1
|
Long Q, Zhang Z, Li Y, Zhong Y, Liu H, Chang L, Ying Y, Zuo T, Wang Y, Xu P. Phosphoproteome reveals long-term potentiation deficit following treatment of ultra-low dose soman exposure in mice. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132211. [PMID: 37572605 DOI: 10.1016/j.jhazmat.2023.132211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/30/2023] [Accepted: 08/01/2023] [Indexed: 08/14/2023]
Abstract
Soman, a warfare nerve agent, poses a significant threat by inducing severe brain damage that often results in death. Nonetheless, our understanding of the biological changes underlying persistent neurocognitive dysfunction caused by low dosage of soman remains limited. This study used mice to examine the effects of different doses of soman over time. Phosphoproteomic analysis of the mouse brain is the first time to be used to detect toxic effects of soman at such low or ultra-low doses, which were undetectable based on measuring the activity of acetylcholinesterase at the whole-animal level. We also found that phosphoproteome alterations could accurately track the soman dose, irrespective of the sampling time. Moreover, phosphoproteome revealed a rapid and adaptive cellular response to soman exposure, with the points of departure 8-38 times lower than that of acetylcholinesterase activity. Impaired long-term potentiation was identified in phosphoproteomic studies, which was further validated by targeted quantitative proteomics, immunohistochemistry, and immunofluorescence analyses, with significantly increased levels of phosphorylation of protein phosphatase 1 in the hippocampus following soman exposure. This increase in phosphorylation inhibits long-term potentiation, ultimately leading to long-term memory dysfunction in mice.
Collapse
Affiliation(s)
- Qi Long
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing 102206, China; School of Basic Medicine, Anhui Medical University, Hefei 230032, China
| | - Zhenpeng Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing 102206, China
| | - Yuan Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing 102206, China; Department of Biomedicine, Medical College, Guizhou University, Guiyang 550025, China
| | - Yuxu Zhong
- Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences PLA China, Beijing 100850, China
| | - Hongyan Liu
- Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences PLA China, Beijing 100850, China
| | - Lei Chang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing 102206, China
| | - Ying Ying
- Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences PLA China, Beijing 100850, China
| | - Tao Zuo
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing 102206, China.
| | - Yong'an Wang
- Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences PLA China, Beijing 100850, China.
| | - Ping Xu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing 102206, China; School of Basic Medicine, Anhui Medical University, Hefei 230032, China; Department of Biomedicine, Medical College, Guizhou University, Guiyang 550025, China; Program of Environmental Toxicology, School of Public Health, China Medical University, Shenyang 110122, China.
| |
Collapse
|
2
|
Long Q, Feng L, Li Y, Zuo T, Chang L, Zhang Z, Xu P. Time-resolved quantitative phosphoproteomics reveals cellular responses induced by caffeine and coumarin. Toxicol Appl Pharmacol 2022; 449:116115. [PMID: 35691368 DOI: 10.1016/j.taap.2022.116115] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/27/2022] [Accepted: 06/06/2022] [Indexed: 11/30/2022]
Abstract
Protein phosphorylation is a critical way that cells respond to external signals and environmental stresses. However, the patterns of cellular response to chemicals at different times were largely unknown. Here, we used quantitative phosphoproteomics to analyze the cellular response of kinases and signaling pathways, as well as pattern change of phosphorylated substrates in HepG2 cells that were exposed to caffeine and coumarin for 10 min and 24 h. Comparing the 10 min and 24 h groups, 33 kinases were co-responded and 32 signaling pathways were co-enriched in caffeine treated samples, while 48 kinases and 34 signaling pathways were co-identified in coumarin treated samples. Instead, the percentage of co-identified phosphorylated substrates only accounted for 4.31% and 9.57% between 10 min and 24 h in caffeine and coumarin treated samples, respectively. The results showed that specific chemical exposure led to a bunch of the same kinases and signaling pathways changed in HepG2 cells, while the phosphorylated substrates were different. In addition, it was found that insulin signaling pathway was significantly enriched by both the caffeine and coumarin treatment. The pattern changes in phosphorylation of protein substrates, kinases and signaling pathways with varied chemicals and different time course shed light on the potential mechanism of cellular responses to endless chemical stimulation.
Collapse
Affiliation(s)
- Qi Long
- School of Basic Medicine, Anhui Medical University, Hefei 230032, China; State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing 102206, China
| | - Lijie Feng
- School of Basic Medicine, Anhui Medical University, Hefei 230032, China
| | - Yuan Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing 102206, China; School of Medicine, Guizhou University, Guiyang 550025, China
| | - Tao Zuo
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing 102206, China
| | - Lei Chang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing 102206, China
| | - Zhenpeng Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing 102206, China.
| | - Ping Xu
- School of Basic Medicine, Anhui Medical University, Hefei 230032, China; State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing 102206, China; School of Medicine, Guizhou University, Guiyang 550025, China; School of Public Health, China Medical University, Shenyang 110122, China; Hebei Province Key Lab of Research and Application on Microbial Diversity, College of Life Sciences, Hebei University, Baoding 071002, China.
| |
Collapse
|
3
|
Chang X, Tan YM, Allen DG, Bell S, Brown PC, Browning L, Ceger P, Gearhart J, Hakkinen PJ, Kabadi SV, Kleinstreuer NC, Lumen A, Matheson J, Paini A, Pangburn HA, Petersen EJ, Reinke EN, Ribeiro AJS, Sipes N, Sweeney LM, Wambaugh JF, Wange R, Wetmore BA, Mumtaz M. IVIVE: Facilitating the Use of In Vitro Toxicity Data in Risk Assessment and Decision Making. TOXICS 2022; 10:232. [PMID: 35622645 PMCID: PMC9143724 DOI: 10.3390/toxics10050232] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 04/24/2022] [Indexed: 02/04/2023]
Abstract
During the past few decades, the science of toxicology has been undergoing a transformation from observational to predictive science. New approach methodologies (NAMs), including in vitro assays, in silico models, read-across, and in vitro to in vivo extrapolation (IVIVE), are being developed to reduce, refine, or replace whole animal testing, encouraging the judicious use of time and resources. Some of these methods have advanced past the exploratory research stage and are beginning to gain acceptance for the risk assessment of chemicals. A review of the recent literature reveals a burst of IVIVE publications over the past decade. In this review, we propose operational definitions for IVIVE, present literature examples for several common toxicity endpoints, and highlight their implications in decision-making processes across various federal agencies, as well as international organizations, including those in the European Union (EU). The current challenges and future needs are also summarized for IVIVE. In addition to refining and reducing the number of animals in traditional toxicity testing protocols and being used for prioritizing chemical testing, the goal to use IVIVE to facilitate the replacement of animal models can be achieved through their continued evolution and development, including a strategic plan to qualify IVIVE methods for regulatory acceptance.
Collapse
Affiliation(s)
- Xiaoqing Chang
- Inotiv-RTP, 601 Keystone Park Drive, Suite 200, Morrisville, NC 27560, USA; (X.C.); (D.G.A.); (S.B.); (L.B.); (P.C.)
| | - Yu-Mei Tan
- U.S. Environmental Protection Agency, Office of Pesticide Programs, 109 T.W. Alexander Drive, Durham, NC 27709, USA;
| | - David G. Allen
- Inotiv-RTP, 601 Keystone Park Drive, Suite 200, Morrisville, NC 27560, USA; (X.C.); (D.G.A.); (S.B.); (L.B.); (P.C.)
| | - Shannon Bell
- Inotiv-RTP, 601 Keystone Park Drive, Suite 200, Morrisville, NC 27560, USA; (X.C.); (D.G.A.); (S.B.); (L.B.); (P.C.)
| | - Paul C. Brown
- U.S. Food and Drug Administration, Center for Drug Evaluation and Research, 10903 New Hampshire Avenue, Silver Spring, MD 20903, USA; (P.C.B.); (A.J.S.R.); (R.W.)
| | - Lauren Browning
- Inotiv-RTP, 601 Keystone Park Drive, Suite 200, Morrisville, NC 27560, USA; (X.C.); (D.G.A.); (S.B.); (L.B.); (P.C.)
| | - Patricia Ceger
- Inotiv-RTP, 601 Keystone Park Drive, Suite 200, Morrisville, NC 27560, USA; (X.C.); (D.G.A.); (S.B.); (L.B.); (P.C.)
| | - Jeffery Gearhart
- The Henry M. Jackson Foundation, Air Force Research Laboratory, 711 Human Performance Wing, Wright-Patterson Air Force Base, OH 45433, USA;
| | - Pertti J. Hakkinen
- National Library of Medicine, National Center for Biotechnology Information, 8600 Rockville Pike, Bethesda, MD 20894, USA;
| | - Shruti V. Kabadi
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, Office of Food Additive Safety, 5001 Campus Drive, HFS-275, College Park, MD 20740, USA;
| | - Nicole C. Kleinstreuer
- National Institute of Environmental Health Sciences, National Toxicology Program Interagency Center for the Evaluation of Alternative Toxicological Methods, P.O. Box 12233, Research Triangle Park, NC 27709, USA;
| | - Annie Lumen
- U.S. Food and Drug Administration, National Center for Toxicological Research, 3900 NCTR Road, Jefferson, AR 72079, USA;
| | - Joanna Matheson
- U.S. Consumer Product Safety Commission, Division of Toxicology and Risk Assessment, 5 Research Place, Rockville, MD 20850, USA;
| | - Alicia Paini
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy;
| | - Heather A. Pangburn
- Air Force Research Laboratory, 711 Human Performance Wing, 2729 R Street, Area B, Building 837, Wright-Patterson Air Force Base, OH 45433, USA;
| | - Elijah J. Petersen
- U.S. Department of Commerce, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899, USA;
| | - Emily N. Reinke
- U.S. Army Public Health Center, 8252 Blackhawk Rd., Aberdeen Proving Ground, MD 21010, USA;
| | - Alexandre J. S. Ribeiro
- U.S. Food and Drug Administration, Center for Drug Evaluation and Research, 10903 New Hampshire Avenue, Silver Spring, MD 20903, USA; (P.C.B.); (A.J.S.R.); (R.W.)
| | - Nisha Sipes
- U.S. Environmental Protection Agency, Center for Computational Toxicology and Exposure, 109 TW Alexander Dr., Research Triangle Park, NC 27711, USA; (N.S.); (J.F.W.); (B.A.W.)
| | - Lisa M. Sweeney
- UES, Inc., 4401 Dayton-Xenia Road, Beavercreek, OH 45432, Assigned to Air Force Research Laboratory, 711 Human Performance Wing, Wright-Patterson Air Force Base, OH 45433, USA;
| | - John F. Wambaugh
- U.S. Environmental Protection Agency, Center for Computational Toxicology and Exposure, 109 TW Alexander Dr., Research Triangle Park, NC 27711, USA; (N.S.); (J.F.W.); (B.A.W.)
| | - Ronald Wange
- U.S. Food and Drug Administration, Center for Drug Evaluation and Research, 10903 New Hampshire Avenue, Silver Spring, MD 20903, USA; (P.C.B.); (A.J.S.R.); (R.W.)
| | - Barbara A. Wetmore
- U.S. Environmental Protection Agency, Center for Computational Toxicology and Exposure, 109 TW Alexander Dr., Research Triangle Park, NC 27711, USA; (N.S.); (J.F.W.); (B.A.W.)
| | - Moiz Mumtaz
- Agency for Toxic Substances and Disease Registry, Office of the Associate Director for Science, 1600 Clifton Road, S102-2, Atlanta, GA 30333, USA
| |
Collapse
|