1
|
Tian L, Mao R, Li D, Guo W, Li B, Lou Z, Guo L. Superficial Dosimetry Study of the Frequency of Bolus Using in Volumetric Modulated Arc Therapy after Modified Radical Mastectomy. Technol Cancer Res Treat 2024; 23:15330338241264848. [PMID: 39129335 PMCID: PMC11322943 DOI: 10.1177/15330338241264848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024] Open
Abstract
OBJECTIVE To investigate the effect of various frequencies of bolus use on the superficial dose of volumetric modulated arc therapy after modified radical mastectomy for breast cancer. METHODS Based on the computed tomography images of a female anthropomorphic breast phantom, a 0.5 cm silicone-based 3D-printed bolus was created. Nine points evenly distributed on the breast skin were selected for assessing the skin dose, and a volume of subcutaneous lymphatic drainage of the breast (noted as ROI2-3) was delineated for assessing the chest wall dose. The treatment plans with and without bolus (plan_wb and plan_nb) were separately designed using the prescription of 50 Gy in 25 fractions following the standard dose constraints of the adjacent organ at risk. To characterize the accuracy of treatment planning system (TPS) dose calculations, the doses of the nine points were measured five times by thermoluminescence dosimeters (TLDs) and then were compared with the TPS calculated dose. RESULTS Compared with Plan_nb (144.46 ± 10.32 cGy), the breast skin dose for plan_wb (208.75 ± 4.55 cGy) was significantly increased (t = -18.56, P < 0.001). The deviation of skin dose was smaller for Plan_wb, and the uniformity was significantly improved. The calculated value of TPS was in good agreement with the measured value of TLD, and the maximum deviation was within 5%. Skin and ROI2-3 doses were significantly increased with increasing frequencies of bolus applications. The mean dose of the breast skin and ROI2-3 for 15 and 23 times bolus applications were 45.33 Gy, 50.88 Gy and 50.36 Gy, 52.39 Gy, respectively. CONCLUSION 3D printing bolus can improve the radiation dose and the accuracy of the planned dose. Setting Plan_wb to 15 times for T1-3N+ breast cancer patients and 23 times for T4N+ breast cancer patients can meet the clinical need. Quantitative analysis of the bolus application frequency for different tumor stages can provide a reference for clinical practice.
Collapse
Affiliation(s)
- Lingling Tian
- Department of Radiation, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Ronghu Mao
- Department of Radiation, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Dingjie Li
- Department of Radiation, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Wei Guo
- Department of Radiation, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Bing Li
- Department of Radiation, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Zhaoyang Lou
- Department of Radiation, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Leiming Guo
- Department of Radiation, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
2
|
Benzazon N, Colnot J, de Kermenguy F, Achkar S, de Vathaire F, Deutsch E, Robert C, Diallo I. Analytical models for external photon beam radiotherapy out-of-field dose calculation: a scoping review. Front Oncol 2023; 13:1197079. [PMID: 37228501 PMCID: PMC10203488 DOI: 10.3389/fonc.2023.1197079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023] Open
Abstract
A growing body of scientific evidence indicates that exposure to low dose ionizing radiation (< 2 Gy) is associated with a higher risk of developing radio-induced cancer. Additionally, it has been shown to have significant impacts on both innate and adaptive immune responses. As a result, the evaluation of the low doses inevitably delivered outside the treatment fields (out-of-field dose) in photon radiotherapy is a topic that is regaining interest at a pivotal moment in radiotherapy. In this work, we proposed a scoping review in order to identify evidence of strengths and limitations of available analytical models for out-of-field dose calculation in external photon beam radiotherapy for the purpose of implementation in clinical routine. Papers published between 1988 and 2022 proposing a novel analytical model that estimated at least one component of the out-of-field dose for photon external radiotherapy were included. Models focusing on electrons, protons and Monte-Carlo methods were excluded. The methodological quality and potential limitations of each model were analyzed to assess their generalizability. Twenty-one published papers were selected for analysis, of which 14 proposed multi-compartment models, demonstrating that research efforts are directed towards an increasingly detailed description of the underlying physical phenomena. Our synthesis revealed great inhomogeneities in practices, in particular in the acquisition of experimental data and the standardization of measurements, in the choice of metrics used for the evaluation of model performance and even in the definition of regions considered out-of-the-field, which makes quantitative comparisons impossible. We therefore propose to clarify some key concepts. The analytical methods do not seem to be easily suitable for massive use in clinical routine, due to the inevitable cumbersome nature of their implementation. Currently, there is no consensus on a mathematical formalism that comprehensively describes the out-of-field dose in external photon radiotherapy, partly due to the complex interactions between a large number of influencing factors. Out-of-field dose calculation models based on neural networks could be promising tools to overcome these limitations and thus favor a transfer to the clinic, but the lack of sufficiently large and heterogeneous data sets is the main obstacle.
Collapse
Affiliation(s)
- Nathan Benzazon
- Unité Mixte de Recherche (UMR) 1030 Radiothérapie Moléculaire et Innovation Thérapeutique, ImmunoRadAI, Université Paris-Saclay, Institut Gustave Roussy, Inserm, Villejuif, France
- Department of Radiation Oncology, Gustave Roussy, Villejuif, France
| | - Julie Colnot
- Unité Mixte de Recherche (UMR) 1030 Radiothérapie Moléculaire et Innovation Thérapeutique, ImmunoRadAI, Université Paris-Saclay, Institut Gustave Roussy, Inserm, Villejuif, France
- Department of Radiation Oncology, Gustave Roussy, Villejuif, France
- THERYQ, PMB-Alcen, Peynier, France
| | - François de Kermenguy
- Unité Mixte de Recherche (UMR) 1030 Radiothérapie Moléculaire et Innovation Thérapeutique, ImmunoRadAI, Université Paris-Saclay, Institut Gustave Roussy, Inserm, Villejuif, France
- Department of Radiation Oncology, Gustave Roussy, Villejuif, France
| | - Samir Achkar
- Department of Radiation Oncology, Gustave Roussy, Villejuif, France
| | - Florent de Vathaire
- Unité Mixte de Recherche (UMR) 1018 Centre de Recherche en épidémiologie et Santé des Populations (CESP), Radiation Epidemiology Team, Université Paris-Saclay, Institut Gustave Roussy, Inserm, Villejuif, France
| | - Eric Deutsch
- Unité Mixte de Recherche (UMR) 1030 Radiothérapie Moléculaire et Innovation Thérapeutique, ImmunoRadAI, Université Paris-Saclay, Institut Gustave Roussy, Inserm, Villejuif, France
- Department of Radiation Oncology, Gustave Roussy, Villejuif, France
| | - Charlotte Robert
- Unité Mixte de Recherche (UMR) 1030 Radiothérapie Moléculaire et Innovation Thérapeutique, ImmunoRadAI, Université Paris-Saclay, Institut Gustave Roussy, Inserm, Villejuif, France
- Department of Radiation Oncology, Gustave Roussy, Villejuif, France
| | - Ibrahima Diallo
- Unité Mixte de Recherche (UMR) 1030 Radiothérapie Moléculaire et Innovation Thérapeutique, ImmunoRadAI, Université Paris-Saclay, Institut Gustave Roussy, Inserm, Villejuif, France
- Department of Radiation Oncology, Gustave Roussy, Villejuif, France
| |
Collapse
|
3
|
López-Guadalupe VM, Rodríguez-Laguna A, Poitevin-Chacón MA, López-Pineda E, Brandan ME. Out-of-field mean photon energy and dose from 6 MV and 6 MV FFF beams measured with TLD-300 and TLD-100 dosimeters. Med Phys 2021; 48:6567-6577. [PMID: 34528262 DOI: 10.1002/mp.15233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 09/01/2021] [Accepted: 09/04/2021] [Indexed: 01/02/2023] Open
Abstract
PURPOSE To measure the out-of-field mean photon energy and dose imparted by the secondary radiation field generated by 6 MV and 6 MV FFF beams using TLD-300 and TLD-100 dosimeters and to use the technique to quantify the contributions from the different sources that generate out-of-field radiation. METHODS The mean photon energy and the dose were measured using the TLD-300 glow curve properties and the TLD-100 response, respectively. The TLD-300 glow curve shape was energy-calibrated with gamma rays from 99m Tc, 18 F, 137 Cs, and 60 Co sources, and its energy dependence was quantified by a parameter obtained from the curve deconvolution. The TLD-100 signal was calibrated in absorbed dose-to-water inside the primary field. Dosimeters were placed on the linac head, and on the surface and at 4.5 cm depth in PMMA at 1-15 cm lateral distances from a 10 × 10 cm2 field edge at the isocenter plane. Three configurations of dosimeters around the linac were defined to identify and quantify the contributions from the different sources of out-of-field radiation. RESULTS Typical energies of head leakage were about 500 keV for both beams. The mean energy of collimator-scattered radiation was equal to or larger than 1250 keV and, for phantom-scattered radiation, mean photon energies were 400 keV for the 6 MV and 300 keV for the 6 MV FFF beam. Relative uncertainties to determine mean photon energy were better than 15% for energies below 700 keV, and 40% above 1000 keV. The technique lost its sensitivity to the incident photon energy above 1250 keV. On the phantom surface and at 1-15 cm from the field edge, 80%-90% of out-of-field dose came from scattering in the secondary collimator. At 4.5 cm deep in the phantom and 1-5 cm from the field edge, 50%-60% of the out-of-field dose originated in the phantom. At the points of measurement, the head leakage imparted less than 0.1% of the dose at the isocenter. The 6 MV FFF beam imparted 8-36% less out-of-field dose than the 6 MV beam. These energy results are consistent with general Monte Carlo simulation predictions and show excellent agreement with simulations for a similar linac. The measured out-of-field doses showed good agreement with independent evaluations. CONCLUSIONS The out-of-field mean photon energy and dose imparted by the secondary radiation field were quantified by the applied TLD-300/TLD-100 method. The main sources of out-of-field dose were identified and quantified using three configurations of dosimeters around the linac. This technique could be of value to validate Monte Carlo simulations where the linac head design, configuration, or material composition are unavailable.
Collapse
Affiliation(s)
| | | | | | - Eduardo López-Pineda
- Instituto de Física, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - María-Ester Brandan
- Instituto de Física, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| |
Collapse
|
4
|
Hauri P, Schneider U. Whole-body dose equivalent including neutrons is similar for 6 MV and 15 MV IMRT, VMAT, and 3D conformal radiotherapy. J Appl Clin Med Phys 2019; 20:56-70. [PMID: 30791198 PMCID: PMC6414138 DOI: 10.1002/acm2.12543] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 11/08/2018] [Accepted: 12/31/2018] [Indexed: 12/24/2022] Open
Abstract
PURPOSE This study investigates the difference in whole-body dose equivalent between 6 and 15 MV image-guided radiotherapy (IGRT) for the treatment of a rhabdomyosarcoma in the prostate. METHODS A previously developed model for stray radiation of the primary beam was improved and used to calculate the photon dose and photon energy in the out-of-field region for a radiotherapy patient. The dose calculated by the treatment planning system was fused with the model-calculated out-of-field dose, resulting in a whole-body photon dose distribution. The peripheral neutron dose equivalent was calculated using an analytical model from the literature. A daily cone beam CT dose was added to the neutron and photon dose equivalents. The calculated 3D dose distributions were compared to independent measurements conducted with thermoluminescence dosimeters and an anthropomorphic phantom. The dose contributions from the IGRT treatments of three different techniques applied with two nominal X-ray energies were compared using dose equivalent volume histograms (DEVHs). RESULTS The calculated and measured out-of-field whole-body dose equivalents for the IGRT treatments agreed within (9 ± 10) % (mean and type A SD). The neutron dose equivalent was a minor contribution to the total out-of-field dose up to 50 cm from the isocenter. Further from the isocenter, head leakage was dominating inside the patient body, whereas the neutron dose equivalent contribution was important close to the surface. There were small differences between the whole-body DEVHs of the 6 and 15 MV treatments applied with the same technique, although the single scatter contributions showed large differences. Independent of the beam energy, the out-of-field dose of the volumetric-modulated arc therapy (VMAT) treatment was significantly lower than the dynamic intensity-modulated radiation therapy (IMRT) treatment. CONCLUSION The calculated whole-body dose helped to understand the importance of the dose contributions in different areas of the patient. Regarding radiation protection of the patient for IGRT treatments, the choice of beam energy is not important, whereas the treatment technique has a large influence on the out-of-field dose. If the patient is treated with intensity-modulated beams, VMAT should be used instead of dynamic IMRT in terms of radiation protection of the patient. In general, the developed models for photon and neutron dose equivalent calculation can be used for any patient geometry, tumor location, and linear accelerator.
Collapse
Affiliation(s)
- Pascal Hauri
- Department of PhysicsUniversity of ZurichZurichSwitzerland
- Radiotherapy HirslandenHirslanden Medical CenterAarauSwitzerland
| | - Uwe Schneider
- Department of PhysicsUniversity of ZurichZurichSwitzerland
- Radiotherapy HirslandenHirslanden Medical CenterAarauSwitzerland
| |
Collapse
|
5
|
Hauri P, Hälg RA, Schneider U. Technical note: No increase in effective dose from half compared to full rotation pelvis cone beam CT. J Appl Clin Med Phys 2017; 18:364-368. [PMID: 28766828 PMCID: PMC5875828 DOI: 10.1002/acm2.12150] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 06/13/2017] [Accepted: 06/28/2017] [Indexed: 11/11/2022] Open
Abstract
PURPOSE To image the abdomen of a patient with a gantry mounted imaging system of a linear accelerator, different cone beam computed tomography (CBCT) protocols are available. The whole-body dose of a full rotation abdomen CBCT and a half rotation CBCT was compared. In our clinic, both CBCT protocols are used in daily routine work. METHODS With an adult anthropomorphic Alderson phantom, the whole-body dose per CBCT scan was measured with thermoluminescence dosimeters. The half rotation CBCT was applied such that the gantry mounted X-ray source rotated around the right side of the phantom. The 183 measurement locations covered all ICRP recommended critical organs (except the gonads). The effective dose was calculated with the mean organ dose and the corresponding tissue weighting factors. A point-by-point dose comparison of both protocols was conducted. RESULTS The effective dose was 5.4 mSv ±5% and 5.0 mSv ±5% (estimated type B 1σ) for the full and the half rotation CBCT respectively. There was no significant difference (α = 0.05) in the effective dose within the precision of the measurement (1σ = 5%). The half rotation CBCT displayed an inhomogeneous dose distribution in a transversal phantom slice in contrast with the full rotation CBCT. In the imaging region, the mean dose was (20.5 ± 3.4) mGy and (19.2 ± 7.4) mGy (measured type A 1σ) for the full and the half rotation CBCT respectively. CONCLUSION The half compared to the full rotation CBCT displays a smaller field-of-view in a transversal slice and no significant difference in the effective dose. Hence, the full rotation CBCT is favorable compared to the half rotation CBCT. However, by using the half rotation protocol, critical volumes in the patient can be spared compared to the full rotation protocol.
Collapse
Affiliation(s)
- Pascal Hauri
- Department of Physics, University of Zurich, Zurich, Switzerland.,Radiotherapy Hirslanden, Hirslanden Medical Center, Aarau, Switzerland
| | - Roger A Hälg
- Department of Physics, University of Zurich, Zurich, Switzerland.,Radiotherapy Hirslanden, Hirslanden Medical Center, Aarau, Switzerland
| | - Uwe Schneider
- Department of Physics, University of Zurich, Zurich, Switzerland.,Radiotherapy Hirslanden, Hirslanden Medical Center, Aarau, Switzerland
| |
Collapse
|