1
|
Smith BL, Carlson AB, Fallers MN, Crumplar SS, Zimmermann CS, Mathesius CA, Mukerji P, McNaughton JL, Herman RA. Rodent and broiler feeding studies with maize containing genetically modified event DP-915635-4 show no adverse effects on health or performance. Food Chem Toxicol 2024; 189:114716. [PMID: 38735358 DOI: 10.1016/j.fct.2024.114716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/14/2024]
Abstract
Several regulatory agencies continue to require animal feeding studies to approve new genetically modified crops despite such studies providing little value in the safety assessment. Feeding studies with maize grain containing event DP-915635-4 (DP915635), a new corn rootworm management trait, were conducted to fulfill that requirement. Diets fed to Crl:CD®(SD) rats for 90 days contained up to 50% ground maize grain from DP915635, non-transgenic control, or non-transgenic reference hybrids (P1197, 6158, and 6365). Ross 708 broilers received phase diets containing up to 67% maize grain from each source for 42 days. Growth performance was compared between animals fed DP915635 and control diets; rats were further evaluated for clinical and neurobehavioral measures, ophthalmology, clinical pathology, organ weights, and gross and microscopic pathology, whereas carcass parts and select organ yields were determined for broilers. Reference group inclusion assisted in determining natural variation influence on observed significant differences between DP915635 and control groups. DP915635 maize grain diet consumption did not affect any measure evaluated in either feeding study. Results demonstrated DP-915635-4 maize grain safety and nutritional equivalency when fed in nutritionally adequate diets, adding to the existing literature confirming the lack of significant effects of feeding grain from genetically modified plants.
Collapse
|
2
|
Zhou Q, Li S, Zhao M, Liu Y, He N, Zhou X, Zhou D, Qian Z. Subchronic feeding study of glyphosate-tolerant maize GG2 with the gr79-epsps and gat genes in Wistar Han RCC rats. Regul Toxicol Pharmacol 2023; 145:105520. [PMID: 37884076 DOI: 10.1016/j.yrtph.2023.105520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 10/07/2023] [Accepted: 10/18/2023] [Indexed: 10/28/2023]
Abstract
The genetically modified (GM) maize GG2 contains gr79-epsps and gat genes, conferring glyphosate tolerance. The present study aimed to investigate potential effects of maize GG2 in a 90-day subchronic feeding study on Wistar Han RCC rats. Maize grains from GG2 or non-GM maize were incorporated into diets at concentrations of 25% and 50% and administered to Wistar Han RCC rats (n = 10/sex/group) for 90 days. The basal-diet group of rats (n = 10/sex/group) were fed with common commercialized rodent diet. Compared with rats fed with the corresponding non-GM maize and the basal-diet, no biologically relevant differences were observed in rats fed with the maize GG2, according to the results of body weight/gain, feed consumption/utilization, clinical signs, mortality, ophthalmology, clinical pathology (hematology, prothrombin time, urinalysis, serum chemistry), organ weights, and gross and microscopic pathology. Under the conditions of this study, these results indicated that maize GG2 is as safe as the non-GM maize in this 90-day feeding study.
Collapse
Affiliation(s)
- Qinghong Zhou
- Department of Toxicology, Tianjin Centers for Disease Control and Prevention, Tianjin, 300011, China
| | - Shufei Li
- Department of Toxicology, Tianjin Centers for Disease Control and Prevention, Tianjin, 300011, China
| | - Miao Zhao
- Department of Toxicology, Tianjin Centers for Disease Control and Prevention, Tianjin, 300011, China
| | - Yinghua Liu
- Department of Toxicology, Tianjin Centers for Disease Control and Prevention, Tianjin, 300011, China
| | - Ning He
- Department of Toxicology, Tianjin Centers for Disease Control and Prevention, Tianjin, 300011, China
| | - Xiaoli Zhou
- Department of Toxicology, Tianjin Centers for Disease Control and Prevention, Tianjin, 300011, China
| | - Dianming Zhou
- Department of Toxicology, Tianjin Centers for Disease Control and Prevention, Tianjin, 300011, China
| | - Zhiyong Qian
- Department of Toxicology, Tianjin Centers for Disease Control and Prevention, Tianjin, 300011, China.
| |
Collapse
|
3
|
Zimmermann CS, Snow RF, Wilson-Mifsud B, LeRoy K, Boeckman C, Huang E, Mathesius CA, Roper JM, Hurley BP. Evaluation of an in vitro experimental platform of human polarized intestinal epithelial monolayers for the hazard assessment of insecticidal proteins. Food Chem Toxicol 2023; 181:114106. [PMID: 37852351 DOI: 10.1016/j.fct.2023.114106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/13/2023] [Accepted: 10/14/2023] [Indexed: 10/20/2023]
Abstract
Previous work demonstrated the utility of using human-derived intestinal epithelial cell (IEC) lines cultured as polarized monolayers on Transwell® filters to differentiate between hazardous and non-hazardous proteins. The current study seeks to further resolve appropriate concentrations for evaluating proteins of unknown hazard potential using the IEC experimental platform and leverages these parameters for evaluating the potential toxicity of insecticidal proteins characteristic of those expressed in genetically modified (GM) agricultural biotechnology crops. To establish optimal test protein concentrations, effects of several known hazardous (C. perfringens epsilon toxin, Listeriolysin O, Phaseolus vulgaris erythroagglutinin, E. coli Shiga toxin 1, C. difficile Toxin B and wheat germ agglutinin) and non-hazardous (Ara-h2, β-lactoglobulin, fibronectin and Rubisco) proteins on IEC barrier integrity and cell viability were evaluated at concentration ranges. Two insecticidal proteins (AfIP-1A and AfIP-1B) were evaluated for effects in the IEC assay, a seven-day insecticidal bioassay, and assessed in a high-dose 14-day acute oral toxicity study in mice. The results obtained from the human in vitro IEC assay were consistent with results obtained from an in vivo acute oral toxicity study, both demonstrating that the combination of AfIP-1A and AfIP-1B do not exhibit any identifiable harmful impacts on mammalian cells.
Collapse
Affiliation(s)
| | - Ryan F Snow
- Mucosal Immunology & Biology Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Brittany Wilson-Mifsud
- Mucosal Immunology & Biology Research Center, Massachusetts General Hospital, Boston, MA, USA
| | | | | | | | | | | | - Bryan P Hurley
- Mucosal Immunology & Biology Research Center, Massachusetts General Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
4
|
Zhang J, Liu Y, Li S, Zhou Q, Zhang L, Zhang S, Zhou X, Wu C, Qian ZY. A 90-day rodent feeding study with grain for genetically modified maize L4 conferring insect resistance and glyphosate tolerance. Food Chem Toxicol 2023; 176:113733. [PMID: 36966880 DOI: 10.1016/j.fct.2023.113733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 03/06/2023] [Accepted: 03/15/2023] [Indexed: 04/16/2023]
Abstract
A 90-day rat feeding study was performed to conduct a safety assessment on L4, a multi-gene genetically modified maize, conferring "Bt" insect resistance and glyphosate tolerance. A total of 140 Wistar rats were assigned to seven groups, 10 animals/group/sex, which comprised three genetically modified groups fed diets containing different concentrations of L4, three corresponding non-genetically modified groups fed diets containing different concentrations of zheng58 (parent plants), and a basal diet group fed the standard basal diet for 13 weeks. The fed diets contained L4 and Zheng58 at w/w% percentages of 12.5%, 25.0%, and 50% of the total. Animals were evaluated on some research parameters, including general behaviour, body weight/gain, feed consumption/efficiency, ophthalmology, clinical pathology, organ weights, and histopathology. Throughout the feeding trial, all animals were in good condition. No mortality and no biologically relevant effects or toxicologically significant alterations were observed in the total research parameters of the rats in the genetically modified groups compared with those in the basal diet group or their corresponding non-genetically modified groups. No adverse effects were observed in any of the animals. The results indicated that L4 is as safe and wholesome as conventional, non-genetically modified control maize.
Collapse
Affiliation(s)
- Jing Zhang
- Tianjin Centers for Disease Control and Prevention, Tianjin, 300011, China
| | - Yinghua Liu
- Tianjin Centers for Disease Control and Prevention, Tianjin, 300011, China
| | - Shufei Li
- Tianjin Centers for Disease Control and Prevention, Tianjin, 300011, China
| | - Qinghong Zhou
- Tianjin Centers for Disease Control and Prevention, Tianjin, 300011, China
| | - Li Zhang
- Tianjin Centers for Disease Control and Prevention, Tianjin, 300011, China
| | - Shujing Zhang
- Tianjin Centers for Disease Control and Prevention, Tianjin, 300011, China
| | - Xiaoli Zhou
- Tianjin Centers for Disease Control and Prevention, Tianjin, 300011, China
| | - Chao Wu
- Tianjin Centers for Disease Control and Prevention, Tianjin, 300011, China
| | - Zhi Yong Qian
- Tianjin Centers for Disease Control and Prevention, Tianjin, 300011, China.
| |
Collapse
|
5
|
Zhang D, Dong S, Zhang Z, Yu C, Xu J, Wang C, Liu Y. Evaluation of the impact of transgenic maize BT799 on growth, development and reproductive function of Sprague-Dawley rats in three generations. Food Chem Toxicol 2021; 160:112776. [PMID: 34953966 DOI: 10.1016/j.fct.2021.112776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 12/06/2021] [Accepted: 12/20/2021] [Indexed: 11/28/2022]
Abstract
BT799 was Bacillus thuringiensis-genetic modified (GM) maize, and Sprague-Dawley (SD) rats were treated with different diet formulations containing BT799 maize grain (33% and 66%) or its non-transgenic Zhengdan 958 (ZD958, 33% and 66%). The feeding lasted for 10 (P)/14 (F1 and F2) weeks. The reproductive capacity and pathological responses were detected in each generation of rats fed with BT799 and ZD958. During the growth and development of parental rats, each group showed the same trend in body weight gain and food intake, with a few fluctuations at individual time points. No statistically significant difference was observed in reproductive data (copulation index, fertility index, and live birth rate) of rats fed with transgenic maize compared with non-transgenic maize. We observed some apparent changes in reproductive data (sperm numbers and motility) and pathological responses (organ relative weights, hematological parameters, serum chemistry parameters, and sex hormone levels) among rats fed with BT799 maize grain. However, these differences were within the laboratory's historical normal range of control SD rats and not maize grain dose-dependent. These changes were not considered to be adverse or toxic. No significant difference in macroscopic or histological adverse effects was observed between rats consuming transgenic BT799 diet and non-transgenic diet. In conclusion, the long-term intake of BT799 maize was as safe as the corresponding non-transgenic maize for three-generation SD rats.
Collapse
Affiliation(s)
- Dini Zhang
- Key Laboratory on Biosafety, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Shanshan Dong
- Key Laboratory on Biosafety, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Zhenhua Zhang
- Key Laboratory on Biosafety, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Cigang Yu
- Key Laboratory on Biosafety, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Jianya Xu
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Changyong Wang
- Key Laboratory on Biosafety, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China.
| | - Yan Liu
- Key Laboratory on Biosafety, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China.
| |
Collapse
|
6
|
Anderson JA, Herman RA, Carlson A, Mathesius C, Maxwell C, Mirsky H, Roper J, Smith B, Walker C, Wu J. Hypothesis-based food, feed, and environmental safety assessment of GM crops: A case study using maize event DP-202216-6. GM CROPS & FOOD 2021; 12:282-291. [PMID: 33472515 PMCID: PMC7833765 DOI: 10.1080/21645698.2020.1869492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Event DP-2Ø2216-6 (referred to as DP202216 maize) was genetically modified to increase and extend the expression of the introduced zmm28 gene relative to endogenous zmm28 gene expression, resulting in plants with enhanced grain yield potential. The zmm28 gene expresses the ZMM28 protein, a MADS-box transcription factor. The safety assessment of DP202216 maize included an assessment of the potential hazard of the ZMM28 protein, as well as an assessment of potential unintended effects of the genetic insertion on agronomics, composition, and nutrition. The history of safe use (HOSU) of the ZMM28 protein was evaluated and a bioinformatics approach was used to compare the deduced amino acid sequence of the ZMM28 protein to databases of known allergens and toxins. Based on HOSU and the bioinformatics assessment, the ZMM28 protein was determined to be unlikely to be either allergenic or toxic to humans. The composition of DP202216 maize forage and grain was comparable to non-modified forage and grain, with no unintended effects on nutrition or food and feed safety. Additionally, feeding studies with broiler chickens and rats demonstrated a low likelihood of unintentional alterations in nutrition and low potential for adverse effects. Furthermore, the agronomics observed for DP202216 maize and non-modified maize were comparable, indicating that the likelihood of increased weediness or invasiveness of DP202216 maize in the environment is low. This comprehensive review serves as a reference for regulatory agencies and decision-makers in countries where authorization of DP202216 maize will be pursued, and for others interested in food, feed, and environmental safety.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Jingrui Wu
- Corteva Agriscience™, Johnston, Iowa, USA
| |
Collapse
|
7
|
Smith BL, Zimmermann CS, Carlson AB, Mathesius CA, Mukerji P, McNaughton JL, Walker CA, Roper JM. Evaluation of the safety and nutritional equivalency of maize grain with genetically modified event DP-Ø23211-2. GM CROPS & FOOD 2021; 12:396-408. [PMID: 34459369 PMCID: PMC8409786 DOI: 10.1080/21645698.2021.1963614] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 07/27/2021] [Accepted: 07/29/2021] [Indexed: 12/01/2022]
Abstract
Feeding studies were conducted with rats and broiler chickens to assess the safety and nutrition of maize grain containing event DP-Ø23211-2 (DP23211), a newly developed trait-pyramid product for corn rootworm management. Diets containing 50% ground maize grain from DP23211, non-transgenic control, or non-transgenic reference hybrids (P0928, P0993, and P1105) were fed to Crl:CD®(SD) rats for 90 days. Ross 708 broilers were fed phase diets containing up to 67% maize grain from each source for 42 days. Body weight, gain, and feed conversion were determined for comparisons between animals fed DP23211 and control diets in each study. Additional measures included clinical and neurobehavioral evaluations, ophthalmology, clinical pathology, organ weights, and gross and microscopic pathology for rats, and carcass parts and select organ yields for broilers. Reference groups were included to determine if any observed significant differences between DP23211 and control groups were likely due to natural variation. No diet-related effects on mortality or evaluation measures were observed between animal fed diets produced with DP23211 maize grain and animal fed diets produced with control maize grain. These studies show that maize grain containing event DP-Ø23211-2 is as safe and nutritious as non-transgenic maize grains when fed in nutritionally adequate diets. The results are consistent with previously published studies, providing further demonstration of the absence of hazards from edible-fraction consumption of genetically modified plants.
Collapse
Affiliation(s)
- Brenda L. Smith
- Regulatory & Stewardship, Corteva Agriscience, Johnston, IA, USA
| | | | - Anne B. Carlson
- Regulatory & Stewardship, Corteva Agriscience, Johnston, IA, USA
| | | | - Pushkor Mukerji
- Regulatory & Stewardship, Corteva Agriscience, Newark, DE, USA
| | | | - Carl A. Walker
- Regulatory & Stewardship, Corteva Agriscience, Johnston, IA, USA
| | - Jason M. Roper
- Regulatory & Stewardship, Corteva Agriscience, Newark, DE, USA
| |
Collapse
|