1
|
Cavinato S, Scaggion A, Paiusco M. Technical note: A software tool to extract complexity metrics from radiotherapy treatment plans. Med Phys 2024; 51:8602-8612. [PMID: 39186793 DOI: 10.1002/mp.17365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 08/28/2024] Open
Abstract
BACKGROUND Complexity metrics are mathematical quantities designed to quantify aspects of radiotherapy treatment plans that may affect both their deliverability and dosimetric accuracy. Despite numerous studies investigating their utility, there remains a notable absence of shared tools for their extraction. PURPOSE This study introduces UCoMX (Universal Complexity Metrics Extractor), a software package designed for the extraction of complexity metrics from the DICOM-RT plan files of radiotherapy treatments. METHODS UCoMX is developed around two extraction engines: VCoMX (VMAT Complexity Metrics Extractor) for VMAT/IMRT plans, and TCoMX (Tomotherapy Complexity Metrics Extractor) tailored for Helical Tomotherapy plans. The software, built using Matlab, is freely available in both Matlab-based and stand-alone versions. More than 90 complexity metrics, drawn from relevant literature, are implemented in the package: 43 for VMAT/IMRT and 51 for Helical Tomotherapy. RESULTS The package is designed to read DICOM-RT plan files generated by most commercially available Treatment Planning Systems (TPSs), across various treatment units. A reference dataset containing VMAT, IMRT, and Helical Tomotherapy plans is provided to serve as a reference for comparing UCoMX with other in-house systems available at other centers. CONCLUSION UCoMX offers a straightforward solution for extracting complexity metrics from radiotherapy plans. Its versatility is enhanced through different versions, including Matlab-based and stand-alone, and its compatibility with a wide range of commercially available TPSs and treatment units. UCoMX presents a free, user-friendly tool empowering researchers to compute the complexity of treatment plans efficiently.
Collapse
Affiliation(s)
- Samuele Cavinato
- Medical Physics Department, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Alessandro Scaggion
- Medical Physics Department, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Marta Paiusco
- Medical Physics Department, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| |
Collapse
|
2
|
Corradini NA, Vite C, Urso P. Performance of binary MLC using real-time optical sensor feedback system. J Appl Clin Med Phys 2024; 25:e14506. [PMID: 39250633 PMCID: PMC11539967 DOI: 10.1002/acm2.14506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/08/2024] [Accepted: 07/29/2024] [Indexed: 09/11/2024] Open
Abstract
The Radixact system (Accuray Inc., Sunnyvale, CA) is the latest platform release based on the TomoTherapy technology. The most recent system does not apply a leaf latency model correction after plan optimization to ensure the correct MLC leaf-open time (LOT) agreement between the TPS and machine delivery. The MLC uses optical sensors to measure the delivered LOTs in real-time and individual leaf-specific latency corrections are made to ensure agreement. The aim of this study was to assess the performance of the Radixact MLC with leaf-specific latency correction using the optical sensor's real-time feedback. Specifically, the study statistically evaluated the MLC LOT errors observed from 290 plan-specific quality assurance (PSQA) measurements. Repeatability testing was performed to quantify the uncertainty in the MLC feedback system delivery by analyzing > 1300 delivered treatment fractions throughout the course of radiotherapy. The clinical impact was evaluated by estimating the resulting dose difference in the patient targets due to the measured plan latencies. Our study measured an average plan latency equal to 2.0 ± 0.4 ms (0.6% ± 0.2%) for 290 PSQAs. Repeatability tests showed a mean standard deviation in plan latencies measuring 0.05 ms (0.02%). The deviation from the TPS in the mean target dose due to the plan latencies was estimated to be 0.0% ± 0.2% (range: -0.7%-1.1%). The current MLC system with real-time optical sensor feedback is capable of accurately delivering the TPS-generated sinograms. Repeatability test results showed that the system allows for high reliability in daily sinogram delivery. The MLC latency deviations were shown to have minimal clinical impact on the overall target dosimetry.
Collapse
Affiliation(s)
- Nathan A. Corradini
- Radiotherapy Center, Gruppo Ospedaliero MoncuccoClinica MoncuccoLuganoSwitzerland
| | - Cristina Vite
- Radiotherapy Center, Gruppo Ospedaliero MoncuccoClinica MoncuccoLuganoSwitzerland
| | - Patrizia Urso
- Radiotherapy Center, Gruppo Ospedaliero MoncuccoClinica MoncuccoLuganoSwitzerland
| |
Collapse
|
3
|
Chen Q, Rong Y, Burmeister JW, Chao EH, Corradini NA, Followill DS, Li XA, Liu A, Qi XS, Shi H, Smilowitz JB. AAPM Task Group Report 306: Quality control and assurance for tomotherapy: An update to Task Group Report 148. Med Phys 2023; 50:e25-e52. [PMID: 36512742 DOI: 10.1002/mp.16150] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 09/22/2022] [Accepted: 11/28/2022] [Indexed: 12/15/2022] Open
Abstract
Since the publication of AAPM Task Group (TG) 148 on quality assurance (QA) for helical tomotherapy, there have been many new developments on the tomotherapy platform involving treatment delivery, on-board imaging options, motion management, and treatment planning systems (TPSs). In response to a need for guidance on quality control (QC) and QA for these technologies, the AAPM Therapy Physics Committee commissioned TG 306 to review these changes and make recommendations related to these technology updates. The specific objectives of this TG were (1) to update, as needed, recommendations on tolerance limits, frequencies and QC/QA testing methodology in TG 148, (2) address the commissioning and necessary QA checks, as a supplement to Medical Physics Practice Guidelines (MPPG) with respect to tomotherapy TPS and (3) to provide risk-based recommendations on the new technology implemented clinically and treatment delivery workflow. Detailed recommendations on QA tests and their tolerance levels are provided for dynamic jaws, binary multileaf collimators, and Synchrony motion management. A subset of TPS commissioning and QA checks in MPPG 5.a. applicable to tomotherapy are recommended. In addition, failure mode and effects analysis has been conducted among TG members to obtain multi-institutional analysis on tomotherapy-related failure modes and their effect ranking.
Collapse
Affiliation(s)
- Quan Chen
- Radiation Oncology, City of Hope Medical Center, Duarte, California, USA
| | - Yi Rong
- Department of Radiation Oncology, Mayo Clinic Hospitals, Phoenix, Arizona, USA
| | - Jay W Burmeister
- Karmanos Cancer Center, Gershenson R.O.C., Detroit, Michigan, USA
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | | | | | - David S Followill
- Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - X Allen Li
- Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - An Liu
- Radiation Oncology, City of Hope Medical Center, Duarte, California, USA
| | - X Sharon Qi
- Radiation Oncology, UCLA School of Medicine, Los Angeles, California, USA
| | - Hairong Shi
- Radiation Oncology, Oklahoma Cancer Specialists and Research Institute, Tulsa, Oklahoma, USA
| | - Jennifer B Smilowitz
- Human Oncology and Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
4
|
Cavinato S, Fusella M, Paiusco M, Scaggion A. Quantitative assessment of helical tomotherapy plans complexity. J Appl Clin Med Phys 2022; 24:e13781. [PMID: 36523156 PMCID: PMC9860001 DOI: 10.1002/acm2.13781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/20/2022] [Accepted: 08/16/2022] [Indexed: 12/23/2022] Open
Abstract
PURPOSE An unnecessary amount of complexity in radiotherapy plans affects the efficiency of the treatments, increasing the uncertainty of dose deposition and its susceptibility to anatomical changes or setup errors. To date, tools for quantitatively assessing the complexity of tomotherapy plans are still limited. In this study, new metrics were developed to characterize different aspects of helical tomotherapy (HT) plans, and their actual effectiveness was investigated. METHODS The complexity of 464 HT plans delivered on a Radixact platform was evaluated. A new set of metrics was devised to assess beam geometry, leaf opening time (LOT) variability, and modulation over space and time. Sixty-five complexity metrics were extracted from the dataset using the newly in-house developed software library TCoMX: 29 metrics already proposed in the literature and 36 newly developed metrics. Their reciprocal relation is discussed. Their effectiveness was evaluated through correlation analyses with patient-specific quality assurance (PSQA) results. RESULTS An inverse linear relation was found between the average number of closed leaves and the average number of MLC openings and closures as well as between the choice of the modulation factor and the discontinuity of the field, suggesting some intrinsic link between the LOT distribution and the geometrical complexity of the MLC openings. The newly proposed metrics were at least as correlated as the existing ones to the PSQA results. Metrics describing the geometrical complexity of the MLC openings showed the strongest connection to the PSQA results. Significant correlations were found between at least one of the new metrics and the γ index passing rate P R γ % ( 3 % G , 2 mm ) $P{R}_{\gamma}\%(3\%G,2\textit{mm})$ for six out of seven groups of plans considered. CONCLUSION The new metrics proposed were shown to be effective to characterize more comprehensively the complexity of HT plans. A software library for their automatic extraction is described and made available.
Collapse
Affiliation(s)
- Samuele Cavinato
- Medical Physics DepartmentVeneto Institute of Oncology IOV‐IRCCSPadovaItaly,Dipartimento di Fisica e Astronomia “G. Galilei”Università degli Studi di PadovaPadovaItaly
| | - Marco Fusella
- Medical Physics DepartmentVeneto Institute of Oncology IOV‐IRCCSPadovaItaly
| | - Marta Paiusco
- Medical Physics DepartmentVeneto Institute of Oncology IOV‐IRCCSPadovaItaly
| | | |
Collapse
|
5
|
TomoEQA: Dose verification for patient-specific quality assurance in helical tomotherapy using an exit detector. Phys Med 2021; 82:1-6. [PMID: 33508632 DOI: 10.1016/j.ejmp.2020.12.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 12/22/2020] [Accepted: 12/25/2020] [Indexed: 11/23/2022] Open
Abstract
PURPOSE Existing phantom-less quality assurance (QA) platforms does not provide patient-specific QA for helical tomotherapy (HT). A new system, called TomoEQA, is presented to facilitate this using the leaf open time (LOT) of a binary multi-leaf collimator, as measured by an exit detector. METHODS TomoEQA was designed to provide measurement-based LOTs based on detector data and to generate a new digital imaging and communication in medicine (DICOM) dataset that includes the measured LOTs for use by secondary check platforms. To evaluate the system, 20 patient-specific QAs were performed using the program in Mobius3D software, and the results were compared to conventional phantom-based QA results. RESULTS From our assessment, most of the differences between the planned and measured (or calculated) data, excluding one case, were within the acceptance criteria comparing with those of conventional QA. Regarding the gamma analysis, all results considered in this study were within the acceptance criteria. In addition, the developed system was performed for a failed case and showed approximately the same trends as the conventional approach. CONCLUSIONS TomoEQA could perform patient-specific QAs of HT using Mobius3D and provide reliable patient-specific QAs results by evaluating point dose errors and 3D gamma passing rates. TomoEQA could also distinguish whether an intensity-modulated radiation therapy plan failed or not.
Collapse
|
6
|
Howitz S, Wiezorek T, Wittig A, Vorwerk H, Zink K. Fluence-weighted average subfield size in helical TomoTherapy. Z Med Phys 2019; 29:337-348. [PMID: 31056376 DOI: 10.1016/j.zemedi.2019.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 03/29/2019] [Accepted: 03/30/2019] [Indexed: 11/25/2022]
Abstract
INTRODUCTION Helical TomoTherapy allows a highly conformal dose distribution to complex target geometries with a good protection of organs at risk. However, the small field sizes associated with this method are a possible source of dosimetrical uncertainties. The IAEA has published detector-specific field output correction factors for static fields of the TomoTherapy in the TRS483. This work investigates the average subfield size of helical TomoTherapy plans. MATERIAL AND METHODS A new parameter for helical TomoTherapy was defined - the fluence-weighted average subfield size. The subfield sizes were extracted from the leaf-opening time sinograms in the RT-plan files for 30 clinical prostate and head and neck plans and were put in relation to Delat4 Phantom+ measurement results. Additionally the influence of planning parameters on the subfield size was studied by varying the modulation factor, number of iterations and pitch in the dose optimization and calculation for three different clinical indications H&N, prostate and rectum cancer. Selected plans were dosimetrically verified by Delta4 measurements to examine the reliability in dependence of the average subfield size. Furthermore, the impact of the planning parameters on a) the dose distribution, with regard to the planning target volume and regions at risks, and b) machine characteristics such as delivery time, actual modulation factor and leaf-opening times were evaluated. RESULTS The average equivalent square subfield lengths (s¯eq) of the two investigated indications did not differ significantly - prostate plans: 2.75±0.14cm and H&N plans: 2.70±0.16cm, both with a jaw width of 2.5cm. No correlation between field size and measured dose deviation was detected. The number of iterations and the modulation factor have a considerable influence on the average subfield size. The higher the planned modulation factor and the more iterations are used during optimization, the smaller is the subfield size. In our pilot study plans were calculated with field sizes s¯eq between 4.2cm and 1.7cm, with a jaw width of 2.5cm. Again, the measurement results of Delta4 showed no significant deviation from the doses calculated by the TomoTherapy planning system for the whole range of subfield sizes, and no significant correlation between field sizes and dose deviations was found. As expected, the clinical dose distribution improved with increasing modulation factor and an increasing number of iterations. The compromise between an improved dose distribution and smaller s¯eq was shown. CONCLUSION In this work, a method was presented to determine the average subfield size for helical TomoTherapy plans. The response of the Delta4 did not show any dependence on field size in the range of the field sizes covered by the studied plans. The influence of the subfield sizes on other dosimetry systems remains to be investigated.
Collapse
Affiliation(s)
- Simon Howitz
- University Hospital Jena, Department of Radiation Oncology, Germany; Institute for Medical Physics and Radiation Protection IMPS, University of Applied Science - THM, Giessen, Germany; Philipps-University, Marburg, Germany.
| | - Tilo Wiezorek
- University Hospital Jena, Department of Radiation Oncology, Germany
| | - Andrea Wittig
- University Hospital Jena, Department of Radiation Oncology, Germany
| | | | - Klemens Zink
- Institute for Medical Physics and Radiation Protection IMPS, University of Applied Science - THM, Giessen, Germany; University Medical Center Giessen-Marburg, Department of Radiation Oncology, Germany; Frankfurt Institute for Advanced Studies (FIAS), Frankfurt, Germany
| |
Collapse
|
7
|
Schopfer M, Bochud FO, Bourhis J, Moeckli R. In air and in vivo measurement of the leaf open time in tomotherapy using the on-board detector pulse-by-pulse data. Med Phys 2019; 46:1963-1971. [PMID: 30810233 DOI: 10.1002/mp.13459] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 02/11/2019] [Accepted: 02/19/2019] [Indexed: 11/08/2022] Open
Abstract
PURPOSE We developed an algorithm to measure the leaf open times (LOT) from the on-board detector (OBD) pulse-by-pulse data in tomotherapy. We assessed the feasibility of measuring the LOTs in dynamic jaw mode and validated the algorithm on machine QA and clinical data. Knowledge of the actual LOTs is a basis toward calculating the delivered dose and performing efficient phantom-less delivery quality assurance (DQA) controls of the multileaf collimator (MLC). In tomotherapy, the quality of the delivered dose depends on the correct performance of the MLC, hence on the accuracy of the LOTs. MATERIALS AND METHODS In the detector signal, the period of time during which a leaf is open corresponds to a high intensity region. The algorithm described here locally normalizes the detector signal and measures the FWHM of the high intensity regions. The Daily QA module of the TomoTherapy Quality Assurance (TQA) tool measures LOT errors. The Daily QA detector data were collected during 9 days on two tomotherapy units. The errors yielded by the method were compared to these reported by the Daily QA module. In addition, clinical data were acquired on the two units (25 plans in total), in air without attenuation material in the beam path and in vivo during a treatment fraction. The study included plans with fields of all existing sizes (1.05, 2.51, 5.05 cm). The collimator jaws were in dynamic mode (TomoEDGETM ). The feasibility of measuring the LOTs was assessed with respect to the jaw aperture. RESULTS The mean discrepancy between LOTs measured by the algorithm and those measured by TQA was of 0 ms, with a standard deviation of 0.3 ms. The LOT measured by the method had thus an uncertainty of 1 ms with a confidence level of 99%. In 5.05 cm dynamic jaw procedures, the detector is in the beam umbra at the beginning and at the end of the delivery. In such procedures, the algorithm could not measure the LOTs at jaw apertures between 7 and maximum 12.4 mm. Otherwise, no measurement error due to the jaw movement was observed. No LOT measurement difference between air and in vivo data was observed either. CONCLUSION The method we propose is reliable. It can equivalently measure the LOTs from data acquired in air or in vivo. It handles fully the static procedures and the 2.51 cm dynamic procedures. It handles partially the 5.05 cm dynamic procedures. The limitation was evaluated with respect to the jaw aperture.
Collapse
Affiliation(s)
- Mathieu Schopfer
- Institute of Radiation Physics, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - François O Bochud
- Institute of Radiation Physics, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Jean Bourhis
- Radiation-oncology department, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Raphaël Moeckli
- Institute of Radiation Physics, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
8
|
Hong CS, Ju SG, Kim M, Kim JI, Kim JM, Suh TS, Han Y, Ahn YC, Choi DH, Nam H, Park HC. Dosimetric effects of multileaf collimator leaf width on intensity-modulated radiotherapy for head and neck cancer. Med Phys 2014; 41:021712. [PMID: 24506603 DOI: 10.1118/1.4860155] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE The authors evaluated the effects of multileaf collimator (MLC) leaf width (2.5 vs. 5 mm) on dosimetric parameters and delivery efficiencies of intensity-modulated radiation therapy (IMRT) and volumetric-modulated arc therapy (VMAT) for head and neck (H&N) cancers. METHODS The authors employed two types of mock phantoms: large-sized head and neck (LH&N) and small-sized C-shape (C-shape) phantoms. Step-and-shoot IMRT (S&S_IMRT) and VMAT treatment plans were designed with 2.5- and 5.0-mm MLC for both C-shape and LH&N phantoms. Their dosimetric characteristics were compared in terms of the conformity index (CI) and homogeneity index (HI) for the planning target volume (PTV), the dose to organs at risk (OARs), and the dose-spillage volume. To analyze the effects of the field and arc numbers, 9-field IMRT (9F-IMRT) and 13-field IMRT (13F-IMRT) plans were established for S&S_IMRT. For VMAT, single arc (VMAT1) and double arc (VMAT2) plans were established. For all plans, dosimetric verification was performed using the phantom to examine the relationship between dosimetric errors and the two leaf widths. Delivery efficiency of the two MLCs was compared in terms of beam delivery times, monitor units (MUs) per fraction, and the number of segments for each plan. RESULTS 2.5-mm MLC showed better dosimetric characteristics in S&S_IMRT and VMAT for C-shape, providing better CI for PTV and lower spinal cord dose and high and intermediate dose-spillage volume as compared with the 5-mm MLC (p < 0.05). However, no significant dosimetric benefits were provided by the 2.5-mm MLC for LH&N (p > 0.05). Further, beam delivery efficiency was not observed to be significantly associated with leaf width for either C-shape or LH&N. However, MUs per fraction were significantly reduced for the 2.5-mm MLC for the LH&N. In dosimetric error analysis, absolute dose evaluations had errors of less than 3%, while the Gamma passing rate was greater than 95% according to the 3%/3 mm criteria. There were no significant differences in dosimetric error between the 2.5- and 5-mm MLCs. CONCLUSIONS As compared with MLC of 5-mm leaf widths, MLC with finer leaf width (2.5-mm) can provide better dosimetric outcomes in IMRT for C-shape. However, the MLC leaf width may only have minor effects on dosimetric characteristics in IMRT for LH&N. The results of the present study will serve as a useful assessment standard when assigning or introducing equipment for the treatment of H&N cancers.
Collapse
Affiliation(s)
- Chae-Seon Hong
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 135-710, South Korea
| | - Sang Gyu Ju
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 135-710, South Korea
| | - Minkyu Kim
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 135-710, South Korea
| | - Jung-In Kim
- Department of Radiation Oncology, Kangbuk Samsung Hospital, Sungkyunkwhan University School of Medicine, Seoul 110-746, South Korea
| | - Jin Man Kim
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 135-710, South Korea
| | - Tae-Suk Suh
- Department of Biomedical Engineering and Research Institute of Biomedical Engineering, The Catholic University of Korea, Seoul 137-701, South Korea
| | - Youngyih Han
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 135-710, South Korea
| | - Yong Chan Ahn
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 135-710, South Korea
| | - Doo Ho Choi
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 135-710, South Korea
| | - Heerim Nam
- Department of Radiation Oncology, Kangbuk Samsung Hospital, Sungkyunkwhan University School of Medicine, Seoul 110-746, South Korea
| | - Hee Chul Park
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 135-710, South Korea
| |
Collapse
|
9
|
Klüter S, Schubert K, Lissner S, Sterzing F, Oetzel D, Debus J, Schlegel W, Oelfke U, Nill S. Independent calculation of dose distributions for helical tomotherapy using a conventional treatment planning system. Med Phys 2014; 41:081709. [PMID: 25086519 DOI: 10.1118/1.4887779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE The dosimetric verification of treatment plans in helical tomotherapy usually is carried out via verification measurements. In this study, a method for independent dose calculation of tomotherapy treatment plans is presented, that uses a conventional treatment planning system with a pencil kernel dose calculation algorithm for generation of verification dose distributions based on patient CT data. METHODS A pencil beam algorithm that directly uses measured beam data was configured for dose calculation for a tomotherapy machine. Tomotherapy treatment plans were converted into a format readable by an in-house treatment planning system by assigning each projection to one static treatment field and shifting the calculation isocenter for each field in order to account for the couch movement. The modulation of the fluence for each projection is read out of the delivery sinogram, and with the kernel-based dose calculation, this information can directly be used for dose calculation without the need for decomposition of the sinogram. The sinogram values are only corrected for leaf output and leaf latency. Using the converted treatment plans, dose was recalculated with the independent treatment planning system. Multiple treatment plans ranging from simple static fields to real patient treatment plans were calculated using the new approach and either compared to actual measurements or the 3D dose distribution calculated by the tomotherapy treatment planning system. In addition, dose-volume histograms were calculated for the patient plans. RESULTS Except for minor deviations at the maximum field size, the pencil beam dose calculation for static beams agreed with measurements in a water tank within 2%/2 mm. A mean deviation to point dose measurements in the cheese phantom of 0.89% ± 0.81% was found for unmodulated helical plans. A mean voxel-based deviation of -0.67% ± 1.11% for all voxels in the respective high dose region (dose values >80%), and a mean local voxel-based deviation of -2.41% ± 0.75% for all voxels with dose values >20% were found for 11 modulated plans in the cheese phantom. Averaged over nine patient plans, the deviations amounted to -0.14% ± 1.97% (voxels >80%) and -0.95% ± 2.27% (>20%, local deviations). For a lung case, mean voxel-based deviations of more than 4% were found, while for all other patient plans, all mean voxel-based deviations were within ± 2.4%. CONCLUSIONS The presented method is suitable for independent dose calculation for helical tomotherapy within the known limitations of the pencil beam algorithm. It can serve as verification of the primary dose calculation and thereby reduce the need for time-consuming measurements. By using the patient anatomy and generating full 3D dose data, and combined with measurements of additional machine parameters, it can substantially contribute to overall patient safety.
Collapse
Affiliation(s)
- Sebastian Klüter
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany, and Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany, and German Consortium for Translational Cancer Research (DKTK), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - Kai Schubert
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany, and Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany, and German Consortium for Translational Cancer Research (DKTK), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - Steffen Lissner
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany, and Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany, and German Consortium for Translational Cancer Research (DKTK), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - Florian Sterzing
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany, and Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany, and German Consortium for Translational Cancer Research (DKTK), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - Dieter Oetzel
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany, and Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany, and German Consortium for Translational Cancer Research (DKTK), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - Jürgen Debus
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany, and Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany, and German Consortium for Translational Cancer Research (DKTK), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - Wolfgang Schlegel
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Uwe Oelfke
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany and Joint Department of Physics at The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London SM2 5NG, United Kingdom
| | - Simeon Nill
- Joint Department of Physics at The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London SM2 5NG, United Kingdom
| |
Collapse
|