital, Wuhan 430070, China
| | - Lijun Kang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Meng Li
- PET-CT/MRI Center and Molecular Imaging Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Honghan Zhang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Enqi Zhou
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yuhui Zhang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Jingtong Rong
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Hao Duan
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Liuyin Jin
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Shuxian Xu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Nan Zhang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Siqi Sun
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Ruiling Li
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Lihua Yao
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Dan Xiang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Lihong Bu
- PET-CT/MRI Center and Molecular Imaging Center, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | - Zhongchun Liu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China; Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, China.
| |
Collapse
|
2
|
Huang Y, Wang H, Yang C, Luo Y, Ding Y, Jin H, Wen S. Evaluation of changes in the cognitive function of adult cynomolgus monkeys under stress induced by audio-visual stimulation by applying modified finger maze test. Front Neurosci 2022; 16:959174. [PMID: 36389243 PMCID: PMC9660267 DOI: 10.3389/fnins.2022.959174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/26/2022] [Indexed: 11/27/2022] Open
Abstract
Stress in life is ubiquitous and unavoidable. Prolonged exposure to severe stress can lead to physical intolerance and impair cognitive function. Non-human primates are considered to be the best animal model for studying cognitive function, especially memory and attention. The finger maze test, with the advantages of short training time and lower cost, is recommended to evaluate learning and memory in non-human primates. In this study, we modified the finger maze test method to evaluate the cognitive function of single-housed cynomolgus monkeys. The flexibility and attention of cynomolgus monkeys were assessed by performing the complex task test and the stranger intrusion interference test, respectively, which increased the difficulty of obtaining rewards, and the ability of long-term memory was also evaluated by the memory test. Furthermore, the changes in cognitive function of the cynomolgus monkeys were tested by using the finger maze test after audio-visual stimulation, and the changes in the cortisol levels during stimulation were also analyzed. We found that, after completing the learning test, there was no significant decrease in their success rate when monkeys processed multitasks at the same time. In the stranger intrusion interference test, all subjects were distracted, but the accuracy did not decrease. The monkeys completed the memory tests in the 1st and 2nd months after the learning tests, with a high success rate. However, the success rate decreased significantly at the end of the 4th month. During audio-visual stimulation, the plasma cortisol level significantly increased in the first 2 months and was maintained at a high level thereafter. One month after audio-visual stimulation, the accuracy of the memory test was significantly reduced, and the total time of distraction was significantly prolonged. In conclusion, chronic audio-visual stimulation can increase blood cortisol levels and impair cognitive function. The modified finger maze test can evaluate many aspects of cognitive function and assess the changes in the cognitive function of adult cynomolgus monkeys under stress.
Collapse
Affiliation(s)
- Ying Huang
- Department of Psychology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Hong Wang
- Department of Psychology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Chen Yang
- Department of Psychology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Yuchong Luo
- Department of Psychology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Yongyan Ding
- Hong Kong and Macao Central Nervous Regeneration Research Institute, Ji'nan University, Guangzhou, China
| | - Hongjun Jin
- Guangdong Provincial Key Laboratory of Biomedical Imaging, Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Shenglin Wen
- Department of Psychology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| |
Collapse
|
3
|
Neudecker V, Perez-Zoghbi JF, Coleman K, Neuringer M, Robertson N, Bemis A, Glickman B, Schenning KJ, Fair DA, Martin LD, Dissen GA, Brambrink AM. Infant isoflurane exposure affects social behaviours, but does not impair specific cognitive domains in juvenile non-human primates. Br J Anaesth 2020; 126:486-499. [PMID: 33198945 DOI: 10.1016/j.bja.2020.10.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 10/05/2020] [Accepted: 10/15/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Clinical studies show that children exposed to anaesthetics for short times at young age perform normally on intelligence tests, but display altered social behaviours. In non-human primates (NHPs), infant anaesthesia exposure for several hours causes neurobehavioural impairments, including delayed motor reflex development and increased anxiety-related behaviours assessed by provoked response testing. However, the effects of anaesthesia on spontaneous social behaviours in juvenile NHPs have not been investigated. We hypothesised that multiple, but not single, 5 h isoflurane exposures in infant NHPs are associated with impairments in specific cognitive domains and altered social behaviours at juvenile age. METHODS Eight Rhesus macaques per group were anaesthetised for 5 h using isoflurane one (1×) or three (3×) times between postnatal days 6 and 12 or were exposed to room air (control). Cognitive testing, behavioural assessments in the home environment, and provoked response testing were performed during the first 2 yr of life. RESULTS The cognitive functions tested did not differ amongst groups. However, compared to controls, NHPs in the 3× group showed less close social behaviour (P=0.016), and NHPs in the 1× group displayed increased anxiety-related behaviours (P=0.038) and were more inhibited towards novel objects (P<0.001). CONCLUSIONS 5 h exposures of NHPs to isoflurane during infancy are associated with decreased close social behaviour after multiple exposures and more anxiety-related behaviours and increased behavioural inhibition after single exposure, but they do not affect the cognitive domains tested. Our findings are consistent with behavioural alterations in social settings reported in clinical studies, which may guide future research.
Collapse
Affiliation(s)
- Viola Neudecker
- Department of Anesthesiology, Columbia University Medical Center, New York, NY, USA
| | - Jose F Perez-Zoghbi
- Department of Anesthesiology, Columbia University Medical Center, New York, NY, USA
| | - Kristine Coleman
- Division of Neuroscience, USA; Division of Comparative Medicine, Oregon National Primate Research Center, Beaverton, OR, USA
| | | | - Nicola Robertson
- Division of Comparative Medicine, Oregon National Primate Research Center, Beaverton, OR, USA
| | | | | | | | - Damien A Fair
- Department of Behavioural Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - Lauren D Martin
- Division of Comparative Medicine, Oregon National Primate Research Center, Beaverton, OR, USA
| | | | - Ansgar M Brambrink
- Department of Anesthesiology, Columbia University Medical Center, New York, NY, USA.
| |
Collapse
|
4
|
Luetjens CM, Fuchs A, Baker A, Weinbauer GF. Group size experiences with enhanced pre- and postnatal development studies in the long-tailed macaque ( Macaca fascicularis). Primate Biol 2020; 7:1-4. [PMID: 32232119 PMCID: PMC7096737 DOI: 10.5194/pb-7-1-2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 01/24/2020] [Indexed: 11/13/2022] Open
Abstract
Enhanced pre- and postnatal development (ePPND) studies have become the default developmental toxicity test for biopharmaceuticals if nonhuman primates represent the relevant species. Spontaneous pregnancy losses and infant deaths can be significant in macaques such as long-tailed macaques. The International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use (ICH) guideline S6(R1) states that pregnancy outcome can be judged also by the normogram-based variability of reference data according to a publication by Jarvis et al. (2010) defining a study as valid with six to eight live infants in the control group on postnatal day 7 (PND7). Since the release of ICH S6(R1) (2011), ePPND studies for biologics have replaced the former separate embryo-fetal and PPND study types. This work provides a retrospective analysis of pregnancy outcomes from 21 ePPND studies and group sizes of 14-24 animals per group. All studies reached the goal of at least six to eight infants on PND7, with overall losses ranging between 5 % and 45 %. Consistently, a group size of 14-24 maternal animals yielded more than six to eight infants on PND7. Therefore, it is suggested to reduce ePPND study group sizes from 20 to 14, yielding an animal number reduction of approx. 30 %.
Collapse
Affiliation(s)
- C Marc Luetjens
- Covance Preclinical Services GmbH, Kesselfeld 29, 48163 Münster, Germany
| | - Antje Fuchs
- Covance Preclinical Services GmbH, Kesselfeld 29, 48163 Münster, Germany
| | - Ann Baker
- Covance Laboratories, Madison, WI, USA
| | | |
Collapse
|
5
|
Katagiri R, Ishihara-Hattori K, Frings W, Amano J, Fuchs A, Chiba S. Effects of SA237, a humanized anti-interleukin-6 receptor monoclonal antibody, on pre- and postnatal development in cynomolgus monkey. Birth Defects Res 2017; 109:843-856. [DOI: 10.1002/bdr2.1036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 03/24/2017] [Accepted: 03/24/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Ryuichi Katagiri
- Research Division; Chugai Pharmaceutical Co., Ltd.; Shizuoka Japan
| | | | - Werner Frings
- Research Division; Chugai Pharmaceutical Co., Ltd.; Shizuoka Japan
| | - Jun Amano
- Research Division; Chugai Pharmaceutical Co., Ltd.; Shizuoka Japan
| | - Antje Fuchs
- Covance Preclinical Services GmbH; Muenster Germany
| | - Shuichi Chiba
- Research Division; Chugai Pharmaceutical Co., Ltd.; Shizuoka Japan
| |
Collapse
|
6
|
Kim NN, Parker RM, Weinbauer GF, Remick AK, Steinbach T. Points to Consider in Designing and Conducting Juvenile Toxicology Studies. Int J Toxicol 2017; 36:325-339. [DOI: 10.1177/1091581817699975] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In support of a clinical trial in the pediatric population, available nonclinical and clinical data provide input on the study design and safety monitoring considerations. When the existing data are lacking to support the safety of the planned pediatric clinical trial, a juvenile animal toxicity study is likely required. Usually a single relevant species, preferably a rodent, is chosen as the species of choice, while a nonrodent species can be appropriate when scientifically justified. Juvenile toxicology studies, in general, are complicated both conceptually and logistically. Development in young animals is a continuous process with different organs maturing at different rates and time. Structural and functional maturational differences have been shown to affect drug safety. Key points to consider in conducting a juvenile toxicology study include a comparative development of the organ systems, differences in the pharmacokinetics/absorption, distribution, metabolism, excretion (PK/ADME) profiles of the drug between young animal and child, and logistical requirement in the juvenile study design. The purpose of this publication is to note pertinent points to consider when designing and conducting juvenile toxicology studies and to aid in future modifications and enhancements of these studies to enable a superior predictability of safety of medicines in the pediatric population.
Collapse
|
7
|
Henck JW, Elayan I, Vorhees C, Fisher JE, Morford LL. Current Topics in Postnatal Behavioral Testing. Int J Toxicol 2016; 35:499-520. [DOI: 10.1177/1091581816657082] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The study of developmental neurotoxicity (DNT) continues to be an important component of safety evaluation of candidate therapeutic agents and of industrial and environmental chemicals. Developmental neurotoxicity is considered to be an adverse change in the central and/or peripheral nervous system during development of an organism and has been primarily evaluated by studying functional outcomes, such as changes in behavior, neuropathology, neurochemistry, and/or neurophysiology. Neurobehavioral evaluations are a component of a wide range of toxicology studies in laboratory animal models, whereas neurochemistry and neurophysiology are less commonly employed. Although the primary focus of this article is on neurobehavioral evaluation in pre- and postnatal development and juvenile toxicology studies used in pharmaceutical development, concepts may also apply to adult nonclinical safety studies and Environmental Protection Agency/chemical assessments. This article summarizes the proceedings of a symposium held during the 2015 American College of Toxicology annual meeting and includes a discussion of the current status of DNT testing as well as potential issues and recommendations. Topics include the regulatory context for DNT testing; study design and interpretation; behavioral test selection, including a comparison of core learning and memory systems; age of testing; repeated testing of the same animals; use of alternative animal models; impact of findings; and extrapolation of animal results to humans. Integration of the regulatory experience and scientific concepts presented during this symposium, as well as from subsequent discussion and input, provides a synopsis of the current state of DNT testing in safety assessment, as well as a potential roadmap for future advancement.
Collapse
Affiliation(s)
| | - Ikram Elayan
- US Food and Drug Administration, Silver Spring, MD, USA
| | - Charles Vorhees
- Cincinnati Children’s Research Foundation, Cincinnati, OH, USA
| | | | | |
Collapse
|