1
|
Di Cristo L, Keller JG, Leoncino L, Marassi V, Loosli F, Seleci DA, Tsiliki G, Oomen AG, Stone V, Wohlleben W, Sabella S. Critical aspects in dissolution testing of nanomaterials in the oro-gastrointestinal tract: the relevance of juice composition for hazard identification and grouping. NANOSCALE ADVANCES 2024; 6:798-815. [PMID: 38298600 PMCID: PMC10825926 DOI: 10.1039/d3na00588g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/07/2023] [Indexed: 02/02/2024]
Abstract
The dissolution of a nanomaterial (NM) in an in vitro simulant of the oro-gastrointestinal (OGI) tract is an important predictor of its biodurability in vivo. The cascade addition of simulated digestive juices (saliva, stomach and intestine), including inorganic/organic biomacromolecules and digestive enzymes (complete composition, referred to as "Type 1 formulation"), strives for realistic representation of chemical composition of the OGI tract. However, the data robustness requires consideration of analytical feasibility, such as the use of simplified media. Here we present a systematic analysis of the effects exerted by different digestive juice formulations on the dissolution% (or half-life values) of benchmark NMs (e.g., zinc oxide, titanium dioxide, barium sulfate, and silicon dioxide). The digestive juices were progressively simplified by removal of components such as organic molecules, enzymes, and inorganic molecules (Type 2, 3 and 4). The results indicate that the "Type 1 formulation" augments the dissolution via sequestration of ions by measurable factors compared to formulations without enzymes (i.e., Type 3 and 4). Type 1 formulation is thus regarded as a preferable option for predicting NM biodurability for hazard assessment. However, for grouping purposes, the relative similarity among diverse nanoforms (NFs) of a NM is decisive. Two similarity algorithms were applied, and additional case studies comprising NFs and non NFs of the same substance were included. The results support the grouping decision by simplified formulation (Type 3) as a robust method for screening and grouping purposes.
Collapse
Affiliation(s)
- Luisana Di Cristo
- Istituto Italiano Di Tecnologia, Nanoregulatory Group, D3PharmaChemistry Genova Italy
| | - Johannes G Keller
- Department of Material Physics and Department of Experimental Toxicology and Ecology, BASF SE Ludwigshafen Germany
| | - Luca Leoncino
- Electron Microscopy Facility, Istituto Italiano di Tecnologia Genova Italy
| | | | - Frederic Loosli
- Department of Material Physics and Department of Experimental Toxicology and Ecology, BASF SE Ludwigshafen Germany
- University of Vienna Vienna Austria
| | - Didem Ag Seleci
- Department of Material Physics and Department of Experimental Toxicology and Ecology, BASF SE Ludwigshafen Germany
| | - Georgia Tsiliki
- Institute for the Management of Information Systems, Athena Research Center Marousi Greece
| | - Agnes G Oomen
- National Institute for Public Health and the Environment (RIVM) Bilthoven The Netherlands
- University of Amsterdam Amsterdam The Netherlands
| | - Vicki Stone
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University Edinburgh UK
| | - Wendel Wohlleben
- Department of Material Physics and Department of Experimental Toxicology and Ecology, BASF SE Ludwigshafen Germany
| | - Stefania Sabella
- Istituto Italiano Di Tecnologia, Nanoregulatory Group, D3PharmaChemistry Genova Italy
| |
Collapse
|
2
|
Li X, Liang Q, Wang C, Qiu H, Lin T, Li W, Zhang R, Liu Z, Zhu L. Role of P-glycoprotein in Regulating the Efficacy, Toxicity and Pharmacokinetics of Yunaconitine. Curr Drug Metab 2024; 25:317-329. [PMID: 39108114 DOI: 10.2174/0113892002302427240801072910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/11/2024] [Accepted: 07/11/2024] [Indexed: 11/08/2024]
Abstract
BACKGROUND Yunaconitine (YAC) is a hidden toxin that greatly threatens the life safety of patients who are prescribed herbal medicines containing Aconitum species; however, its underlying mechanism remains unclear. OBJECTIVE The objective of this study is to elucidate the functions of P-glycoprotein (P-gp) in regulating the efficacy, toxicity, and pharmacokinetics of YAC. METHODS The efflux function of P-gp on YAC was explored by using Caco-2 monolayers in combination with the P-gp inhibitor verapamil. The impact of P-gp on regulating the analgesic and anti-inflammatory effects, acute toxicity, tissue distribution, and pharmacokinetics of YAC was determined via male Mdr1a gene knocked-out mice and wild-type FVB mice. RESULTS The presence of verapamil significantly decreased the efflux ratio of YAC from 20.41 to 1.07 in Caco- 2 monolayers (P < 0.05). Moreover, oral administration of 0.07 and 0.14 mg/kg YAC resulted in a notable decrease in writhing times in Mdr1a-/- mice by 23.53% and 49.27%, respectively, compared to wild-type FVB mice (P < 0.05). Additionally, the deficiency of P-gp remarkably decreased the half-lethal dose (LD50) of YAC from 2.13 to 0.24 mg/kg (P < 0.05). Moreover, the concentrations of YAC in the tissues of Mdr1a-/- mice were statistically higher than those in wild-type FVB mice (P < 0.05). Particularly, the brain accumulation of YAC in Mdr1a-/- mice significantly increased by 12- and 19-fold, respectively, after oral administration for 30 and 120 min, when compared to wild-type FVB mice (P < 0.05). There were no significant differences in the pharmacokinetic characteristics of YAC between Mdr1a-/- and wild-type FVB mice. CONCLUSION YAC is a sensitive substrate of P-gp. The absence of P-gp enhances the analgesic effect and toxicity of YAC by upregulating its brain accumulation. Co-administration with a P-gp inhibitor may lead to severe YAC poisoning.
Collapse
Affiliation(s)
- Xiaocui Li
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Qi Liang
- Department of Pharmacy, Shenzhen Bao'an Traditional Chinese Medicine Hospital, Shenzhen, 518133, China
| | - Caiyan Wang
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Huawei Qiu
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Tingting Lin
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Wentao Li
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Rong Zhang
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Zhongqiu Liu
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Lijun Zhu
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| |
Collapse
|
3
|
Dracheva E, Norinder U, Rydén P, Engelhardt J, Weiss JM, Andersson PL. In Silico Identification of Potential Thyroid Hormone System Disruptors among Chemicals in Human Serum and Chemicals with a High Exposure Index. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:8363-8372. [PMID: 35561338 PMCID: PMC9228062 DOI: 10.1021/acs.est.1c07762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 04/27/2022] [Accepted: 04/29/2022] [Indexed: 05/30/2023]
Abstract
Data on toxic effects are at large missing the prevailing understanding of the risks of industrial chemicals. Thyroid hormone (TH) system disruption includes interferences of the life cycle of the thyroid hormones and may occur in various organs. In the current study, high-throughput screening data available for 14 putative molecular initiating events of adverse outcome pathways, related to disruption of the TH system, were used to develop 19 in silico models for identification of potential thyroid hormone system-disrupting chemicals. The conformal prediction framework with the underlying Random Forest was used as a wrapper for the models allowing for setting the desired confidence level and controlling the error rate of predictions. The trained models were then applied to two different databases: (i) an in-house database comprising xenobiotics identified in human blood and ii) currently used chemicals registered in the Swedish Product Register, which have been predicted to have a high exposure index to consumers. The application of these models showed that among currently used chemicals, fewer were overall predicted as active compared to chemicals identified in human blood. Chemicals of specific concern for TH disruption were identified from both databases based on their predicted activity.
Collapse
Affiliation(s)
- Elena Dracheva
- Department
of Chemistry, Umeå University, KB.E6, Linnaeus väg 6, SE-901 87 Umeå, Sweden
| | - Ulf Norinder
- Department
of Computer and Systems Sciences, Stockholm
University, Box 7003, SE-164 07 Kista, Sweden
| | - Patrik Rydén
- Department
of Mathematics and Mathematical Statistics, Umeå University, MIT.E.351, SE-901 87 Umeå, Sweden
| | - Josefin Engelhardt
- Department
of Environmental Science, Stockholm University, SE-11418 Stockholm, Sweden
| | - Jana M. Weiss
- Department
of Environmental Science, Stockholm University, SE-11418 Stockholm, Sweden
| | - Patrik L. Andersson
- Department
of Chemistry, Umeå University, KB.E6, Linnaeus väg 6, SE-901 87 Umeå, Sweden
| |
Collapse
|