1
|
Pankova N, Baek DSH, Zhao X, Wang H, Reyad MM, Liang H, Joshi R, Boyd SR. Evolving Patterns of Hyperfluorescent Fundus Autofluorescence Accompany Retinal Atrophy in the Rat and Mimic Atrophic Age-Related Macular Degeneration. Transl Vis Sci Technol 2022; 11:3. [PMID: 35254423 PMCID: PMC8914569 DOI: 10.1167/tvst.11.3.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Complex two-dimensional (2D) patterns of hyperfluorescent short-wave fundus autofluorescence (FAF) at the border of geographic atrophy (GA) can predict its expansion in patients with late non-exudative “dry” AMD. However, preclinical models do not phenocopy this important feature of disease. We sought to describe the spatiotemporal changes in hyperfluorescent FAF patterns that occur following acute oxidative stress, potentially in association with GA expansion. Methods Sprague Dawley rats (n = 54) received systemic sodium iodate (25–45 mg/kg, n = 90 eyes) or saline (n = 18 eyes) and underwent serial full fundus imaging by confocal scanning laser ophthalmoscopy, including blue FAF and delayed near-infrared analysis. Composite images of the fundus were assembled, and the 2D patterns were described qualitatively and quantitatively. A subset of eyes underwent tissue analysis, and four underwent optical coherence tomography (OCT) imaging. Results Reproducibly changing, complex patterns of hyperfluorescent FAF emerge at the borders of toxin-induced damage; however, in the absence of GA expansion, they percolate inward within the region of retinal pigment epithelium loss, evolving, maturing, and senescing in situ over time. Unexpectedly, the late FAF patterns most closely resemble the diffuse tricking form of clinical disease. A five-stage classification system is presented. Conclusions Longitudinal, full-fundus imaging of outer retinal atrophy in the rat eye identifies evolving, complex patterns of hyperfluorescent FAF that phenocopy aspects of disease. Translational Relevance This work provides a novel tool to assess hyperfluorescent FAF in association with progressive retinal atrophy, a therapeutic target in late AMD.
Collapse
Affiliation(s)
- Natalie Pankova
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON, Canada.,Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada.,Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - David Sung Hyeon Baek
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON, Canada.,Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada.,Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Xu Zhao
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada
| | - Hai Wang
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada
| | - Matthew-Mina Reyad
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada
| | - Huiyuan Liang
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada
| | - Rahul Joshi
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada
| | - Shelley Romayne Boyd
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON, Canada.,Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada.,Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
2
|
Kokona D, Jovanovic J, Ebneter A, Zinkernagel MS. In Vivo Imaging of Cx3cr1gfp/gfp Reporter Mice with Spectral-domain Optical Coherence Tomography and Scanning Laser Ophthalmoscopy. J Vis Exp 2017. [PMID: 29155795 DOI: 10.3791/55984] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Spectral domain optical coherence tomography (SD-OCT) and scanning laser ophthalmoscopy (SLO) are extensively used in experimental ophthalmology. In the present protocol, mice expressing green fluorescent protein (gfp) under the promoter of Cx3cr1 (BALB/c-Cx3cr1gfp/gfp) were used to image microglia cells in vivo in the retina. Microglia are resident macrophages of the retina and have been implicated in several retinal diseases1,2,3,4,5,6. This protocol provides a detailed approach for generation of retinal B-scans, with SD-OCT, and imaging of microglia cell distribution in Cx3cr1gfp/gfp mice with SLO in vivo, using an ophthalmic imaging platform system. The protocol can be used in several reporter mouse lines. However, there are some limitations to the protocol presented here. First, both SLO and SD-OCT, when used in the high-resolution mode, collect data with high axial resolution but the lateral resolution is lower (3.5 µm and 6 µm, respectively). Moreover, the focus and saturation level in SLO is highly dependent on parameter selection and correct alignment of the eye. Additionally, using devices designed for human patients in mice is challenging due to the higher total optical power of the mouse eye compared to the human eye; this can lead to lateral magnification inaccuracies7, which are also dependent on the magnification by the mouse lens among others. However, despite that the axial scan position is dependent upon lateral magnification, the axial SD-OCT measurements are accurate8.
Collapse
Affiliation(s)
- Despina Kokona
- Department of Ophthalmology and Department of Clinical Research, Bern University Hospital and University of Bern;
| | - Joël Jovanovic
- Department of Ophthalmology and Department of Clinical Research, Bern University Hospital and University of Bern
| | - Andreas Ebneter
- Department of Ophthalmology and Department of Clinical Research, Bern University Hospital and University of Bern
| | - Martin S Zinkernagel
- Department of Ophthalmology and Department of Clinical Research, Bern University Hospital and University of Bern
| |
Collapse
|
3
|
Bell BA, Yuan A, Dicicco RM, Fogerty J, Lessieur EM, Perkins BD. The adult zebrafish retina: In vivo optical sectioning with Confocal Scanning Laser Ophthalmoscopy and Spectral-Domain Optical Coherence Tomography. Exp Eye Res 2016; 153:65-78. [PMID: 27720860 DOI: 10.1016/j.exer.2016.10.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 09/02/2016] [Accepted: 10/04/2016] [Indexed: 11/27/2022]
Abstract
Non-invasive imaging is an invaluable diagnostic tool in ophthalmology. Two imaging devices, the scanning laser ophthalmoscope (SLO) and spectral domain optical coherence tomography (SDOCT), emerged from the clinical realm to provide research scientists with a real-time view of ocular morphology in living animals. We utilized these two independent imaging modalities in a complementary manner to perform in vivo optical sectioning of the adult zebrafish retina. Due to the very high optical power of the zebrafish lens, the confocal depth of field is narrow, allowing for detailed en face views of specific retinal layers, including the cone mosaic. Moreover, we demonstrate that both native reflectance, as well as fluorescent features observed by SLO, can be combined with axial in-depth information obtained by SDOCT. These imaging approaches can be used to screen for ocular phenotypes and monitor retinal pathology in a non-invasive manner.
Collapse
Affiliation(s)
- Brent A Bell
- Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, United States.
| | - Alex Yuan
- Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, United States; Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, United States
| | - Rose M Dicicco
- Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Joseph Fogerty
- Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Emma M Lessieur
- Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, United States; Molecular Medicine PhD Program Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, United States
| | - Brian D Perkins
- Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, United States; Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|