1
|
Shang D, Duan J, Yin Y, Wang R. Impact of different respiratory gating methods on target delineation and a radiotherapy plan for solitary pulmonary tumors. Cancer Med 2024; 13:e7322. [PMID: 38785309 PMCID: PMC11117447 DOI: 10.1002/cam4.7322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 04/07/2024] [Accepted: 05/12/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND AND PURPOSE Respiratory movement has an important impact on the radiotherapy for lung tumor. Respiratory gating technology is helpful to improve the accuracy of target delineation. This study investigated the value of prospective and retrospective respiratory gating simulations in target delineation and radiotherapy plan design for solitary pulmonary tumors (SPTs) in radiotherapy. METHODS The enrolled patients underwent CT simulation with three-dimensional (3D) CT non gating, prospective respiratory gating, and retrospective respiratory gating simulation. The target volumes were delineated on three sets of CT images, and radiotherapy plans were prepared accordingly. Tumor displacements and movement information obtained using the two respiratory gating approaches, as well as the target volumes and dosimetry parameters in the radiotherapy plan were compared. RESULTS No significant difference was observed in tumor displacement measured using the two gating methods (p > 0.05). However, the internal gross tumor volumes (IGTVs), internal target volumes (ITVs), and planning target volumes (PTVs) based on the retrospective respiratory gating simulation were larger than those obtained using prospective gating (group A: pIGTV = 0.041, pITV = 0.003, pPTV = 0.008; group B: pIGTV = 0.025, pITV = 0.039, pPTV = 0.004). The two-gating PTVs were both smaller than those delineated on 3D non gating images (p < 0.001). V5Gy, V10Gy, V20Gy, V30Gy, and mean lung dose in the two gated radiotherapy plans were lower than those in the 3D non gating plan (p < 0.001); however, no significant difference was observed between the two gating plans (p > 0.05). CONCLUSIONS The application of respiratory gating could reduce the target volume and the radiation dose that the normal lung tissue received. Compared to prospective respiratory gating, the retrospective gating provides more information about tumor movement in PTV.
Collapse
Affiliation(s)
- Dongping Shang
- Department of Radiation OncologyShandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical SciencesJinanChina
| | - Jinghao Duan
- Department of Radiation OncologyShandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical SciencesJinanChina
| | - Yong Yin
- Department of Radiation OncologyShandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical SciencesJinanChina
| | - Ruozheng Wang
- Department of Radiation OncologyAffiliated Tumor Hospital of Xinjiang Medical UniversityUrumqiChina
| |
Collapse
|
2
|
Chang CW, Nilsson R, Andersson S, Bohannon D, Patel SA, Patel PR, Liu T, Yang X, Zhou J. An optimized framework for cone-beam computed tomography-based online evaluation for proton therapy. Med Phys 2023; 50:5375-5386. [PMID: 37450315 DOI: 10.1002/mp.16625] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/01/2023] [Accepted: 06/21/2023] [Indexed: 07/18/2023] Open
Abstract
BACKGROUND Clinical evidence has demonstrated that proton therapy can achieve comparable tumor control probabilities compared to conventional photon therapy but with the added benefit of sparing healthy tissues. However, proton therapy is sensitive to inter-fractional anatomy changes. Online pre-fraction evaluation can effectively verify proton dose before delivery to patients, but there is a lack of guidelines for implementing this workflow. PURPOSE The purpose of this study is to develop a cone-beam CT-based (CBCT) online evaluation framework for proton therapy that enables knowledge transparency and evaluates the efficiency and accuracy of each essential component. METHODS Twenty-three patients with various lesion sites were included to conduct a retrospective study of implementing the proposed CBCT evaluation framework for the clinic. The framework was implemented on the RayStation 11B Research platform. Two synthetic CT (sCT) methods, corrected CBCT (cCBCT), and virtual CT (vCT), were used, and the ground truth images were acquired from the same-day deformed quality assurance CT (dQACT) for the comparisons. The evaluation metrics for the framework include time efficiency, dose-difference distributions (gamma passing rates), and water equivalent thickness (WET) distributions. RESULTS The mean online CBCT evaluation times were 1.6 ± 0.3 min and 1.9 ± 0.4 min using cCBCT and vCT, respectively. The dose calculation and deformable image registration dominated the evaluation efficiency, and accounted for 33% and 30% of the total evaluation time, respectively. The sCT generation took another 19% of the total time. Gamma passing rates were greater than 91% and 97% using 1%/1 mm and 2%/2 mm criteria, respectively. When the appropriate sCT was chosen, the target mean WET difference from the reference were less than 0.5 mm. The appropriate sCT method choice determined the uncertainty for the framework, with the cCBCT being superior for head-and-neck patient evaluation and vCT being better for lung patient evaluation. CONCLUSIONS An online CBCT evaluation framework was proposed to identify the use of the optimal sCT algorithm regarding efficiency and dosimetry accuracy. The framework is extendable to adopt advanced imaging methods and has the potential to support online adaptive radiotherapy to enhance patient benefits. It could be implemented into clinical use in the future.
Collapse
Affiliation(s)
- Chih-Wei Chang
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | | | | | - Duncan Bohannon
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Sagar A Patel
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Pretesh R Patel
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Tian Liu
- Department of Radiation Oncology, Mount Sinai Medical Center, New York, New York, USA
| | - Xiaofeng Yang
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Jun Zhou
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
3
|
Schmitz H, Rabe M, Janssens G, Rit S, Parodi K, Belka C, Kamp F, Landry G, Kurz C. Scatter correction of 4D cone beam computed tomography to detect dosimetric effects due to anatomical changes in proton therapy for lung cancer. Med Phys 2023; 50:4981-4992. [PMID: 36847184 DOI: 10.1002/mp.16335] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 02/01/2023] [Accepted: 02/14/2023] [Indexed: 03/01/2023] Open
Abstract
BACKGROUND The treatment of moving tumor entities is expected to have superior clinical outcomes, using image-guided adaptive intensity-modulated proton therapy (IMPT). PURPOSE For 21 lung cancer patients, IMPT dose calculations were performed on scatter-corrected 4D cone beam CTs (4DCBCTcor ) to evaluate their potential for triggering treatment adaptation. Additional dose calculations were performed on corresponding planning 4DCTs and day-of-treatment 4D virtual CTs (4DvCTs). METHODS A 4DCBCT correction workflow, previously validated on a phantom, generates 4DvCT (CT-to-CBCT deformable registration) and 4DCBCTcor images (projection-based correction using 4DvCT as a prior) with 10 phase bins, using day-of-treatment free-breathing CBCT projections and planning 4DCT images as input. Using a research planning system, robust IMPT plans administering eight fractions of 7.5 Gy were created on a free-breathing planning CT (pCT) contoured by a physician. The internal target volume (ITV) was overridden with muscle tissue. Robustness settings for range and setup uncertainties were 3% and 6 mm, and a Monte Carlo dose engine was used. On every phase of planning 4DCT, day-of-treatment 4DvCT, and 4DCBCTcor , the dose was recalculated. For evaluation, image analysis as well as dose analysis were performed using mean error (ME) and mean absolute error (MAE) analysis, dose-volume histogram (DVH) parameters, and 2%/2-mm gamma pass rate analysis. Action levels (1.6% ITV D98 and 90% gamma pass rate) based on our previous phantom validation study were set to determine which patients had a loss of dosimetric coverage. RESULTS Quality enhancements of 4DvCT and 4DCBCTcor over 4DCBCT were observed. ITV D98% and bronchi D2% had its largest agreement for 4DCBCTcor -4DvCT, and the largest gamma pass rates (>94%, median 98%) were found for 4DCBCTcor -4DvCT. Deviations were larger and gamma pass rates were smaller for 4DvCT-4DCT and 4DCBCTcor -4DCT. For five patients, deviations were larger than the action levels, suggesting substantial anatomical changes between pCT and CBCT projections acquisition. CONCLUSIONS This retrospective study shows the feasibility of daily proton dose calculation on 4DCBCTcor for lung tumor patients. The applied method is of clinical interest as it generates up-to-date in-room images, accounting for breathing motion and anatomical changes. This information could be used to trigger replanning.
Collapse
Affiliation(s)
- Henning Schmitz
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Bavaria, Germany
| | - Moritz Rabe
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Bavaria, Germany
| | | | - Simon Rit
- Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1294, F-69373, Lyon, France
| | - Katia Parodi
- Department of Medical Physics, Ludwig-Maximilians-Universität München (LMU Munich), Garching (Munich), Germany
| | - Claus Belka
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Bavaria, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Florian Kamp
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Bavaria, Germany
- Department of Radiation Oncology, University Hospital Cologne, Cologne, Germany
| | - Guillaume Landry
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Bavaria, Germany
| | - Christopher Kurz
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Bavaria, Germany
| |
Collapse
|
4
|
Chang CW, Lei Y, Wang T, Tian S, Roper J, Lin L, Bradley J, Liu T, Zhou J, Yang X. Deep learning-based Fast Volumetric Image Generation for Image-guided Proton FLASH Radiotherapy. RESEARCH SQUARE 2023:rs.3.rs-3112632. [PMID: 37546731 PMCID: PMC10402267 DOI: 10.21203/rs.3.rs-3112632/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Objective FLASH radiotherapy leverages ultra-high dose-rate radiation to enhance the sparing of organs at risk without compromising tumor control probability. This may allow dose escalation, toxicity mitigation, or both. To prepare for the ultra-high dose-rate delivery, we aim to develop a deep learning (DL)-based image-guide framework to enable fast volumetric image reconstruction for accurate target localization for proton FLASH beam delivery. Approach The proposed framework comprises four modules, including orthogonal kV x-ray projection acquisition, DL-based volumetric image generation, image quality analyses, and water equivalent thickness (WET) evaluation. We investigated volumetric image reconstruction using kV projection pairs with four different source angles. Thirty patients with lung targets were identified from an institutional database, each patient having a four-dimensional computed tomography (CT) dataset with ten respiratory phases. Leave-phase-out cross-validation was performed to investigate the DL model's robustness for each patient. Main results The proposed framework reconstructed patients' volumetric anatomy, including tumors and organs at risk from orthogonal x-ray projections. Considering all evaluation metrics, the kV projections with source angles of 135° and 225° yielded the optimal volumetric images. The patient-averaged mean absolute error, peak signal-to-noise ratio, structural similarity index measure, and WET error were 75±22 HU, 19±3.7 dB, 0.938±0.044, and -1.3%±4.1%. Significance The proposed framework has been demonstrated to reconstruct volumetric images with a high degree of accuracy using two orthogonal x-ray projections. The embedded WET module can be used to detect potential proton beam-specific patient anatomy variations. This framework can rapidly deliver volumetric images to potentially guide proton FLASH therapy treatment delivery systems.
Collapse
|
5
|
Schmitz H, Thummerer A, Kawula M, Lombardo E, Parodi K, Belka C, Kamp F, Kurz C, Landry G. ScatterNet for projection-based 4D cone-beam computed tomography intensity correction of lung cancer patients. Phys Imaging Radiat Oncol 2023; 27:100482. [PMID: 37680905 PMCID: PMC10480315 DOI: 10.1016/j.phro.2023.100482] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 08/04/2023] [Accepted: 08/11/2023] [Indexed: 09/09/2023] Open
Abstract
Background and purpose: In radiotherapy, dose calculations based on 4D cone beam CTs (4DCBCTs) require image intensity corrections. This retrospective study compared the dose calculation accuracy of a deep learning, projection-based scatter correction workflow (ScatterNet), to slower workflows: conventional 4D projection-based scatter correction (CBCTcor) and a deformable image registration (DIR)-based method (4DvCT). Materials and methods: For 26 lung cancer patients, planning CTs (pCTs), 4DCTs and CBCT projections were available. ScatterNet was trained with pairs of raw and corrected CBCT projections. Corrected projections from ScatterNet and the conventional workflow were reconstructed using MA-ROOSTER, yielding 4DCBCTSN and 4DCBCTcor. The 4DvCT was generated by 4DCT to 4DCBCT DIR, as part of the 4DCBCTcor workflow. Robust intensity modulated proton therapy treatment plans were created on free-breathing pCTs. 4DCBCTSN was compared to 4DCBCTcor and the 4DvCT in terms of image quality and dose calculation accuracy (dose-volume-histogram parameters and 3 % /3 mm gamma analysis). Results: 4DCBCTSN resulted in an average mean absolute error of 87 HU and 102 HU when compared to 4DCBCTcor and 4DvCT respectively. High agreement was observed in targets with median dose differences of 0.4 Gy (4DCBCTSN-4DCBCTcor) and 0.3 Gy (4DCBCTSN-4DvCT). The gamma analysis showed high average 3 % /3 mm pass rates of 96 % for both 4DCBCTSN vs. 4DCBCTcor and 4DCBCTSN vs. 4DvCT. Conclusions: Accurate 4D dose calculations are feasible for lung cancer patients using ScatterNet for 4DCBCT correction. Average scatter correction times could be reduced from 10 min (4DCBCTcor) to 3.9 s , showing the clinical suitability of the proposed deep learning-based method.
Collapse
Affiliation(s)
- Henning Schmitz
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Adrian Thummerer
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Maria Kawula
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Elia Lombardo
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Katia Parodi
- Department of Medical Physics, Ludwig-Maximilians-Universität München (LMU Munich), Garching (Munich), Germany
| | - Claus Belka
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
- Bavarian Cancer Research Center (BZKF), Munich, Germany
| | - Florian Kamp
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
- Department of Radiation Oncology, University Hospital Cologne, Cologne, Germany
| | - Christopher Kurz
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Guillaume Landry
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
6
|
Thummerer A, Seller Oria C, Zaffino P, Visser S, Meijers A, Guterres Marmitt G, Wijsman R, Seco J, Langendijk JA, Knopf AC, Spadea MF, Both S. Deep learning-based 4D-synthetic CTs from sparse-view CBCTs for dose calculations in adaptive proton therapy. Med Phys 2022; 49:6824-6839. [PMID: 35982630 PMCID: PMC10087352 DOI: 10.1002/mp.15930] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/20/2022] [Accepted: 08/08/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Time-resolved 4D cone beam-computed tomography (4D-CBCT) allows a daily assessment of patient anatomy and respiratory motion. However, 4D-CBCTs suffer from imaging artifacts that affect the CT number accuracy and prevent accurate proton dose calculations. Deep learning can be used to correct CT numbers and generate synthetic CTs (sCTs) that can enable CBCT-based proton dose calculations. PURPOSE In this work, sparse view 4D-CBCTs were converted into 4D-sCT utilizing a deep convolutional neural network (DCNN). 4D-sCTs were evaluated in terms of image quality and dosimetric accuracy to determine if accurate proton dose calculations for adaptive proton therapy workflows of lung cancer patients are feasible. METHODS A dataset of 45 thoracic cancer patients was utilized to train and evaluate a DCNN to generate 4D-sCTs, based on sparse view 4D-CBCTs reconstructed from projections acquired with a 3D acquisition protocol. Mean absolute error (MAE) and mean error were used as metrics to evaluate the image quality of single phases and average 4D-sCTs against 4D-CTs acquired on the same day. The dosimetric accuracy was checked globally (gamma analysis) and locally for target volumes and organs-at-risk (OARs) (lung, heart, and esophagus). Furthermore, 4D-sCTs were also compared to 3D-sCTs. To evaluate CT number accuracy, proton radiography simulations in 4D-sCT and 4D-CTs were compared in terms of range errors. The clinical suitability of 4D-sCTs was demonstrated by performing a 4D dose reconstruction using patient specific treatment delivery log files and breathing signals. RESULTS 4D-sCTs resulted in average MAEs of 48.1 ± 6.5 HU (single phase) and 37.7 ± 6.2 HU (average). The global dosimetric evaluation showed gamma pass ratios of 92.3% ± 3.2% (single phase) and 94.4% ± 2.1% (average). The clinical target volume showed high agreement in D98 between 4D-CT and 4D-sCT, with differences below 2.4% for all patients. Larger dose differences were observed in mean doses of OARs (up to 8.4%). The comparison with 3D-sCTs showed no substantial image quality and dosimetric differences for the 4D-sCT average. Individual 4D-sCT phases showed slightly lower dosimetric accuracy. The range error evaluation revealed that lung tissues cause range errors about three times higher than the other tissues. CONCLUSION In this study, we have investigated the accuracy of deep learning-based 4D-sCTs for daily dose calculations in adaptive proton therapy. Despite image quality differences between 4D-sCTs and 3D-sCTs, comparable dosimetric accuracy was observed globally and locally. Further improvement of 3D and 4D lung sCTs could be achieved by increasing CT number accuracy in lung tissues.
Collapse
Affiliation(s)
- Adrian Thummerer
- Department, of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Carmen Seller Oria
- Department, of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Paolo Zaffino
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Sabine Visser
- Department, of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Arturs Meijers
- Department, of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,Center for Proton Therapy, Paul Scherrer Institute, Villigen, Switzerland
| | - Gabriel Guterres Marmitt
- Department, of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Robin Wijsman
- Department, of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Joao Seco
- Department of Biomedical Physics in Radiation Oncology, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany.,Department of Physics and Astronomy, Heidelberg University, Heidelberg, Germany
| | - Johannes Albertus Langendijk
- Department, of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Antje Christin Knopf
- Department, of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,Department I of Internal Medicine, Center for Integrated Oncology Cologne, University Hospital of Cologne, Cologne, Germany
| | - Maria Francesca Spadea
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Stefan Both
- Department, of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
7
|
Schmitz H, Rabe M, Janssens G, Bondesson D, Rit S, Parodi K, Belka C, Dinkel J, Kurz C, Kamp F, Landry G. Validation of proton dose calculation on scatter corrected 4D cone beam computed tomography using a porcine lung phantom. Phys Med Biol 2021; 66. [PMID: 34293737 DOI: 10.1088/1361-6560/ac16e9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/22/2021] [Indexed: 12/25/2022]
Abstract
Proton therapy treatment for lungs remains challenging as images enabling the detection of inter- and intra-fractional motion, which could be used for proton dose adaptation, are not readily available. 4D computed tomography (4DCT) provides high image quality but is rarely available in-room, while in-room 4D cone beam computed tomography (4DCBCT) suffers from image quality limitations stemming mostly from scatter detection. This study investigated the feasibility of using virtual 4D computed tomography (4DvCT) as a prior for a phase-per-phase scatter correction algorithm yielding a 4D scatter corrected cone beam computed tomography image (4DCBCTcor), which can be used for proton dose calculation. 4DCT and 4DCBCT scans of a porcine lung phantom, which generated reproducible ventilation, were acquired with matching breathing patterns. Diffeomorphic Morphons, a deformable image registration algorithm, was used to register the mid-position 4DCT to the mid-position 4DCBCT and yield a 4DvCT. The 4DCBCT was reconstructed using motion-aware reconstruction based on spatial and temporal regularization (MA-ROOSTER). Successively for each phase, digitally reconstructed radiographs of the 4DvCT, simulated without scatter, were exploited to correct scatter in the corresponding CBCT projections. The 4DCBCTcorwas then reconstructed with MA-ROOSTER using the corrected CBCT projections and the same settings and deformation vector fields as those already used for reconstructing the 4DCBCT. The 4DCBCTcorand the 4DvCT were evaluated phase-by-phase, performing proton dose calculations and comparison to those of a ground truth 4DCT by means of dose-volume-histograms (DVH) and gamma pass-rates (PR). For accumulated doses, DVH parameters deviated by at most 1.7% in the 4DvCT and 2.0% in the 4DCBCTcorcase. The gamma PR for a (2%, 2 mm) criterion with 10% threshold were at least 93.2% (4DvCT) and 94.2% (4DCBCTcor), respectively. The 4DCBCTcortechnique enabled accurate proton dose calculation, which indicates the potential for applicability to clinical 4DCBCT scans.
Collapse
Affiliation(s)
- Henning Schmitz
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Moritz Rabe
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | | | - David Bondesson
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Simon Rit
- Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, F-69373, LYON, France
| | - Katia Parodi
- Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität München (LMU Munich), Garching (Munich), Germany
| | - Claus Belka
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany.,German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Julien Dinkel
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Christopher Kurz
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany.,Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität München (LMU Munich), Garching (Munich), Germany
| | - Florian Kamp
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany.,Department of Radiation Oncology, University Hospital Cologne, Cologne, Germany
| | - Guillaume Landry
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany.,Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität München (LMU Munich), Garching (Munich), Germany
| |
Collapse
|
8
|
Ribeiro CO, Visser S, Korevaar EW, Sijtsema NM, Anakotta RM, Dieters M, Both S, Langendijk JA, Wijsman R, Muijs CT, Meijers A, Knopf A. Towards the clinical implementation of intensity-modulated proton therapy for thoracic indications with moderate motion: Robust optimised plan evaluation by means of patient and machine specific information. Radiother Oncol 2021; 157:210-218. [DOI: 10.1016/j.radonc.2021.01.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 12/09/2020] [Accepted: 01/06/2021] [Indexed: 02/09/2023]
|
9
|
Paganetti H, Beltran C, Both S, Dong L, Flanz J, Furutani K, Grassberger C, Grosshans DR, Knopf AC, Langendijk JA, Nystrom H, Parodi K, Raaymakers BW, Richter C, Sawakuchi GO, Schippers M, Shaitelman SF, Teo BKK, Unkelbach J, Wohlfahrt P, Lomax T. Roadmap: proton therapy physics and biology. Phys Med Biol 2021; 66. [DOI: 10.1088/1361-6560/abcd16] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 11/23/2020] [Indexed: 12/12/2022]
|
10
|
Rabe M, Paganelli C, Riboldi M, Bondesson D, Jörg Schneider M, Chmielewski T, Baroni G, Dinkel J, Reiner M, Landry G, Parodi K, Belka C, Kamp F, Kurz C. Porcine lung phantom-based validation of estimated 4D-MRI using orthogonal cine imaging for low-field MR-Linacs. Phys Med Biol 2021; 66:055006. [PMID: 33171458 DOI: 10.1088/1361-6560/abc937] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Real-time motion monitoring of lung tumors with low-field magnetic resonance imaging-guided linear accelerators (MR-Linacs) is currently limited to sagittal 2D cine magnetic resonance imaging (MRI). To provide input data for improved intrafractional and interfractional adaptive radiotherapy, the 4D anatomy has to be inferred from data with lower dimensionality. The purpose of this study was to experimentally validate a previously proposed propagation method that provides continuous time-resolved estimated 4D-MRI based on orthogonal cine MRI for a low-field MR-Linac. Ex vivo porcine lungs were injected with artificial nodules and mounted in a dedicated phantom that allows for the simulation of periodic and reproducible breathing motion. The phantom was scanned with a research version of a commercial 0.35 T MR-Linac. Respiratory-correlated 4D-MRI were reconstructed and served as ground truth images. Series of interleaved orthogonal slices in sagittal and coronal orientation, intersecting the injected targets, were acquired at 7.3 Hz. Estimated 4D-MRI at 3.65 Hz were created in post-processing using the propagation method and compared to the ground truth 4D-MRI. Eight datasets at different breathing frequencies and motion amplitudes were acquired for three porcine lungs. The overall median (95[Formula: see text] percentile) deviation between ground truth and estimated deformation vector fields was 2.3 mm (5.7 mm), corresponding to 0.7 (1.6) times the in-plane imaging resolution (3.5 × 3.5 mm2). Median (95[Formula: see text] percentile) estimated nodule position errors were 1.5 mm (3.8 mm) for nodules intersected by orthogonal slices and 2.1 mm (7.1 mm) for nodules located more than 2 cm away from either of the orthogonal slices. The estimation error depended on the breathing phase, the motion amplitude and the location of the estimated position with respect to the orthogonal slices. By using the propagation method, the 4D motion within the porcine lung phantom could be accurately and robustly estimated. The method could provide valuable information for treatment planning, real-time motion monitoring, treatment adaptation, and post-treatment evaluation of MR-guided radiotherapy treatments.
Collapse
Affiliation(s)
- Moritz Rabe
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Chiara Paganelli
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milano, Italy
| | - Marco Riboldi
- Department of Medical Physics, Ludwig-Maximilians-Universität München (LMU Munich), Garching (Munich), Germany
| | - David Bondesson
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany.,Comprehensive Pneumology Center, German Center for Lung Research (DZL), Munich, Germany
| | - Moritz Jörg Schneider
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany.,Comprehensive Pneumology Center, German Center for Lung Research (DZL), Munich, Germany
| | | | - Guido Baroni
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milano, Italy.,Bioengineering Unit, Centro Nazionale di Adroterapia Oncologica, Pavia, Italy
| | - Julien Dinkel
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany.,Comprehensive Pneumology Center, German Center for Lung Research (DZL), Munich, Germany
| | - Michael Reiner
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Guillaume Landry
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany.,Department of Medical Physics, Ludwig-Maximilians-Universität München (LMU Munich), Garching (Munich), Germany
| | - Katia Parodi
- Department of Medical Physics, Ludwig-Maximilians-Universität München (LMU Munich), Garching (Munich), Germany
| | - Claus Belka
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany.,German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Florian Kamp
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Christopher Kurz
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany.,Department of Medical Physics, Ludwig-Maximilians-Universität München (LMU Munich), Garching (Munich), Germany
| |
Collapse
|
11
|
Ribeiro CO, Terpstra J, Janssens G, Langendijk JA, Both S, Muijs CT, Wijsman R, Knopf A, Meijers A. Evaluation of continuous beam rescanning versus pulsed beam in pencil beam scanned proton therapy for lung tumours. Phys Med Biol 2020; 65:23NT01. [PMID: 33120367 DOI: 10.1088/1361-6560/abc5c8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The treatment of moving targets with pencil beam scanned proton therapy (PBS-PT) may rely on rescanning strategies to smooth out motion induced dosimetric disturbances. PBS-PT machines, such as Proteus®Plus (PPlus) and Proteus®One (POne), deliver a continuous or a pulsed beam, respectively. In PPlus, scaled (or no) rescanning can be applied, while POne implies intrinsic 'rescanning' due to its pulsed delivery. We investigated the efficacy of these PBS-PT delivery types for the treatment of lung tumours. In general, clinically acceptable plans were achieved, and PPlus and POne showed similar effectiveness.
Collapse
Affiliation(s)
- Cássia O Ribeiro
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Anthropomorphic lung phantom based validation of in-room proton therapy 4D-CBCT image correction for dose calculation. Z Med Phys 2020; 32:74-84. [PMID: 33248812 PMCID: PMC9948846 DOI: 10.1016/j.zemedi.2020.09.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 09/18/2020] [Accepted: 09/23/2020] [Indexed: 12/27/2022]
Abstract
PURPOSE Ventilation-induced tumour motion remains a challenge for the accuracy of proton therapy treatments in lung patients. We investigated the feasibility of using a 4D virtual CT (4D-vCT) approach based on deformable image registration (DIR) and motion-aware 4D CBCT reconstruction (MA-ROOSTER) to enable accurate daily proton dose calculation using a gantry-mounted CBCT scanner tailored to proton therapy. METHODS Ventilation correlated data of 10 breathing phases were acquired from a porcine ex-vivo functional lung phantom using CT and CBCT. 4D-vCTs were generated by (1) DIR of the mid-position 4D-CT to the mid-position 4D-CBCT (reconstructed with the MA-ROOSTER) using a diffeomorphic Morphons algorithm and (2) subsequent propagation of the obtained mid-position vCT to the individual 4D-CBCT phases. Proton therapy treatment planning was performed to evaluate dose calculation accuracy of the 4D-vCTs. A robust treatment plan delivering a nominal dose of 60Gy was generated on the average intensity image of the 4D-CT for an approximated internal target volume (ITV). Dose distributions were then recalculated on individual phases of the 4D-CT and the 4D-vCT based on the optimized plan. Dose accumulation was performed for 4D-vCT and 4D-CT using DIR of each phase to the mid position, which was chosen as reference. Dose based on the 4D-vCT was then evaluated against the dose calculated on 4D-CT both, phase-by-phase as well as accumulated, by comparing dose volume histogram (DVH) values (Dmean, D2%, D98%, D95%) for the ITV, and by a 3D-gamma index analysis (global, 3%/3mm, 5Gy, 20Gy and 30Gy dose thresholds). RESULTS Good agreement was found between the 4D-CT and 4D-vCT-based ITV-DVH curves. The relative differences ((CT-vCT)/CT) between accumulated values of ITV Dmean, D2%, D95% and D98% for the 4D-CT and 4D-vCT-based dose distributions were -0.2%, 0.0%, -0.1% and -0.1%, respectively. Phase specific values varied between -0.5% and 0.2%, -0.2% and 0.5%, -3.5% and 1.5%, and -5.7% and 2.3%. The relative difference of accumulated Dmean over the lungs was 2.3% and Dmean for the phases varied between -5.4% and 5.8%. The gamma pass-rates with 5Gy, 20Gy and 30Gy thresholds for the accumulated doses were 96.7%, 99.6% and 99.9%, respectively. Phase-by-phase comparison yielded pass-rates between 86% and 97%, 88% and 98%, and 94% and 100%. CONCLUSIONS Feasibility of the suggested 4D-vCT workflow using proton therapy specific imaging equipment was shown. Results indicate the potential of the method to be applied for daily 4D proton dose estimation.
Collapse
|
13
|
den Otter LA, Chen K, Janssens G, Meijers A, Both S, Langendijk JA, Rosen LR, Wu HT, Knopf AC. Technical Note: 4D cone-beam CT reconstruction from sparse-view CBCT data for daily motion assessment in pencil beam scanned proton therapy (PBS-PT). Med Phys 2020; 47:6381-6387. [PMID: 33011990 PMCID: PMC7821169 DOI: 10.1002/mp.14521] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/26/2020] [Accepted: 09/26/2020] [Indexed: 12/25/2022] Open
Abstract
PURPOSE The number of pencil beam scanned proton therapy (PBS-PT) facilities equipped with cone-beam computed tomography (CBCT) imaging treating thoracic indications is constantly rising. To enable daily internal motion monitoring during PBS-PT treatments of thoracic tumors, we assess the performance of Motion-Aware RecOnstructiOn method using Spatial and Temporal Regularization (MA-ROOSTER) four-dimensional CBCT (4DCBCT) reconstruction for sparse-view CBCT data and a realistic data set of patients treated with proton therapy. METHODS Daily CBCT projection data for nine non-small cell lung cancer (NSCLC) patients and one SCLC patient were acquired at a proton gantry system (IBA Proteus® One). Four-dimensional CBCT images were reconstructed applying the MA-ROOSTER and the conventional phase-correlated Feldkamp-Davis-Kress (PC-FDK) method. Image quality was assessed by visual inspection, contrast-to-noise ratio (CNR), signal-to-noise ratio (SNR), and the structural similarity index measure (SSIM). Furthermore, gross tumor volume (GTV) centroid motion amplitudes were evaluated. RESULTS Image quality for the 4DCBCT reconstructions using MA-ROOSTER was superior to the PC-FDK reconstructions and close to FDK images (median CNR: 1.23 [PC-FDK], 1.98 [MA-ROOSTER], and 1.98 [FDK]; median SNR: 2.56 [PC-FDK], 4.76 [MA-ROOSTER], and 5.02 [FDK]; median SSIM: 0.18 [PC-FDK vs FDK], 0.31 [MA-ROOSTER vs FDK]). The improved image quality of MA-ROOSTER facilitated GTV contour warping and realistic motion monitoring for most of the reconstructions. CONCLUSION MA-ROOSTER based 4DCBCTs performed well in terms of image quality and appear to be promising for daily internal motion monitoring in PBS-PT treatments of (N)SCLC patients.
Collapse
Affiliation(s)
- Lydia A den Otter
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, 9713 GZ, The Netherlands
| | - Kuanling Chen
- Department of Radiation Oncology, Willis-Knighton Cancer Center, Shreveport, LA, USA
| | - Guillaume Janssens
- Ion Beam Applications, Research and Development, Louvain-la-Neuve, Belgium
| | - Arturs Meijers
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, 9713 GZ, The Netherlands
| | - Stefan Both
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, 9713 GZ, The Netherlands
| | - Johannes A Langendijk
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, 9713 GZ, The Netherlands
| | - Lane R Rosen
- Department of Radiation Oncology, Willis-Knighton Cancer Center, Shreveport, LA, USA
| | - Hsinshun T Wu
- Department of Radiation Oncology, Willis-Knighton Cancer Center, Shreveport, LA, USA
| | - Antje-Christin Knopf
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, 9713 GZ, The Netherlands
| |
Collapse
|
14
|
Meschini G, Vai A, Paganelli C, Molinelli S, Maestri D, Fontana G, Pella A, Vitolo V, Valvo F, Ciocca M, Baroni G. Investigating the use of virtual 4DCT from 4DMRI in gated carbon ion radiation therapy of abdominal tumors. Z Med Phys 2020; 32:98-108. [PMID: 33069586 PMCID: PMC9948849 DOI: 10.1016/j.zemedi.2020.08.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 07/27/2020] [Accepted: 08/31/2020] [Indexed: 12/22/2022]
Abstract
PURPOSE To generate virtual 4DCT from 4DMRI with field of view (FOV) extended to the entire involved patient anatomy, in order to evaluate its use in carbon ion radiation therapy (CIRT) of the abdominal site in a clinical scenario. MATERIALS AND METHODS The virtual 4DCT was generated by deforming a reference CT in order to (1) match the anatomy depicted in the 4DMRI within its FOV, by calculating deformation fields with deformable image registration to describe inter-fractional and breathing motion, and (2) obtain physically plausible deformation outside of the 4DMRI FOV, by propagating and modulating the previously obtained deformation fields. The implemented method was validated on a digital anthropomorphic phantom, for which a ground truth (GT) 4DCT was available. A CIRT treatment plan was optimized at the end-exhale reference CT and the RBE-weighted dose distribution was recalculated on both the virtual and GT 4DCTs. The method estimation error was quantified by comparing the virtual and GT 4DCTs and the corresponding recomputed doses. The method was then evaluated on 8 patients with pancreas or liver tumors treated with CIRT using respiratory gating at end-exhale. The clinical treatment plans adopted at the National Center for Oncological Hadrontherapy (CNAO, Pavia, Italy) were considered and the dose distribution was recomputed on all respiratory phases of the planning and virtual 4DCTs. By comparing the two datasets and the corresponding dose distributions, the geometrical and dosimetric impact of organ motion was assessed. RESULTS For the phantom, the error outside of the 4DMRI FOV was up to 4.5mm, but it remained sub-millimetric in correspondence to the target within the 4DMRI FOV. Although the impact of motion on the target D95% resulted in variations ranging from 22% to 90% between the planned dose and the doses recomputed on the GT 4DCT phases, the corresponding estimation error was ≤2.2%. In the patient cases, the variation of the baseline tumor position between the planning and the virtual end-exhale CTs presented a median (interquartile range) value of 6.0 (4.9) mm. For baseline variations larger than 5mm, the tumor D95% variation between the plan and the dose recomputed on the end-exhale virtual CT resulted larger than 10%. Median variations higher than 10% in the target D95% and gastro-intestinal OARs D2% were quantified at the end-inhale, whereas close to the end-exhale phase, limited variations of relevant dose metrics were found for both tumor and OARs. CONCLUSIONS The negligible impact of the geometrical inaccuracy in the estimated anatomy outside of the 4DMRI FOV on the overall dosimetric accuracy suggests the feasibility of virtual 4DCT with extended FOV in CIRT of the abdominal site. In the analyzed patient group, inter-fractional variations such as baseline variation and breathing variability were quantified, demonstrating the method capability to support treatment planning in gated CIRT of the abdominal site.
Collapse
Affiliation(s)
- Giorgia Meschini
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano 20133, Italy.
| | - Alessandro Vai
- Centro Nazionale di Adroterapia Oncologica, Pavia 27100, Italy
| | - Chiara Paganelli
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano 20133, Italy
| | | | - Davide Maestri
- Centro Nazionale di Adroterapia Oncologica, Pavia 27100, Italy
| | - Giulia Fontana
- Centro Nazionale di Adroterapia Oncologica, Pavia 27100, Italy
| | - Andrea Pella
- Centro Nazionale di Adroterapia Oncologica, Pavia 27100, Italy
| | - Viviana Vitolo
- Centro Nazionale di Adroterapia Oncologica, Pavia 27100, Italy
| | - Francesca Valvo
- Centro Nazionale di Adroterapia Oncologica, Pavia 27100, Italy
| | - Mario Ciocca
- Centro Nazionale di Adroterapia Oncologica, Pavia 27100, Italy
| | - Guido Baroni
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano 20133, Italy,Centro Nazionale di Adroterapia Oncologica, Pavia 27100, Italy
| |
Collapse
|
15
|
Meijers A, Knopf AC, Crijns AP, Ubbels JF, Niezink AG, Langendijk JA, Wijsman R, Both S. Evaluation of interplay and organ motion effects by means of 4D dose reconstruction and accumulation. Radiother Oncol 2020; 150:268-274. [DOI: 10.1016/j.radonc.2020.07.055] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 07/14/2020] [Accepted: 07/23/2020] [Indexed: 12/29/2022]
|
16
|
Meschini G, Kamp F, Hofmaier J, Reiner M, Sharp G, Paganetti H, Belka C, Wilkens JJ, Carlson DJ, Parodi K, Baroni G, Riboldi M. Modeling RBE-weighted dose variations in irregularly moving abdominal targets treated with carbon ion beams. Med Phys 2020; 47:2768-2778. [PMID: 32162332 DOI: 10.1002/mp.14135] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 03/09/2020] [Accepted: 03/09/2020] [Indexed: 01/01/2023] Open
Abstract
PURPOSE To model four-dimensional (4D) relative biological effectiveness (RBE)-weighted dose variations in abdominal lesions treated with scanned carbon ion beam in case of irregular breathing motion. METHODS The proposed method, referred to as bioWED method, combines the simulation of tumor motion in a patient- and beam-specific water equivalent depth (WED)-space with RBE modeling, aiming at the estimation of RBE-weighted dose changes due to respiratory motion. The method was validated on a phantom, simulating gated and free breathing dose delivery, and on a patient case, for which free breathing irradiation was assumed and both amplitude and baseline breathing irregularities were simulated through a respiratory motion model. We quantified (a) the effect of motion on the equivalent uniform dose (EUD) and the RBE-weighted dose-volume histograms (DVH), by comparing the planned dose distribution with "ground truth" 4D RBE-weighted doses computed using 4D computed tomography data, and (ii) the estimation error, by comparing the doses estimated with the bioWED method to "ground truth" 4D RBE-weighted doses. RESULTS In the phantom validation, the estimation error on the EUD was limited with respect to the motion effect and the median estimation error on relevant RBE-weighted DVH metrics remained within 5%. In the patient study, the estimation error as computed on the EUD was smaller than the corresponding motion effect, exhibiting the largest values in the baseline irregularity simulation. However, the median estimation error over all simulations was below 3.2% considering relevant DVH metrics. CONCLUSIONS In the evaluated cases, the bioWED method showed proper accuracy when compared to deformable image registration-based 4D dose calculation. Therefore, it can be seen as a tool to test treatment plan robustness against irregular breathing motion, although its accuracy decreases as a function of increasing soft tissue deformation and should be evaluated on a larger patient dataset.
Collapse
Affiliation(s)
- Giorgia Meschini
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Florian Kamp
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Jan Hofmaier
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Michael Reiner
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Gregory Sharp
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Harald Paganetti
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Claus Belka
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Jan J Wilkens
- Department of Radiation Oncology, School of Medicine, Technical University of Munich, Klinikum rechts der Isar, Munich, Germany
| | - David J Carlson
- Yale University, New Haven, CT, USA.,University of Pennsylvania, Philadelphia, PA, USA
| | - Katia Parodi
- Department of Experimental Physics -Medical Physics, Ludwig-Maximilians-Universität München (LMU Munich), Munich, Germany
| | - Guido Baroni
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy.,Centro Nazionale di Adroterapia Oncologica, Pavia, Italy
| | - Marco Riboldi
- Department of Experimental Physics -Medical Physics, Ludwig-Maximilians-Universität München (LMU Munich), Munich, Germany
| |
Collapse
|
17
|
Raldow A, Lamb J, Hong T. Proton beam therapy for tumors of the upper abdomen. Br J Radiol 2019; 93:20190226. [PMID: 31430202 DOI: 10.1259/bjr.20190226] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Proton radiotherapy has clear dosimetric advantages over photon radiotherapy. In contrast to photons, which are absorbed exponentially, protons have a finite range dependent on the initial proton energy. Protons therefore do not deposit dose beyond the tumor, resulting in great conformality, and offers the promise of dose escalation to increase tumor control while minimizing toxicity. In this review, we discuss the rationale for using proton radiotherapy in the treatment of upper abdominal tumors-hepatocellular carcinomas, cholangiocarcinomas and pancreatic cancers. We also review the clinical outcomes and technical challenges of using proton radiotherapy for the treatment of these malignancies. Finally, we discuss the ongoing clinical trials implementing proton radiotherapy for the treatment of primary liver and pancreatic tumors.
Collapse
Affiliation(s)
- Ann Raldow
- Department of Radiation Oncology, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - James Lamb
- Department of Radiation Oncology, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Theodore Hong
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA
| |
Collapse
|