1
|
Hu Z, Liao J, Zhang K, Huang K, Li Q, Lei C, Han Q, Zhang H, Guo J, Hu L, Pan J, Li Y, Tang Z. Effects of Long-Term Exposure to Copper on Mitochondria-Mediated Apoptosis in Pig Liver. Biol Trace Elem Res 2023; 201:1726-1739. [PMID: 35666388 DOI: 10.1007/s12011-022-03303-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/26/2022] [Indexed: 11/02/2022]
Abstract
Copper (Cu) is listed as one of the main heavy metal pollutants, which poses potential health risks to humans. Excessive intake of Cu has shown toxic effects on the organs of many animals, and the liver is one of the most important organs to metabolize it. In this study, pigs, the mammal with similar metabolic characteristics to humans, were selected to assess the effects of long-term exposure to Cu on mitochondria-mediated apoptosis, which are of great significance for studying the toxicity of Cu to humans. Pigs were fed a diet with different contents of Cu (10, 125, and 250 mg/kg) for 80 days. Samples of blood and liver tissue were collected on days 40 and 80. Experimental results demonstrated that the accumulation of Cu in the liver was increased in a dose-dependent and time-dependent manner. Meanwhile, the curve of pig's body weight showed that a 125 mg/kg Cu diet promoted the growth of pigs during the first 40 days and then inhibited it from 40 to 80 days, while the 250 mg/kg Cu diet inhibited the growth of pigs during 80 days of feeding. Additionally, the genes and protein expression levels of Caspase-3, p53, Bax, Bak1, Bid, Bad, CytC, and Drp1 in the treatment group were higher than that in the control group, while Bcl-2, Bcl-xL, Opa1, Mfn1, and Mfn2 were decreased. In conclusion, these results indicated that long-term excessive intake of Cu could inhibit the growth of pigs and induced mitochondria-mediated apoptosis by breaking the mitochondrial dynamic balance. Synopsis: Long-term exposure to high doses of Cu could lead to mitochondrial dysfunction by breaking the mitochondrial dynamic balance, which ultimately induced mitochondria-mediated apoptosis in the liver of pigs. This might be closely related to the growth inhibition and liver damage in pigs.
Collapse
Affiliation(s)
- Zhuoying Hu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
| | - Jianzhao Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
| | - Kai Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
| | - Kunxuan Huang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
| | - Quanwei Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
| | - Chaiqin Lei
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
| | - Qingyue Han
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
| | - Hui Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
| | - Jianying Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
| | - Lianmei Hu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
| | - Jiaqiang Pan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
| | - Ying Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China.
| |
Collapse
|
2
|
Liu K, Zeng N, Pan J, Gong D, Zhang G. Synthesis, characterization, toxicity evaluation and inhibitory effect of hesperitin-copper (Ⅱ) complex on xanthine oxidase. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
3
|
Liu T, Zhang Y, Liu J, Peng J, Jia X, Xiao Y, Zheng L, Dong Y. Evaluation of the Acute and Sub-Acute Oral Toxicity of Jaranol in Kunming Mice. Front Pharmacol 2022; 13:903232. [PMID: 35847023 PMCID: PMC9280858 DOI: 10.3389/fphar.2022.903232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/03/2022] [Indexed: 11/17/2022] Open
Abstract
Background: Jaranol has shown a wide range of pharmacological activities; however, no study has yet examined in vivo toxicity. The study aimed to investigate the oral acute and sub-acute toxicity of jaranol in mice. Methods: The acute toxicity was determined by a single oral dose of jaranol (2000 mg/kg). Therein animal behaviour and mortality rate were observed for 14 days. The jaranol (50, 100 and 200 mg/kg BW·d−1) was given by gavage for 28 days daily in the sub-acute study. The mouse body weight (BW), organ weight, food, water intake, biochemical, haematological parameters, and histopathology were studied in acute and sub-acute toxicity. Results: During the acute toxicity test, a single oral dose (2000 mg/kg) jaranol did not cause significant alteration in majority of the hematological indices. However, jaranol decreased the level of serum alanine aminotransferase and aspartate aminotransferase. Those results showed that the oral lethal dose 50 (LD50) of jaranol was higher than 2000 mg/kg BW, regardless of sex. In repeated daily oral doses (50, 100 and 200 mg/kg BW·d−1), no mortality was recorded in the various experimental groups. The jaranol reduced body weight gain (200 mg/kg BW·d−1), the relative spleen weight (all doses) and serum alanine aminotransferase activity (200 mg/kg BW·d−1). On the other hand, jaranol significantly elevated red blood cell count (100 and 200 mg/kg BW·d−1) and serum creatinine levels (200 mg/kg BW·d−1). Histological study revealed that spleen bleeding was identified in 200 mg/kg jaranol-treated mice. Conclusion: Jaranol was relatively safe in Kunming Mice when repetitively administered orally in small doses for a prolonged period of time. We recommend more chronic toxicity studies and clinical trials on jaranol to ensure that its use is free of potential toxicity to humans.
Collapse
Affiliation(s)
- Tianlong Liu
- Department of Pharmacy, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Yao Zhang
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, China
| | - Jing Liu
- Department of Pharmacy, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Junwen Peng
- Department of Pharmacy, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Xin Jia
- Department of Pharmacy, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
- Department of Natural Medicinal Chemistry, College of Pharmacy, Inner Mongolia Medical University, Hohhot, China
- Engineering Technology Research Center of Pharmacodynamic Substance and Quality Control of Mongolian Medicine in Inner Mongolia, Hohhot, China
| | - Yunfeng Xiao
- Engineering Technology Research Center of Pharmacodynamic Substance and Quality Control of Mongolian Medicine in Inner Mongolia, Hohhot, China
- Center for New Drug Safety Evaluation and Research, Inner Mongolia Medical University, Hohhot, China
| | - Lanbing Zheng
- Department of Psychiatry, Inner Mongolia Mental Health Center, Hohhot, China
- *Correspondence: Yu Dong, ; Lanbing Zheng,
| | - Yu Dong
- Department of Natural Medicinal Chemistry, College of Pharmacy, Inner Mongolia Medical University, Hohhot, China
- Engineering Technology Research Center of Pharmacodynamic Substance and Quality Control of Mongolian Medicine in Inner Mongolia, Hohhot, China
- *Correspondence: Yu Dong, ; Lanbing Zheng,
| |
Collapse
|
4
|
Beladiya JV, Mehta AA. Acute and 28-days subacute toxicity studies of Gαq-RGS2 signaling inhibitor. Lab Anim Res 2021; 37:17. [PMID: 34311782 PMCID: PMC8314442 DOI: 10.1186/s42826-021-00093-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 06/26/2021] [Indexed: 11/25/2022] Open
Abstract
Background The aim of study was to evaluate the single oral dose and 28 day repeated oral administration toxicity profile of the synthetic compound Gαq-RGS2 signaling inhibitor, (1-(5-chloro-2-hydroxyphenyl)-3-(4-(trifluoromethyl)phenyl)-1 H-1,2,4-triazol-5(4 H)-one) as per OECD guideline 425 (2008a) and 407 (2008b), respectively. Results In acute toxicity study, a single oral dose administration of Gαq-RGS2 signaling inhibitor did not show any mortality at doses of 5, 50, 300 and 2000 mg/kg within 24 h and 14 days. The treatment of Gαq-RGS2 signaling inhibitor at dose 10 and 100 mg/kg for 28 days did not show any mortality, significant changes in the increase of body weight, various organ damage markers, hematological parameters, relative organ/body weight ratio and microscopic anatomical texture of essential organs as compared to vehicle and normal control. Conclusions A single oral administration of Gαq-RGS2 signaling inhibitor up to dose of 2000 mg/kg in mice and repeated administration of Gαq-RGS2 signaling inhibitor at higher dose 100 mg/kg for 28 days in the rats is safe. Supplementary Information The online version contains supplementary material available at 10.1186/s42826-021-00093-1.
Collapse
Affiliation(s)
- Jayesh V Beladiya
- Department of Pharmacology, L. M. College of Pharmacy, Navarangpura, Gujarat, 380009, Ahmedabad, India
| | - Anita A Mehta
- Department of Pharmacology, L. M. College of Pharmacy, Navarangpura, Gujarat, 380009, Ahmedabad, India.
| |
Collapse
|
5
|
Diefenthaeler HS, Bianchin MD, Marques MS, Nonnenmacher JL, Bender ET, Bender JG, Nery SF, Cichota LC, Külkamp-Guerreiro IC. Omeprazole nanoparticles suspension: Development of a stable liquid formulation with a view to pediatric administration. Int J Pharm 2020; 589:119818. [PMID: 32866648 DOI: 10.1016/j.ijpharm.2020.119818] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 08/02/2020] [Accepted: 08/23/2020] [Indexed: 12/14/2022]
Abstract
Omeprazole (OME) is often used to treat disorders associated with gastric hypersecretion in children but a liquid pediatric formulation of this medicine is not currently available. The aim of this study is to develop OME loaded nanoparticles with a view to the obtention of a liquid pharmaceutical dosage form. Eudragit® RS100 was selected as the skeleton material in the inner core and pH-sensitive Eudragit® L100-55 was used as the outer coating of the nanoparticles prepared by the nanoprecipitation method. Pharmacological activity was evaluated by induction of ethanol ulcers in mice. The OME nanoparticles exhibited mean diameters of 174 nm (±17), polydispersity index of 0.229 (±0.01), zeta potential values of -13 mV (±2.60) and encapsulation efficiency of 68.1%. The in vivo pharmacological assessment showed the ability of nanoparticles to protect mice stomach against ulcer formation. The prepared suspension of OME nanoparticles represents effective therapeutic strategy in a liquid pharmaceutical form with the possibility of pediatric administration.
Collapse
Affiliation(s)
- Helissara Silveira Diefenthaeler
- Programa de Pós-Graduação em Nanotecnologia Farmacêutica, Universidade Federal do Rio Grande do Sul, 90610-000 Porto Alegre, RS, Brazil
| | - Mariana Domingues Bianchin
- Programa de Pós-Graduação em Ciências Biológicas: Farmacologia e Terapêutica, Universidade Federal do Rio Grande do Sul, 90050-170 Porto Alegre, RS, Brazil
| | - Morgana Souza Marques
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, 90610-000 Porto Alegre, RS, Brazil
| | - Julia Livia Nonnenmacher
- Faculdade de Farmácia, Universidade Regional Integrada do Alto Uruguai e das Missões, 99709-910 Erechim, RS, Brazil
| | - Emanueli Tainara Bender
- Faculdade de Farmácia, Universidade Regional Integrada do Alto Uruguai e das Missões, 99709-910 Erechim, RS, Brazil
| | - Júlia Gabrieli Bender
- Faculdade de Farmácia, Universidade Regional Integrada do Alto Uruguai e das Missões, 99709-910 Erechim, RS, Brazil
| | - Samara Feil Nery
- Faculdade de Farmácia, Universidade Regional Integrada do Alto Uruguai e das Missões, 99709-910 Erechim, RS, Brazil
| | - Luiz Carlos Cichota
- Faculdade de Farmácia, Universidade Regional Integrada do Alto Uruguai e das Missões, 99709-910 Erechim, RS, Brazil
| | - Irene Clemes Külkamp-Guerreiro
- Programa de Pós-Graduação em Nanotecnologia Farmacêutica, Universidade Federal do Rio Grande do Sul, 90610-000 Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências Biológicas: Farmacologia e Terapêutica, Universidade Federal do Rio Grande do Sul, 90050-170 Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, 90610-000 Porto Alegre, RS, Brazil.
| |
Collapse
|
6
|
Sun F, Guo J, Liu Y, Yu Y. Preparation and characterization of poly(3-hydroxybutyrate-co-4-hydroxybutyrate)/pullulan-gelatin electrospun nanofibers with shell-core structure. ACTA ACUST UNITED AC 2020; 15:045023. [PMID: 32155607 DOI: 10.1088/1748-605x/ab7e7a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In this study, hydrophilic pullulan, which is favorable for cell adhesion, proliferation, and differentiation, was selected as a modifier for the preparation of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) (P(3HB-co-4HB))/pullulan nanofibers via electrospinning to improve the biocompatibility of P(3HB-co-4HB) and increase the drug loading of composite fibers. Alkyl polyglycoside was used as the emulsifying agent to promote emulsification and stabilize the P(3HB-co-4HB)/pullulan composite solution. Drug-loading property of the nanofibers with a shell-core structure is increased because gelatin was not formed into fibers via electrospinning, thereby forming a stable drug-containing gelatin solution in the core layer. Finally, P(3HB-co-4HB)/pullulan-gelatin shell-core nanofibers were prepared. The intermolecular interaction, morphology, crystallization properties, mechanical properties, morphology, sustained release, and biocompatibility of composite nanofibers were characterized. Results show that the crystallization property of P(3HB-co-4HB)/pullulan composite nanofibers increases continuously with an increase in the pullulan content. As the pullulan content increases, the strain and stress of P(3HB-co-4HB)/pullulan nanofibers increase initially and decrease later. At the mass ratio of P(3HB-co-4HB) to pullulan of 10:2, P(3HB-co-4HB)/pullulan composite nanofibers exhibit a uniform morphology with an average diameter of 590 nm and porosity of 70.71%. At this mass ratio, the P(3HB-co-4HB)/pullulan-gelatin/drug shell-core structure, which sustained a release effect for more than 180 h, has potential applications as biomaterials without cytotoxicity.
Collapse
Affiliation(s)
- Fanchen Sun
- Dalian Polytechnic University, Liaoning 116034, People's Republic of China
| | | | | | | |
Collapse
|