1
|
Ryczkowski A, Piotrowski T, Staszczak M, Wiktorowicz M, Adrich P. Optimization of the regularization parameter in the Dual Annealing method used for the reconstruction of energy spectrum of electron beam generated by the AQURE mobile accelerator. Z Med Phys 2024; 34:510-520. [PMID: 37087377 PMCID: PMC11624413 DOI: 10.1016/j.zemedi.2023.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/10/2023] [Accepted: 03/07/2023] [Indexed: 04/24/2023]
Abstract
INTRODUCTION The shape of the energy spectrum is an essential component of any electron beam Monte Carlo model. Due to specialized equipment and the long measurement time for the direct methods for determining the energy spectrum, attractive alternatives are backward spectrum reconstructions from the measured data. One such approach is solving the first-degree Fredholm integral equation with appropriate regularization. It makes it possible to calculate the depth distribution as the sum of the distributions from monoenergetic beams. This study aims to determine the optimal value of the regularization parameter for the problem of determining the spectrum of the electron beam produced by a mobile accelerator used during intraoperative radiotherapy. MATERIAL AND METHODS The Geant4 package was used to generate the distributions of deep doses for monoenergetic beams for two models with different degrees of complexity, i.e. simple (theoretical) and full (for the mobile accelerator). The dose distributions for four different shapes of energy spectrum (for each model) were obtained similarly. They were established as the reference data for further calculations. The Dual Annealing optimization method was used to obtain the reconstructed spectrum. The multiple optimizations that differ by the regularization parameter (ranging from 0 to 1) were performed. For each reconstruction, similarity indicators of the energy spectrum and the dose distribution to the referenced data were calculated to determine the optimal regularization parameters. RESULTS Optimal regularization parameters determined by similarity indicators for the spectrum and the dose distribution differ for geometry models considered in the study. The regularization parameter for the simple geometry ranged from 0.03 to 0.05, while for full geometry, they were from 0.05 to 0.06. The results for conventional linear accelerators found in the literature range from 0.5 to 1.1. CONCLUSION The Dual Annealing optimization method can be effectively used to solve the Fredholm equation with Tikhonov regularization to reconstruct an electron beam's energy spectrum. The regularization parameter value depends on the beam-forming system. Its value for the mobile accelerator considered in the study ranges from 0.05 to 0.06, depending on the nominal beam energy value.
Collapse
Affiliation(s)
- Adam Ryczkowski
- Department of Electroradiology, Poznan University of Medical Sciences, Poznan, Poland; Department of Medical Physics, Greater Poland Cancer Centre, Poznan, Poland.
| | - Tomasz Piotrowski
- Department of Electroradiology, Poznan University of Medical Sciences, Poznan, Poland; Department of Medical Physics, Greater Poland Cancer Centre, Poznan, Poland; Department of Biomedical Physics, Adam Mickiewicz University in Poznan, Poznan, Poland
| | | | | | | |
Collapse
|
2
|
Petoukhova A, Snijder R, Vissers T, Ceha H, Struikmans H. In vivodosimetry in cancer patients undergoing intraoperative radiation therapy. Phys Med Biol 2023; 68:18TR01. [PMID: 37607566 DOI: 10.1088/1361-6560/acf2e4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 08/22/2023] [Indexed: 08/24/2023]
Abstract
In vivodosimetry (IVD) is an important tool in external beam radiotherapy (EBRT) to detect major errors by assessing differences between expected and delivered dose and to record the received dose by individual patients. Also, in intraoperative radiation therapy (IORT), IVD is highly relevant to register the delivered dose. This is especially relevant in low-risk breast cancer patients since a high dose of IORT is delivered in a single fraction. In contrast to EBRT, online treatment planning based on intraoperative imaging is only under development for IORT. Up to date, two commercial treatment planning systems proposed intraoperative ultrasound or in-room cone-beam CT for real-time IORT planning. This makes IVD even more important because of the possibility for real-time treatment adaptation. Here, we summarize recent developments and applications of IVD methods for IORT in clinical practice, highlighting important contributions and identifying specific challenges such as a treatment planning system for IORT. HDR brachytherapy as a delivery technique was not considered. We add IVD for ultrahigh dose rate (FLASH) radiotherapy that promises to improve the treatment efficacy, when compared to conventional radiotherapy by limiting the rate of toxicity while maintaining similar tumour control probabilities. To date, FLASH IORT is not yet in clinical use.
Collapse
Affiliation(s)
- Anna Petoukhova
- Haaglanden Medical Centre , Department of Medical Physics, Leidschendam, The Netherlands
| | - Roland Snijder
- Haaglanden Medical Centre , Department of Medical Physics, Leidschendam, The Netherlands
| | - Thomas Vissers
- Haaglanden Medical Centre , Medical Library, Leidschendam, The Netherlands
| | - Heleen Ceha
- Haaglanden Medical Centre , Department of Radiation Oncology, Leidschendam, The Netherlands
| | - Henk Struikmans
- Haaglanden Medical Centre , Department of Radiation Oncology, Leidschendam, The Netherlands
| |
Collapse
|
3
|
Mastella E, Szilagyi KE, De Guglielmo E, Fabbri S, Calderoni F, Stefanelli A, Di Domenico G, Turra A. Dosimetric characterization of a mobile accelerator dedicated for intraoperative radiation therapy: Monte Carlo simulations and experimental validation. Phys Med 2022; 104:167-173. [PMID: 36463581 DOI: 10.1016/j.ejmp.2022.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/12/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022] Open
Abstract
PURPOSE This Technical Note validates previously published data about the dosimetry of the electron beams produced by a mobile accelerator dedicated for intraoperative radiation therapy (IORT). The evaluation of the directional response of a PTW microDiamond detector is presented together with a detailed analysis of the output factors (OFs) for bevelled applicators. METHODS The OFs of the 6, 8, 10 and 12 MeV electron beams produced by a light intraoperative accelerator (LIAC, SIT, Italy) were measured in a commercial water phantom using the microDiamond. A set of flat and bevelled applicators with sizes ranging from 4 to 10 cm was characterized. For bevelled applicators, a correction for the angular dependence of the microDiamond was calculated using a home-made spherical phantom. Correction factors were obtained through measurements performed rotating the accelerator treatment head at 0°, 15°, 30° and 45°. RESULTS For flat applicators, the average deviation between measured and simulated OFs was (-1.1 ± 0.7)%. The microDiamond showed a higher angular dependence for the 6 MeV beam (∼8% for angles up to 45°, range 92 % ÷ 100 %), while the variations for 8, 10 and 12 MeV beams were ∼ 4 % (range 97 % ÷ 101 %). Correcting for this dependence, the average deviation of the OFs for bevelled applicators was (-0.9 ± 1.6)%. CONCLUSIONS The presented results were in very good agreement with those reported in literature. Very similar deviations were found between flat and bevelled applicators confirming the suitability of our method to determine the angular dependence correction factors of the microDiamond detector.
Collapse
Affiliation(s)
- Edoardo Mastella
- Struttura Complessa di Fisica Medica, Azienda Ospedaliero-Universitaria di Ferrara, via A. Moro 8, I-44124 Cona (Ferrara), Italy.
| | - Klarisa E Szilagyi
- Dipartimento di Fisica e Scienze della Terra, Università degli Studi di Ferrara, via Saragat 1, I-44122 Ferrara, Italy
| | - Eleonora De Guglielmo
- Struttura Complessa di Fisica Medica, Azienda Ospedaliero-Universitaria di Ferrara, via A. Moro 8, I-44124 Cona (Ferrara), Italy
| | - Sara Fabbri
- Struttura Complessa di Fisica Medica, Azienda Ospedaliero-Universitaria di Ferrara, via A. Moro 8, I-44124 Cona (Ferrara), Italy
| | - Francesca Calderoni
- Struttura Complessa di Fisica Medica, Azienda Ospedaliero-Universitaria di Ferrara, via A. Moro 8, I-44124 Cona (Ferrara), Italy
| | - Antonio Stefanelli
- Struttura Complessa di Radioterapia Oncologica, Azienda Ospedaliero-Universitaria di Ferrara, via A. Moro 8, I-44124 Cona (Ferrara), Italy
| | - Giovanni Di Domenico
- Dipartimento di Fisica e Scienze della Terra, Università degli Studi di Ferrara, via Saragat 1, I-44122 Ferrara, Italy
| | - Alessandro Turra
- Struttura Complessa di Fisica Medica, Azienda Ospedaliero-Universitaria di Ferrara, via A. Moro 8, I-44124 Cona (Ferrara), Italy
| |
Collapse
|
4
|
Moeckli R, Gonçalves Jorge P, Grilj V, Oesterle R, Cherbuin N, Bourhis J, Vozenin MC, Germond JF, Bochud F, Bailat C. Commissioning of an ultra-high dose rate pulsed electron beam medical LINAC for FLASH RT preclinical animal experiments and future clinical human protocols. Med Phys 2021; 48:3134-3142. [PMID: 33866565 DOI: 10.1002/mp.14885] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/11/2020] [Accepted: 03/31/2021] [Indexed: 11/05/2022] Open
Abstract
PURPOSE To present the acceptance and the commissioning, to define the reference dose, and to prepare the reference data for a quality assessment (QA) program of an ultra-high dose rate (UHDR) electron device in order to validate it for preclinical animal FLASH radiotherapy (FLASH RT) experiments and for FLASH RT clinical human protocols. METHODS The Mobetron® device was evaluated with electron beams of 9 MeV in conventional (CONV) mode and of 6 and 9 MeV in UHDR mode (nominal energy). The acceptance was performed according to the acceptance protocol of the company. The commissioning consisted of determining the short- and long-term stability of the device, the measurement of percent depth dose curves (PDDs) and profiles at two different positions (with two different dose per pulse regimen) and for different collimator sizes, and the evaluation of the variability of these parameters when changing the pulse width and pulse repetition frequency. Measurements were performed using a redundant and validated dosimetric strategy with alanine and radiochromic films, as well as Advanced Markus ionization chamber for some measurements. RESULTS The acceptance tests were all within the tolerances of the company's acceptance protocol. The linearity with pulse width was within 1.5% in all cases. The pulse repetition frequency did not affect the delivered dose more than 2% in all cases but 90 Hz, for which the larger difference was 3.8%. The reference dosimetry showed a good agreement within the alanine and films with variations of 2.2% or less. The short-term (resp. long-term) stability was less than 1.0% (resp. 1.8%) and was the same in both CONV and UHDR modes. PDDs, profiles, and reference dosimetry were measured at two positions, providing data for two specific dose rates (about 9 Gy/pulse and 3 Gy/pulse). Maximal beam size was 4 and 6 cm at 90% isodose in the two positions tested. There was no difference between CONV and UHDR mode in the beam characteristics tested. CONCLUSIONS The device is commissioned for FLASH RT preclinical biological experiments as well as FLASH RT clinical human protocols.
Collapse
Affiliation(s)
- Raphaël Moeckli
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Rue du Grand-Pré 1, Lausanne, CH-1007, Switzerland
| | - Patrik Gonçalves Jorge
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Rue du Grand-Pré 1, Lausanne, CH-1007, Switzerland
| | - Veljko Grilj
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Rue du Grand-Pré 1, Lausanne, CH-1007, Switzerland
| | - Roxane Oesterle
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Rue du Grand-Pré 1, Lausanne, CH-1007, Switzerland
| | - Nicolas Cherbuin
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Rue du Grand-Pré 1, Lausanne, CH-1007, Switzerland
| | - Jean Bourhis
- Radio-Oncology Department, Lausanne University Hospital and Lausanne University, Rue du Bugnon 46, Lausanne, CH-1011, Switzerland
| | - Marie-Catherine Vozenin
- Radio-Oncology Department, Lausanne University Hospital and Lausanne University, Rue du Bugnon 46, Lausanne, CH-1011, Switzerland
| | - Jean-François Germond
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Rue du Grand-Pré 1, Lausanne, CH-1007, Switzerland
| | - François Bochud
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Rue du Grand-Pré 1, Lausanne, CH-1007, Switzerland
| | - Claude Bailat
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Rue du Grand-Pré 1, Lausanne, CH-1007, Switzerland
| |
Collapse
|