1
|
Tsuji S, Narihiro N, Oita M, Namito Y, Hirayama H. High dose rate 192Ir brachytherapy source model Monte Carlo dosimetry: mHDR-v2 and mHDR-v2r. PLoS One 2024; 19:e0298550. [PMID: 38335156 PMCID: PMC10857611 DOI: 10.1371/journal.pone.0298550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
After 2010, the source model of the microSelectron HDR Afterloader System was slightly modified from the previous model. Granero et al. named the modified source model "mHDR-v2r (revised model mHDR-v2)" and the previous model "mHDR-v2". They concluded that the dosimetric differences arising from the dimensional changes between the mHDR-v2 and mHDR-v2r designs were negligible at almost all locations (within 0.5% for r ≥ 0.25 cm), the two-dimensional anisotropy function difference between the two sources is found 2.1% at r = 1.0 cm when compared with the results of the other experimental group. To confirm this difference, we performed a full Monte Carlo simulation without energy-fluence approximation. This is useful near the radiation source where charged-particle equilibrium does not hold. The two-dimensional anisotropy function of the TG-43U1 dataset showed a few percent difference between the mHDR-v2r and mHDR-v2 sources. There was no agreement in the immediate vicinity of the source (0.10 cm and 0.25 cm), when compared to Granero et al. in mHDR-v2r sources. The differences in these two-dimensional anisotropy functions were identified.
Collapse
Affiliation(s)
- Shuhei Tsuji
- Natural Sciences, Kawasaki Medical School, Kurashiki, Japan
| | - Naomasa Narihiro
- Department of Radiological Technology Faculty of Health Science and Technology, Kawasaki University of Medical Welfare, Kurashiki, Japan
| | - Masataka Oita
- Department of Graduate School of Interdisciplinary Sciences and Engineering in Health Systems, Okayama University, Kita-ku Okayama, Japan
| | - Yoshihito Namito
- High Energy Accelerator Research Organization, KEK, Tsukuba, Japan
| | - Hideo Hirayama
- High Energy Accelerator Research Organization, KEK, Tsukuba, Japan
| |
Collapse
|
2
|
Rossi G, Failing T, Gainey M, Kollefrath M, Hensley F, Zink K, Baltas D. Determination of the dose rate around a HDR 192Ir brachytherapy source with the microDiamond and the microSilicon detector. Z Med Phys 2023; 33:463-478. [PMID: 36038432 PMCID: PMC10751698 DOI: 10.1016/j.zemedi.2022.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/23/2022] [Accepted: 07/25/2022] [Indexed: 12/01/2022]
Abstract
PURPOSE To employ the microDiamond and the microSilicon detector (mDD and mSD, both PTW-Freiburg, Germany) to determine the dose rate around a HDR 192Ir brachytherapy source (model mHDR-v2r, Elekta AB, Sweden). METHODS The detectors were calibrated with a 60Co beam at the PTW Calibration Laboratory. Measurements around the 192Ir source were performed inside a PTW MP3 water phantom. The detectors were placed at selected points of measurement at radial distances r, ranging from 0.5 to 10 cm, keeping the polar angle θ = 90°. Additional measurements were performed with the mSD at fixed distances r = 1, 3 and 5 cm, with θ varying from 0 to 150°, 0 to 166°, and 0 to 168°, respectively. The corresponding mDD readings were already available from a previous work (Rossi et al., 2020). The beam quality correction factor of both detectors, as well as a phantom effect correction factor to account for the difference between the experimental geometry and that assumed in the TG-43 formalism, were determined using the Monte Carlo (MC) toolkit EGSnrc. The beam quality correction factor was factorized into energy dependence and volume-averaging correction factors. Using the abovementioned MC-based factors, the dose rate to water at the different points of measurement in TG-43 conditions was obtained from the measured readings, and was compared to the dose rate calculated according to the TG-43 formalism. RESULTS The beam quality correction factor was considerably closer to unity for the mDD than for the mSD. The energy dependence of the mDD showed a very weak radial dependence, similar to the previous findings showing a weak angular dependence as well (Rossi et al., 2020). Conversely, the energy dependence of the mSD decreased significantly with increasing distances, and also showed a considerably more pronounced angular dependence, especially for the smallest angles. The volume-averaging showed a similar radial dependence for both detectors: the correction had a maximal impact at 0.5 cm and then approached unity for larger distances, as expected. Concerning the angular dependence, the correction for the mSD was also similar to the one previously determined for the mDD (Rossi et al., 2020): a maximal impact was observed at θ = 0°, with values tending to unity for larger angles. In general, the volume-averaging was less pronounced for the mSD due to the smaller sensitive volume radius. After the application of the MC-based factors, differences between mDD dose rate measurements and TG-43 dose rate calculations ranged from -2.6% to +4.3%, with an absolute average difference of 1.0%. For the mSD, the differences ranged from -3.1% to +5.2%, with an absolute average difference of 1.0%. For both detectors, all differences but one were within the combined uncertainty (k = 2). The differences of the mSD from the mDD ranged from -3.9% to +2.6%, with the vast majority of them being within the combined uncertainty (k = 2). For θ ≠ 0°, the mDD was able to provide sufficiently accurate results even without the application of the MC-based beam quality correction factor, with differences to the TG-43 dose rate calculations from -1.9% to +3.4%, always within the combined uncertainty (k = 2). CONCLUSION The mDD and the mSD showed consistent results and appear to be well suitable for measuring the dose rate around HDR 192Ir brachytherapy sources. MC characterization of the detectors response is needed to determine the beam quality correction factor and to account for energy dependence and/or volume-averaging, especially for the mSD. Our findings support the employment of the mDD and mSD for source QA, TPS verification and TG-43 parameters determination.
Collapse
Affiliation(s)
- Giulio Rossi
- Division of Medical Physics, Department of Radiation Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Germany; German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Thomas Failing
- University of Applied Sciences Giessen, Institute of Medical Physics and Radiation Protection, Giessen, Germany; University Medical Center Göttingen, Department of Radiation Oncology, Göttingen, Germany
| | - Mark Gainey
- Division of Medical Physics, Department of Radiation Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Germany; German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michael Kollefrath
- Division of Medical Physics, Department of Radiation Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Germany; German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Frank Hensley
- University Hospital of Heidelberg, Department of Radiation Oncology, Heidelberg, Germany
| | - Klemens Zink
- University of Applied Sciences Giessen, Institute of Medical Physics and Radiation Protection, Giessen, Germany; University Medical Center Giessen-Marburg, Department of Radiotherapy and Radiation Oncology, Marburg, Germany; Marburg Ionbeam Therapycenter (MIT), Marburg, Germany
| | - Dimos Baltas
- Division of Medical Physics, Department of Radiation Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Germany; German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
3
|
Kaveckyte V, Carlsson Tedgren Å, Fernández-Varea JM. Impact of the I-value of diamond on the energy deposition in different beam qualities. Phys Med Biol 2021; 66. [PMID: 34014176 DOI: 10.1088/1361-6560/ac028f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/18/2021] [Indexed: 11/12/2022]
Abstract
Diamond detectors are increasingly employed in dosimetry. Their response has been investigated by means of Monte Carlo (MC) methods, but there is no consensus on what mass densityρ, mean excitation energyIand number of conduction electrons per atomnceto use in the simulations. The ambiguity occurs due to its seeming similarity with graphite (both are carbon allotropes). Except for the difference inρbetween crystalline graphite (2.265 g cm-3) and diamond (3.515 g cm-3), their dielectric properties are assumed to be identical. This is incorrect, and the two materials should be distinguished: (ρ= 2.265 g cm-3,I= 81.0 eV,nce= 1) for graphite and (ρ= 3.515 g cm-3,I= 88.5 eV,nce= 0) for diamond. Simulations done with the MC codepenelopeshow that the energy imparted in diamond decreases by up to 1% with respect to 'pseudo-diamond' (ρ= 3.515 g cm-3,I= 81.0 eV,nce= 0) depending on the beam quality and cavity thickness. The energy imparted changed the most in cavities that are small compared with the range of electrons. The difference in the density-effect term relative to graphite was the smallest for diamond owing to an interplay effect thatρ,Iandncehave on this term, in contrast to pseudo-diamond media when eitherρorIalone were adjusted. The study also presents a parameterized density-effect correction function for diamond that may be used by MC codes like EGSnrc. Theestarprogram assumes thatnce= 2 for all carbon-based materials, hence it delivers an erroneous density-effect correction term for graphite and diamond. Despite the small changes of the energy imparted in diamond simulated with two differentIvalues and expected close-to-negligible deviation from the published small-field output correction data, it is important to pay attention to material properties and model the medium faithfully.
Collapse
Affiliation(s)
- Vaiva Kaveckyte
- Department of Health, Medicine and Caring Sciences, Linköping University, SE-58185 Linköping, Sweden.,Department of Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, SE-17176 Stockholm, Sweden
| | - Åsa Carlsson Tedgren
- Department of Health, Medicine and Caring Sciences, Linköping University, SE-58185 Linköping, Sweden.,Department of Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, SE-17176 Stockholm, Sweden
| | - José M Fernández-Varea
- Facultat de Física (FQA and ICC), Universitat de Barcelona, Diagonal 645, E-08028 Barcelona, Catalonia, Spain
| |
Collapse
|
4
|
Ayala Alvarez DS, G F Watson P, Popovic M, Jean Heng V, Evans MDC, Seuntjens J. Monte Carlo calculation of the relative TG-43 dosimetry parameters for the INTRABEAM electronic brachytherapy source. Phys Med Biol 2020; 65:245041. [PMID: 33137796 DOI: 10.1088/1361-6560/abc6f1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The INTRABEAM system (Carl Zeiss Meditec AG, Jena, Germany) is an electronic brachytherapy (eBT) device designed for intraoperative radiotherapy applications. To date, the INTRABEAM x-ray source has not been characterized according to the AAPM TG-43 specifications for brachytherapy sources. This restricts its modelling in commercial treatment planning systems (TPSs), with the consequence that the doses to organs at risk are unknown. The aim of this work is to characterize the INTRABEAM source according to the TG-43 brachytherapy dosimetry protocol. The dose distribution in water around the source was determined with Monte Carlo (MC) calculations. For the validation of the MC model, depth dose calculations along the source longitudinal axis were compared with measurements using a soft x-ray ionization chamber (PTW 34013) and two synthetic diamond detectors (microDiamond PTW TN60019). In our results, the measurements in water agreed with the MC model calculations within uncertainties. The use of the microDiamond detector yielded better agreement with MC calculations, within estimated uncertainties, compared to the ionization chamber at points of steeper dose gradients. The radial dose function showed a steep fall-off close to the INTRABEAM source ([Formula: see text]10 mm) with a gradient higher than that of commonly used brachytherapy radionuclides (192Ir, 125I and 103Pd), with values of 2.510, 1.645 and 1.232 at 4, 6 and 8 mm, respectively. The radial dose function partially flattens at larger distances with a fall-off comparable to that of the Xoft Axxent® (iCAD, Inc., Nashua, NH) eBT system. The simulated 2D polar anisotropy close to the bare probe walls showed deviations from unity of up to 55% at 10 mm and 155°. This work presents the MC calculated TG-43 parameters for the INTRABEAM, which constitute the necessary data for the characterization of the source as required by a TPS used in clinical dose calculations.
Collapse
Affiliation(s)
| | - Peter G F Watson
- Medical Physics Unit, McGill University and Cedars Cancer Center, Montreal, Canada
| | - Marija Popovic
- Medical Physics Unit, McGill University and Cedars Cancer Center, Montreal, Canada
| | - Veng Jean Heng
- Medical Physics Unit, McGill University and Cedars Cancer Center, Montreal, Canada
| | - Michael D C Evans
- Medical Physics Unit, McGill University and Cedars Cancer Center, Montreal, Canada
| | - Jan Seuntjens
- Medical Physics Unit, McGill University and Cedars Cancer Center, Montreal, Canada
| |
Collapse
|
5
|
Rossi G, Gainey M, Kollefrath M, Hofmann E, Baltas D. Suitability of the microDiamond detector for experimental determination of the anisotropy function of High Dose Rate 192 Ir brachytherapy sources. Med Phys 2020; 47:5838-5851. [PMID: 32970875 DOI: 10.1002/mp.14488] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 09/07/2020] [Accepted: 09/13/2020] [Indexed: 11/06/2022] Open
Abstract
PURPOSE To investigate the suitability of the microDiamond detector (mDD) type 60019 (PTW-Freiburg, Germany) to measure the anisotropy function F(r,θ) of High Dose Rate (HDR) 192 Ir brachytherapy sources. METHODS The HDR 192 Ir brachytherapy source, model mHDR-v2r (Elekta AB, Sweden), was placed inside a water tank within a 4F plastic needle. Four mDDs (mDD1, mDD2, mDD3, and mDD4) were investigated. Each mDD was placed laterally with respect to the source, and measurements were performed at radial distances r = 1 cm, 3 and 5 cm, and polar angles θ from 0° to 168°. The Monte Carlo (MC) system EGSnrc was used to simulate the measurements and to calculate phantom effect, energy dependence and volume-averaging correction factors. F(r,θ) was determined according to TG-43 formalism from the detector reading corrected with the MC-based factors and compared to the consensus anisotropy function CON F(r,θ). RESULTS At 1 cm, the differences between measurements and MC simulations ranged from -0.8% to +0.8% for θ = 0° and from -2.1% to + 2.3% for θ ≠ 0°. At 3 and 5 cm, the differences ranged from +1.4% to +3.9% for θ = 0°, and from -0.4% to +2.9% for θ ≠ 0°. All differences were within the uncertainties (k = 2). At small angles, the phantom effect correction was up to -1.9%. This effect was mainly caused by the air between source and needle tip. The energy correction was angle-independent everywhere. For small angles at 1 cm, the volume-averaging correction was up to -2.9% and became less important for larger angles and distances. The differences of the measured F(r,θ) corrected with the MC-based factors to CON F(r,θ) ranged from -1.0% to +3.4% for mDD1, -2.2% to +4.2% for mDD2, -2.5% to +4.0% for mDD3, and -2.6% to +3.4% for mDD4. All differences were within the uncertainties (k = 2) except one at (3 cm, 0°). For all the mDDs, F(r,0°) was always higher than CON F(r,0°), with average differences of +3.1% (1 cm), +3.6% (3 cm), and +1.9% (5 cm). The inter-detector variability was within 2.9% (1 cm), 1.8% (3 cm), and 3.4% (5 cm). CONCLUSIONS A reproducible method and experimental setup were presented for measuring and validating F(r,θ) of an HDR 192 Ir brachytherapy source in a water phantom using the mDD. The phantom effect and the volume-averaging need to be taken into account, especially for the smaller distances and angles. Good agreement to CON F(r,θ) was obtained. The discrepancies at (1 cm, 0°), accurately predicted by the MC results, may suggest a reconsideration of CON F(r,θ), at least for this position. The slight overestimations at (3 cm,0°) and (5 cm,0°), both in comparison to CON F(r,θ) and MC results, may be due to an underestimation of the air volume between source and needle tip, dark current, intrinsic over-response of the mDDs, or radiation-induced charge imbalance in the detector's components. The results indicate that the mDD is a valuable tool for measurements with HDR 192 Ir brachytherapy sources and support its employment for the determination and validation of TG-43 parameters of such sources.
Collapse
Affiliation(s)
- Giulio Rossi
- Division of Medical Physics, Department of Radiation Oncology, Medical Center, Faculty of Medicine, University of Freiburg, German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Mark Gainey
- Division of Medical Physics, Department of Radiation Oncology, Medical Center, Faculty of Medicine, University of Freiburg, German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michael Kollefrath
- Division of Medical Physics, Department of Radiation Oncology, Medical Center, Faculty of Medicine, University of Freiburg, German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Elena Hofmann
- Division of Medical Physics, Department of Radiation Oncology, Medical Center, Faculty of Medicine, University of Freiburg, German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dimos Baltas
- Division of Medical Physics, Department of Radiation Oncology, Medical Center, Faculty of Medicine, University of Freiburg, German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
6
|
Kaveckyte V, Persson L, Malusek A, Benmakhlouf H, Alm Carlsson G, Carlsson Tedgren Å. Investigation of a synthetic diamond detector response in kilovoltage photon beams. Med Phys 2019; 47:1268-1279. [PMID: 31880809 DOI: 10.1002/mp.13988] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 09/04/2019] [Accepted: 12/01/2019] [Indexed: 12/28/2022] Open
Abstract
PURPOSE An important characteristic of radiation dosimetry detectors is their energy response which consists of absorbed-dose and intrinsic energy responses. The former can be characterized using Monte Carlo (MC) simulations, whereas the latter (i.e., detector signal per absorbed dose to detector) is extracted from experimental data. Such a characterization is especially relevant when detectors are used in nonrelative measurements at a beam quality that differs from the calibration beam quality. Having in mind the possible application of synthetic diamond detectors (microDiamond PTW 60019, Freiburg, Germany) for nonrelative dosimetry of low-energy brachytherapy (BT) beams, we determined their intrinsic and absorbed-dose energy responses in 25-250 kV beams relative to a 60 Co beam, which is usually the reference beam quality for detector calibration in radiotherapy. MATERIAL AND METHODS Three microDiamond detectors and, for comparison, two silicon diodes (PTW 60017) were calibrated in terms of air-kerma free in air in six x-ray beam qualities (from 25 to 250 kV) and in terms of absorbed dose to water in a 60 Co beam at the national metrology laboratory in Sweden. The PENELOPE/penEasy MC radiation transport code was used to calculate the absorbed-dose energy response of the detectors (modeled based on blueprints) relative to air and water depending on calibration conditions. The MC results were used to extract the relative intrinsic energy response of the detectors from the overall energy response. Measurements using an independent setup with a single ophthalmic BEBIG I25.S16 125 I BT seed (effective photon energy of 28 keV) were used as a qualitative check of the extracted intrinsic energy response correction factors. Additionally, the impact of the thickness of the active volume as well as the presence of extra-cameral components on the absorbed-dose energy response of a microDiamond detector was studied using MC simulations. RESULTS The relative intrinsic energy response of the microDiamond detectors was higher by a factor of 2 in 25 and 50 kV beams compared to the 60 Co beam. The variation in the relative intrinsic energy response of silicon diodes was within 10% over the investigated photon energy range. The use of relative intrinsic energy response correction factors improved the agreement among the absorbed dose to water values determined using microDiamond detectors and silicon diodes, as well as with the TG-43 formalism-based calculations for the 125 I seed. MC study of microDiamond detector design features provided a possible explanation for inter-detector response variation at low-energy photon beams by differences in the effective thickness of the active volume. CONCLUSIONS MicroDiamond detectors had a non-negligible variation in the relative intrinsic energy response (factor of 2) which was comparable to that in the absorbed-dose energy response relative to water at low-energy photon beams. Silicon diodes, in contrast, had an absorbed-dose energy dependence on photon energy that varied by a factor of 6, whereas the intrinsic energy dependence on beam quality was within 10%. It is important to decouple these two responses for a full characterization of detector energy response especially when the user and reference beam qualities differ significantly, and MC alone is not enough.
Collapse
Affiliation(s)
- Vaiva Kaveckyte
- Radiation Physics, Department of Medical and Health Sciences, Linköping University, SE-581 85, Linköping, Sweden.,Department of Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, SE-171 76, Stockholm, Sweden
| | - Linda Persson
- Swedish Radiation Safety Authority, SE-171 16, Stockholm, Sweden
| | - Alexandr Malusek
- Radiation Physics, Department of Medical and Health Sciences, Linköping University, SE-581 85, Linköping, Sweden
| | - Hamza Benmakhlouf
- Department of Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, SE-171 76, Stockholm, Sweden
| | - Gudrun Alm Carlsson
- Radiation Physics, Department of Medical and Health Sciences, Linköping University, SE-581 85, Linköping, Sweden
| | - Åsa Carlsson Tedgren
- Radiation Physics, Department of Medical and Health Sciences, Linköping University, SE-581 85, Linköping, Sweden.,Department of Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, SE-171 76, Stockholm, Sweden
| |
Collapse
|