1
|
Ballhausen H, Belka C, Li M. Prostate intra-fraction motion recorded by transperineal ultrasound. Sci Data 2024; 11:504. [PMID: 38755158 PMCID: PMC11099185 DOI: 10.1038/s41597-024-03365-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/09/2024] [Indexed: 05/18/2024] Open
Abstract
Infra-fraction motion of the prostate was recorded during 3.423 fractions of image guided radiotherapy (IGRT) in 191 patients, 14 of which were treated by intensity modulated radiation therapy (IMRT), and 177 of which were treated by volumetric arc therapy (VMAT). The prostate was imaged by three-dimensional and time-resolved transperineal ultrasound (4D-US) of type Clarity by Elekta AB, Stockholm, Sweden. The prostate volume was registered and the prostate position (center of volume) was recorded at a frequency of 2.0 samples per second. This raw data set contains a total of 1.985.392 prostate and patient couch positions over a time span of 272 hours, 52 minutes and 34 seconds of life radiotherapy as exported by the instrument software. This data set has been used for the validation of models of prostate intra-fraction motion and for the estimation of the dosimetric impact of actual intra-fraction motion on treatment quality and side effects. We hope that this data set may be reused by other groups for similar purposes.
Collapse
Affiliation(s)
- Hendrik Ballhausen
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany.
| | - Claus Belka
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
- Bavarian Cancer Research Center (BZKF), Munich, Germany
| | - Minglun Li
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
2
|
Alexander S, Oelfke U, Westley R, McNair H, Tree A. Prostate cancer image guided radiotherapy: Why the commotion over rectal volume and motion? Clin Transl Radiat Oncol 2023; 43:100685. [PMID: 37842073 PMCID: PMC10570575 DOI: 10.1016/j.ctro.2023.100685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 09/24/2023] [Indexed: 10/17/2023] Open
Abstract
Introduction Distended rectums on pre-radiotherapy scans are historically associated with poorer outcomes in patients treated with two-dimensional IGRT. Subsequently, strict rectal tolerances and preparation regimes were implemented. Contemporary IGRT, daily online registration to the prostate, corrects interfraction motion but intrafraction motion remains. We re-examine the need for rectal management strategies when using contemporary IGRT by quantifying rectal volume and its effect on intrafraction motion. Materials and methods Pre and during radiotherapy rectal volumes and intrafraction motion were retrospectively calculated for 20 patients treated in 5-fractions and 20 treated in 20-fractions. Small (rectal volume at planning-CT ≤ median), and large (volume > median) subgroups were formed, and rectal volume between timepoints and subgroups compared. Rectal volume and intrafraction motion correlation was examined using Spearman's rho. Intrafraction motion difference between small and large subgroups and between fractions with rectal volume < or ≥ 90 cm3 were assessed. Results Median rectal volume was 74 cm3, 64 cm3 and 65 cm3 on diagnostic-MRI, planning-CT and treatment imaging respectively (ns). No significant correlation was found between patient's rectal volume at planning-CT and median intrafraction motion, nor treatment rectal volume and intrafraction motion for individual fractions. No significant difference in intrafraction motion between small and large subgroups presented and for fractions where rectal volume breached 90 cm3, motion during that fraction was not significantly greater. Conclusion Larger rectal volumes before radiotherapy and during treatment did not cause greater intrafraction motion. Findings support the relaxation of strict rectal diameter tolerances and do not support the need for rectal preparation when delivering contemporary IGRT to the prostate.
Collapse
Affiliation(s)
- S.E. Alexander
- The Royal Marsden NHS Foundation Trust, United Kingdom and The Institute of Cancer Research, United Kingdom
| | - U. Oelfke
- The Joint Department of Physics, the Royal Marsden Hospital and the Institute of Cancer Research, United Kingdom
| | - R. Westley
- The Royal Marsden NHS Foundation Trust, United Kingdom and The Institute of Cancer Research, United Kingdom
| | - H.A. McNair
- The Royal Marsden NHS Foundation Trust, United Kingdom and The Institute of Cancer Research, United Kingdom
| | - A.C. Tree
- The Royal Marsden NHS Foundation Trust, United Kingdom and The Institute of Cancer Research, United Kingdom
| |
Collapse
|
3
|
Ballhausen H, Li M, Lombardo E, Landry G, Belka C. Planning CT Identifies Patients at Risk of High Prostate Intrafraction Motion. Cancers (Basel) 2023; 15:4103. [PMID: 37627131 PMCID: PMC10452220 DOI: 10.3390/cancers15164103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/11/2023] [Accepted: 08/12/2023] [Indexed: 08/27/2023] Open
Abstract
Prostate motion (standard deviation, range of motion, and diffusion coefficient) was calculated from 4D ultrasound data of 1791 fractions of radiation therapy in N = 100 patients. The inner diameter of the lesser pelvis was obtained from transversal slices through the pubic symphysis in planning CTs. On the lateral and craniocaudal axes, motility increases significantly (t-test, p < 0.005) with the inner diameter of the lesser pelvis. A diameter of >106 mm (ca. 6th decile) is a good predictor for high prostate intrafraction motion (ca. 9th decile). The corresponding area under the receiver operator curve (AUROC) is 80% in the lateral direction, 68% to 80% in the craniocaudal direction, and 62% to 70% in the vertical direction. On the lateral x-axis, the proposed test is 100% sensitive and has a 100% negative predictive value for all three characteristics (standard deviation, range of motion, and diffusion coefficient). On the craniocaudal z-axis, the proposed test is 79% to 100% sensitive and reaches 95% to 100% negative predictive value. On the vertical axis, the proposed test still delivers 98% negative predictive value but is not particularly sensitive. Overall, the proposed predictor is able to help identify patients at risk of high prostate motion based on a single planning CT.
Collapse
Affiliation(s)
- Hendrik Ballhausen
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, 81377 Munich, Germany
| | | | | | | | | |
Collapse
|
4
|
Li Y, Gong Z, Liu M, Li H, Gao H, Guo C, Yu L, Zhu C, Sun Z, Sun L, Xu H, He X. 3D-US and CBCT Dual-guided Radiotherapy for Postoperative Uterine Malignancy: A Primary Workflow Set-up. Technol Cancer Res Treat 2023; 22:15330338231212082. [PMID: 37993995 PMCID: PMC10666818 DOI: 10.1177/15330338231212082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 09/09/2023] [Accepted: 09/26/2023] [Indexed: 11/24/2023] Open
Abstract
Introduction: The consistency of clinical target volume is essential to guiding radiotherapy with precision for postoperative uterine malignancy patients. By introducing a three-dimensional ultrasound system (3D-US) into image-guided radiation therapy (IGRT), this study was designed to investigate the initial workflow set-up, the therapeutic potential, and the adverse events of 3D-US and cone-beam computed tomography (CBCT) dual-guided radiotherapy in postoperative uterine malignancy treatment. Methods: From April 2021 to December 2021, postoperative uterine malignancy patients were instructed to follow the previously standard protocol of daily radiation treatment, particularly a 3D-US (Clarity system) guiding was involved before CBCT. Soft-tissue-based displacements resulting from the additional US-IGRT were acquired in the LT (left)/RT (right), ANT (anterior)/POST (posterior), and SUP (superior)/INF(inferior) directions of the patient before fractional treatment. Displacement distributions before and after treatment either from 3D-US or from CBCT were also estimated and compared subsequently, and the urinary and rectal toxicity was further evaluated. Results: All the patients completed radiation treatment as planned. The assessment of 170 scans resulted in a mean displacement of (0.17 ± 0.24) cm, (0.19 ± 0.23) cm, (0.22 ± 0.26) cm for bladder in LT/RT, ANT/POST, and SUP/INF directions. A mean deviation of (0.26 ± 0.22) cm, (0.58 ± 0.5) cm, and (0.3 ± 0.23) cm was also observed for the bladder centroid between the CBCT and computed tomography -simulation images in three directions. Paired comparison between these two guidance shows that the variations from 3D-US are much smaller than those from CBCT in three directions, especially in ANT/POST and SUP/INF directions with significance (P = 0.000, 0.001, respectively). During treatment, and 0, 3, 6, 9, and 12 months after treatment, there was no severe urinary and rectal toxicity happened. Conclusion: A primary workflow of 3D-US and CBCT dual-guided radiotherapy has been established, which showed great therapeutic potential with mild to moderate urinary and rectal toxicity for postoperative uterine malignancy patients. But the clinical outcomes of this non-invasive technique need to be investigated further.
Collapse
Affiliation(s)
- Yang Li
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China
| | - Zhen Gong
- Department of Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Mengyu Liu
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China
| | - Huixin Li
- Department of Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Han Gao
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China
| | - Chang Guo
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China
| | - Le Yu
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China
| | - Chenjing Zhu
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China
| | - Zhihua Sun
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China
| | - Li Sun
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China
| | - Hanzi Xu
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China
| | - Xia He
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China
| |
Collapse
|
5
|
di Franco F, Baudier T, Gassa F, Munoz A, Martinon M, Charcosset S, Vigier-Lafosse E, Pommier P, Sarrut D, Biston MC. Minimum non-isotropic and asymmetric margins for taking into account intrafraction prostate motion during moderately hypofractionated radiotherapy. Phys Med 2022; 96:114-120. [PMID: 35278928 DOI: 10.1016/j.ejmp.2022.03.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 03/04/2022] [Accepted: 03/04/2022] [Indexed: 12/11/2022] Open
Abstract
PURPOSE To investigate the impact on dose distribution of intrafraction motion during moderate hypofractionated prostate cancer treatments and to estimate minimum non-isotropic and asymmetric (NI-AS) treatment margins taking motion into account. METHODS Prostate intrafraction 3D displacements were recorded with a transperineal ultrasound probe and were evaluated in 46 prostate cancer patients (876 fractions) treated by moderate hypofractionated radiation therapy (60 Gy in 20 fractions). For 18 patients (346 fractions), treatment plans were recomputed increasing CTV-to-PTV margins from 0 to 6 mm with an auto-planning optimization algorithm. Dose distribution was estimated using the voxel shifting method by displacing CTV structure according to the retrieved movements. Time-dependent margins were finally calculated using both van Herk's formula and the voxel shifting method. RESULTS Mean intrafraction prostate displacements observed were -0.02 ± 0.52 mm, 0.27 ± 0.78 mm and -0.43 ± 1.06 mm in left-right, supero-inferior and antero-posterior directions, respectively. The CTV dosimetric coverage increased with increased CTV-to-PTV margins but it decreased with time. Hence using van Herk's formula, after 7 min of treatment, a margin of 0.4 and 0.5 mm was needed in left and right, 1.5 and 0.7 mm in inferior and superior and 1.1 and 3.2 mm in anterior and posterior directions, respectively. Conversely, using the voxel shifting method, a margin of 0 mm was needed in left-right, 2 mm in superior, 3 mm in inferior and anterior and 5 mm in posterior directions, respectively. With this latter NI-AS margin strategy, the dosimetric target coverage was equivalent to the one obtained with a 5 mm homogeneous margin. CONCLUSIONS NI-AS margins would be required to optimally take into account intrafraction motion.
Collapse
Affiliation(s)
- Francesca di Franco
- Centre Léon Bérard, 28 rue Laennec 69373, LYON Cedex 08, France; CREATIS, CNRS UMR5220, Inserm U1044, INSA-Lyon, Université Lyon 1, Villeurbanne, France
| | - Thomas Baudier
- Centre Léon Bérard, 28 rue Laennec 69373, LYON Cedex 08, France; CREATIS, CNRS UMR5220, Inserm U1044, INSA-Lyon, Université Lyon 1, Villeurbanne, France
| | - Frédéric Gassa
- Centre Léon Bérard, 28 rue Laennec 69373, LYON Cedex 08, France
| | - Alexandre Munoz
- Centre Léon Bérard, 28 rue Laennec 69373, LYON Cedex 08, France
| | | | | | | | - Pascal Pommier
- Centre Léon Bérard, 28 rue Laennec 69373, LYON Cedex 08, France
| | - David Sarrut
- Centre Léon Bérard, 28 rue Laennec 69373, LYON Cedex 08, France; CREATIS, CNRS UMR5220, Inserm U1044, INSA-Lyon, Université Lyon 1, Villeurbanne, France
| | - Marie-Claude Biston
- Centre Léon Bérard, 28 rue Laennec 69373, LYON Cedex 08, France; CREATIS, CNRS UMR5220, Inserm U1044, INSA-Lyon, Université Lyon 1, Villeurbanne, France.
| |
Collapse
|
6
|
Sawayanagi S, Yamashita H, Ogita M, Takenaka R, Nozawa Y, Watanabe Y, Imae T, Abe O. Injection of hydrogel spacer increased maximal intrafractional prostate motion in anterior and superior directions during volumetric modulated arc therapy-stereotactic body radiation therapy for prostate cancer. Radiat Oncol 2022; 17:41. [PMID: 35197092 PMCID: PMC8867734 DOI: 10.1186/s13014-022-02008-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 02/13/2022] [Indexed: 12/03/2022] Open
Abstract
Background The aim of this study was to clarify the association between intrafractional prostate shift and hydrogel spacer. Methods Thirty-eight patients who received definitive volumetric modulated arc therapy (VMAT)-stereotactic body radiation therapy (SBRT) for prostate cancer with prostate motion monitoring in our institution in 2018–2019 were retrospectively evaluated. In order to move the rectum away from the prostate, hydrogel spacer (SpaceOAR system, Boston Scientific, Marlborough, the United States) injection was proposed to the patients as an option in case of meeting the indication of use. We monitored intrafractional prostate motion by using a 4-dimensional (4D) transperineal ultrasound device: the Clarity 4D ultrasound system (Elekta AB). The deviation of the prostate was monitored in each direction: superior-inferior, left–right, and anterior–posterior. We also calculated the vector length. The maximum intrafractional displacement (MID) per fraction for each direction was detected and mean of MIDs was calculated per patient. The MIDs in the non-spacer group and the spacer group were compared using the unpaired t-test. Results We reviewed 33 fractions in eight patients as the spacer group and 148 fractions in 30 patients as the non-spacer group. The superior MID was 0.47 ± 0.07 (mean ± SE) mm versus 0.97 ± 0.24 mm (P = 0.014), the inferior MID was 1.07 ± 0.11 mm versus 1.03 ± 0.25 mm (P = 0.88), the left MID was 0.74 ± 0.08 mm versus 0.87 ± 0.27 mm (P = 0.55), the right MID was 0.67 ± 0.08 mm versus 0.92 ± 0.21 mm (P = 0.17), the anterior MID was 0.45 ± 0.06 mm versus 1.16 ± 0.35 mm (P = 0.0023), and the posterior MID was 1.57 ± 0.17 mm versus 1.37 ± 0.22 mm (P = 0.56) in the non-spacer group and the spacer group, respectively. The max of VL was 2.24 ± 0.19 mm versus 2.89 ± 0.62 mm (P = 0.19), respectively. Conclusions Our findings suggest that maximum intrafractional prostate motion during VMAT-SBRT was larger in patients with hydrogel spacer injection in the superior and anterior directions. Since this difference seemed not to disturb the dosimetric advantage of the hydrogel spacer, we do not recommend routine avoidance of the hydrogel spacer use.
Collapse
Affiliation(s)
- Subaru Sawayanagi
- Department of Radiology, University of Tokyo Hospital, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Hideomi Yamashita
- Department of Radiology, University of Tokyo Hospital, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.
| | - Mami Ogita
- Department of Radiology, University of Tokyo Hospital, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Ryosuke Takenaka
- Department of Radiology, University of Tokyo Hospital, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Yuki Nozawa
- Department of Radiology, University of Tokyo Hospital, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Yuichi Watanabe
- Department of Radiology, University of Tokyo Hospital, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Toshikazu Imae
- Department of Radiology, University of Tokyo Hospital, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Osamu Abe
- Department of Radiology, University of Tokyo Hospital, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| |
Collapse
|
7
|
Single-fraction prostate stereotactic body radiotherapy: Dose reconstruction with electromagnetic intrafraction motion tracking. Radiother Oncol 2020; 156:145-152. [PMID: 33310011 DOI: 10.1016/j.radonc.2020.12.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/30/2020] [Accepted: 12/02/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE To reconstruct the dose delivered during single-fraction urethra-sparing prostate stereotactic body radiotherapy (SBRT) accounting for intrafraction motion monitored by intraprostatic electromagnetic transponders (EMT). METHODS We analyzed data of 15 patients included in the phase I/II "ONE SHOT" trial and treated with a single fraction of 19 Gy to the planning target volume (PTV) and 17 Gy to the urethra planning risk volume. During delivery, prostate motion was tracked with implanted EMT. SBRT was interrupted when a 3-mm threshold was trespassed and corrected unless the offset was transient. Motion-encoded reconstructed (MER) plans were obtained by splitting the original plans into multiple sub-beams with isocenter shifts based on recorded EMT positions, mimicking prostate motion during treatment. We analyzed intrafraction motion and compared MER to planned doses. RESULTS The median EMT motion range (±SD) during delivery was 0.26 ± 0.09, 0.22 ± 0.14 and 0.18 ± 0.10 cm in the antero-posterior, supero-inferior, and left-right axes, respectively. Treatment interruptions were needed for 8 patients because of target motion beyond limits in the antero-posterior (n = 6) and/or supero-inferior directions (n = 4). Comparing MER vs. original plan there was a median relative dose difference of -1.9% (range, -7.9 to -1.0%) and of +0.5% (-0.3-1.7%) for PTV D98% and D2%, respectively. The clinical target volume remained sufficiently covered with a median D98% difference of -0.3% (-1.6-0.5%). Bladder and rectum dosimetric parameters showed significant differences between original and MER plans, but mostly remained within acceptable limits. CONCLUSIONS The dosimetric impact of intrafraction prostate motion was minimal for target coverage for single-fraction prostate SBRT with real-time electromagnetic tracking combined with beam gating.
Collapse
|