1
|
Duan H, Moresco P, Champouret N. Characterization of host-effector transcription dynamics during pathogen infection in engineered late blight resistant potato. Transgenic Res 2023; 32:95-107. [PMID: 36870023 DOI: 10.1007/s11248-023-00340-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 02/20/2023] [Indexed: 03/05/2023]
Abstract
Phytophthora infestans, the etiologic agent of late blight, is a threat to potato production in areas with high humidity during the growing season. The oomycete pathogen is hemi-biotrophic, it establishes infection on living plant cells and then spreads, kills, and feeds off the necrotized plant tissue material. The interaction between host and pathogen is complex with dynamic pathogen RXLR effectors and potato NB-LRR resistance proteins actively competing for dominance and survival. Late blight protection was brought to several cultivars of potato through insertion of the wild potato (Solanum venturii) NB-LRR resistance gene Rpi-vnt1.1. We have established that the late blight protection trait, mediated by Rpi-vnt1.1, is effective despite low expression of RNA. The RNA expression dynamics of Rpi-vnt1.1 and the cognate pathogen RXLR effector, Avr-vnt1, were evaluated following spray inoculation with up to five different contemporary late blight isolates from North America and South America. Following inoculations, RXLR effector transcript profiles provided insight into interaction compatibility in relation to markers of the late blight hemi-biotrophic lifecycle.
Collapse
Affiliation(s)
- Hui Duan
- Simplot Plant Sciences, J. R. Simplot Company, Boise, ID, 83706, USA.
- Floral and Nursery Plants Research Unit, Beltsville Agricultural Research Center (BARC)-West, USDA-ARS, U.S. National Arboretum, Beltsville, MD, 20705, USA.
| | - Paul Moresco
- Simplot Plant Sciences, J. R. Simplot Company, Boise, ID, 83706, USA
- , Chicago, IL, 60610, USA
| | - Nicolas Champouret
- Simplot Plant Sciences, J. R. Simplot Company, Boise, ID, 83706, USA
- , Naperville, IL, 60540, USA
| |
Collapse
|
2
|
Křížkovská B, Viktorová J, Lipov J. Approved Genetically Modified Potatoes ( Solanum tuberosum) for Improved Stress Resistance and Food Safety. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:11833-11843. [PMID: 36103343 PMCID: PMC9524371 DOI: 10.1021/acs.jafc.2c03837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/23/2022] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
Potatoes (Solanum tuberosum) are one of the most important crops worldwide. However, its production and nutrient content are endangered by both biotic and abiotic stresses. The main yield losses are caused by pest damage (e.g., Colorado potato beetle and aphids), virus disease (e.g., Potato leafroll virus and Potato viruses Y and X), or oomycete pathogens (like Phytophthora infestans), which also significantly affect the production of antinutrients and toxic metabolites of plants. Therefore, the use of genetic engineering could be an efficient tool, not harmful to the environment, and beneficial to the consumer. In this review, we focus on the main sources of problems in the field of potato production according to approved genetic modifications, their traditional solution and positive impact of gene transfection reducing economic losses, use of insecticides, and improving the nutritional properties of potatoes. We summarize all transgenic events that have been performed on potatoes and have been approved for cultivation and/or direct use or processing as feed or food.
Collapse
Affiliation(s)
- Bára Křížkovská
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic
| | - Jitka Viktorová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic
| | - Jan Lipov
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic
| |
Collapse
|
3
|
Krewski D, Saunders-Hastings P, Larkin P, Westphal M, Tyshenko MG, Leiss W, Dusseault M, Jerrett M, Coyle D. Principles of risk decision-making. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2022; 25:250-278. [PMID: 35980104 DOI: 10.1080/10937404.2022.2107591] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Risk management decisions in public health require consideration of a number of complex, often conflicting factors. The aim of this review was to propose a set of 10 fundamental principles to guide risk decision-making. Although each of these principles is sound in its own right, the guidance provided by different principles might lead the decision-maker in different directions. For example, where the precautionary principle advocates for preemptive risk management action under situations of scientific uncertainty and potentially catastrophic consequences, the principle of risk-based decision-making encourages decision-makers to focus on established and modifiable risks, where a return on the investment in risk management is all but guaranteed in the near term. To evaluate the applicability of the 10 principles in practice, one needs to consider 10 diverse risk issues of broad concern and explore which of these principles are most appropriate in different contexts. The 10 principles presented here afford substantive insight into the process of risk management decision-making, although decision-makers will ultimately need to exercise judgment in reaching appropriate risk decisions, accounting for all of the scientific and extra-scientific factors relevant to the risk decision at hand.
Collapse
Affiliation(s)
- Daniel Krewski
- McLaughlin Centre for Population Health Risk Assessment, Faculty of Medicine, University of Ottawa, ON, Canada
| | - Patrick Saunders-Hastings
- McLaughlin Centre for Population Health Risk Assessment, Faculty of Medicine, University of Ottawa, ON, Canada
| | - Patricia Larkin
- McLaughlin Centre for Population Health Risk Assessment, Faculty of Medicine, University of Ottawa, ON, Canada
| | - Margit Westphal
- McLaughlin Centre for Population Health Risk Assessment, Faculty of Medicine, University of Ottawa, ON, Canada
| | | | - William Leiss
- McLaughlin Centre for Population Health Risk Assessment, Faculty of Medicine, University of Ottawa, ON, Canada
| | - Maurice Dusseault
- Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, ON, Canada
| | - Michael Jerrett
- Department of Environmental Health Sciences, Fielding School of Public Health, UCLA, Los Angeles, CA, USA
| | - Doug Coyle
- School of Epidemiology and Public Health, University of Ottawa, ON, Canada
| |
Collapse
|
4
|
ZOU Z, WU Q, CHEN J, LONG T, WANG J, ZHOU M, ZHAO Y, YU T, WANG Y, XU L. Rapid determination of water content in potato tubers based on hyperspectral images and machine learning algorithms. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.46522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Zhiyong ZOU
- Sichuan Agricultural University, P. R. China
| | - Qingsong WU
- Sichuan Agricultural University, P. R. China
| | - Jie CHEN
- Sichuan Agricultural University, P. R. China
| | - Tao LONG
- Sichuan Agricultural University, P. R. China
| | - Jian WANG
- Sichuan Agricultural University, P. R. China
| | - Man ZHOU
- Sichuan Agricultural University, P. R. China
| | | | - Tingjiang YU
- State Energy Dadu River Waterfall Ditch Hydroelectric Power Plant, China
| | - Yinfan WANG
- Harbin University of Science and Technology, China
| | - Lijia XU
- Sichuan Agricultural University, P. R. China
| |
Collapse
|
5
|
Monino‐Lopez D, Nijenhuis M, Kodde L, Kamoun S, Salehian H, Schentsnyi K, Stam R, Lokossou A, Abd‐El‐Haliem A, Visser RG, Vossen JH. Allelic variants of the NLR protein Rpi-chc1 differentially recognize members of the Phytophthora infestans PexRD12/31 effector superfamily through the leucine-rich repeat domain. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:182-197. [PMID: 33882622 PMCID: PMC8362081 DOI: 10.1111/tpj.15284] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/30/2021] [Accepted: 04/12/2021] [Indexed: 05/22/2023]
Abstract
Phytophthora infestans is a pathogenic oomycete that causes the infamous potato late blight disease. Resistance (R) genes from diverse Solanum species encode intracellular receptors that trigger effective defense responses upon the recognition of cognate RXLR avirulence (Avr) effector proteins. To deploy these R genes in a durable fashion in agriculture, we need to understand the mechanism of effector recognition and the way the pathogen evades recognition. In this study, we cloned 16 allelic variants of the Rpi-chc1 gene from Solanum chacoense and other Solanum species, and identified the cognate P. infestans RXLR effectors. These tools were used to study effector recognition and co-evolution. Functional and non-functional alleles of Rpi-chc1 encode coiled-coil nucleotide-binding leucine-rich repeat (CNL) proteins, being the first described representatives of the CNL16 family. These alleles have distinct patterns of RXLR effector recognition. While Rpi-chc1.1 recognized multiple PexRD12 (Avrchc1.1) proteins, Rpi-chc1.2 recognized multiple PexRD31 (Avrchc1.2) proteins, both belonging to the PexRD12/31 effector superfamily. Domain swaps between Rpi-chc1.1 and Rpi-chc1.2 revealed that overlapping subdomains in the leucine-rich repeat (LRR) domain are responsible for the difference in effector recognition. This study showed that Rpi-chc1.1 and Rpi-chc1.2 evolved to recognize distinct members of the same PexRD12/31 effector family via the LRR domain. The biased distribution of polymorphisms suggests that exchange of LRRs during host-pathogen co-evolution can lead to novel recognition specificities. These insights will guide future strategies to breed durable resistant varieties.
Collapse
Affiliation(s)
- Daniel Monino‐Lopez
- Plant BreedingWageningen University & ResearchDroevendaalsesteeg 1Wageningen6708PBThe Netherlands
| | - Maarten Nijenhuis
- Plant BreedingWageningen University & ResearchDroevendaalsesteeg 1Wageningen6708PBThe Netherlands
- Present address:
Agrico ResearchBurchtweg 17Bant8314PPThe Netherlands
| | - Linda Kodde
- Plant BreedingWageningen University & ResearchDroevendaalsesteeg 1Wageningen6708PBThe Netherlands
| | - Sophien Kamoun
- The Sainsbury LaboratoryUniversity of East AngliaNorwich Research Park, NorwichUK
| | - Hamed Salehian
- Plant BreedingWageningen University & ResearchDroevendaalsesteeg 1Wageningen6708PBThe Netherlands
| | - Kyrylo Schentsnyi
- Plant BreedingWageningen University & ResearchDroevendaalsesteeg 1Wageningen6708PBThe Netherlands
- Present address:
Center for Plant Molecular BiologyAuf der Morgenstelle 32Tübingen2076Germany
| | - Remco Stam
- Plant BreedingWageningen University & ResearchDroevendaalsesteeg 1Wageningen6708PBThe Netherlands
- Present address:
Technical University MunichMunichGermany
| | - Anoma Lokossou
- Plant BreedingWageningen University & ResearchDroevendaalsesteeg 1Wageningen6708PBThe Netherlands
| | - Ahmed Abd‐El‐Haliem
- Plant BreedingWageningen University & ResearchDroevendaalsesteeg 1Wageningen6708PBThe Netherlands
- Present address:
Rijk Zwaan Breeding B.VBurgemeester Crezéelaan 40De Lier2678KXThe Netherlands
| | - Richard G.F. Visser
- Plant BreedingWageningen University & ResearchDroevendaalsesteeg 1Wageningen6708PBThe Netherlands
| | - Jack H. Vossen
- Plant BreedingWageningen University & ResearchDroevendaalsesteeg 1Wageningen6708PBThe Netherlands
| |
Collapse
|
6
|
Zarka KA, Hokanson K, Douches DS. Molecular characterization for food safety assessment of a genetically modified late blight resistant potato: an unusual case. Transgenic Res 2021; 30:169-183. [PMID: 33751337 DOI: 10.1007/s11248-021-00241-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 03/11/2021] [Indexed: 10/21/2022]
Abstract
Standard food safety assessments of genetically modified crops require a thorough molecular characterization of the novel DNA as inserted into the plant that is intended for commercialization, as well as a comparison of agronomic and nutritional characteristics of the genetically modified to the non-modified counterpart. These characterization data are used to identify any unintended changes in the inserted DNA or in the modified plant that would require assessment for safety in addition to the assessment of the intended modification. An unusual case of an unintended effect discovered from the molecular characterization of a genetically modified late blight resistant potato developed for growing in Bangladesh and Indonesia is presented here. Not only was a significant portion of the plasmid vector backbone DNA inserted into the plant along with the intended insertion of an R-gene for late blight resistance, but the inserted DNA was split into two separate fragments and inserted into two separate chromosomes. One fragment carries the R-gene and the other fragment carries the NPTII selectable marker gene and the plasmid backbone DNA. The implications of this for the food safety assessment of this late blight resistant potato are considered.
Collapse
Affiliation(s)
- Kelly A Zarka
- Department of Plant, Soil and Microbial Sciences, Molecular Plant Science Bldg, Michigan State University, East Lansing, MI, USA.
| | - Karen Hokanson
- Department of Horticultural Science, University of Minnesota, St. Paul, MN, USA
| | - David S Douches
- Department of Plant, Soil and Microbial Sciences, Molecular Plant Science Bldg, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
7
|
Del Mar Martínez-Prada M, Curtin SJ, Gutiérrez-González JJ. Potato improvement through genetic engineering. GM CROPS & FOOD 2021; 12:479-496. [PMID: 34991415 PMCID: PMC9208627 DOI: 10.1080/21645698.2021.1993688] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Potato (Solanum tuberosum L.) is the third most important crop worldwide and a staple food for many people worldwide. Genetically, it poses many challenges for traditional breeding due to its autotetraploid nature and its tendency toward inbreeding depression. Breeding programs have focused on productivity, nutritional quality, and disease resistance. Some of these traits exist in wild potato relatives but their introgression into elite cultivars can take many years and, for traits such as pest resistance, their effect is often short-lasting. These problems can be addressed by genetic modification (GM) or gene editing (GE) and open a wide horizon for potato crop improvement. Current genetically modified and gene edited varieties include those with Colorado potato beetle and late blight resistance, reduction in acrylamide, and modified starch content. RNAi hairpin technology can be used to silence the haplo-alleles of multiple genes simultaneously, whereas optimization of newer gene editing technologies such as base and prime editing will facilitate the routine generation of advanced edits across the genome. These technologies will likely gain further relevance as increased target specificity and decreased off-target effects are demonstrated. In this Review, we discuss recent work related to these technologies in potato improvement.
Collapse
Affiliation(s)
- María Del Mar Martínez-Prada
- Departamento De Biología Molecular, Facultad De Ciencias Biológicas Y Ambientales, Universidad De León, León, España
| | - Shaun J Curtin
- United States Department of Agriculture, Plant Science Research Unit, Minnesota, USA.,Department of Agronomy and Plant Genetics, University of Minnesota, Minnesota, USA.,Center for Plant Precision Genomics, University of Minnesota, Minneapolis, Minnesota, USA.,Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Juan J Gutiérrez-González
- Departamento De Biología Molecular, Facultad De Ciencias Biológicas Y Ambientales, Universidad De León, León, España
| |
Collapse
|
8
|
Safety evaluation of E12, W8, X17, and Y9 potatoes: Nutritional evaluation and 90-day subchronic feeding study in rats. Regul Toxicol Pharmacol 2020; 115:104712. [PMID: 32540328 DOI: 10.1016/j.yrtph.2020.104712] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/04/2020] [Accepted: 06/06/2020] [Indexed: 11/22/2022]
Abstract
The nutritional and health effects of four biotech potato events, E12, W8, X17, and Y9, were evaluated in a subchronic rodent feeding study. E12 contains pSIM1278 insert DNA derived from potato and designed to down regulate potato genes through RNAi. These changes result in reduced black spot and reduced acrylamide. W8, X17, and Y9 contain the DNA inserts from pSIM1278 and pSIM1678 to further reduce acrylamide and express a gene from wild potato that protects against late blight. Rats were fed diets containing 20% cooked, dried potatoes from these four events and three conventional potato varieties. Compositional analyses of the processed potatoes and the rodent diets demonstrated comparability between the four events and their respective conventional varieties. Rats consumed the diets for 90 days and were evaluated for body weight, dietary intake, clinical signs, ophthalmology, neurobehavioral parameters, clinical pathology, organ weights, gross pathology, and histopathology. No adverse effects were observed as a result of test diet consumption. These results support the conclusion that foods containing E12, W8, X17, or Y9 potatoes are as safe, wholesome and nutritious as foods from conventional potato varieties.
Collapse
|